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 With the rapid development of autopilot technology and various types of sensor, high-
precision maps containing a large amount of information for assisting driving have been 
proposed.  The standard lane line detection algorithm relies on the robust estimation of 
visible lane line markers from a camera image using vision and image processing algorithms.  
Although the recognition and detection technology for road marking lines is relatively 
mature, some problems still exist, such as poor detection accuracy and unsatisfactory real-
time performance.  To solve the problems of the poor robustness and low running speed of the 
current lane detection methods in complex environments, in this study, we improve current lane 
detection methods from the perspective of semantic segmentation and propose a DC-VGG-SAD 
network (VGG: visual geometry group), in which dilated convolution (DC) is used to reduce 
the complexity of the network to ensure detection accuracy.  Furthermore, adding self-attention 
distillation (SAD) makes the information transmission faster.  The proposed network was 
experimentally evaluated using two large-scale datasets.  It was found that when dealing with 
lane lines in complex environments, the network offers higher detection accuracy and detection 
speed than most current mainstream networks.  

1. Introduction

 With the rapid development of high-precision optical and electronic sensors, and highly 
efficient and highly effective computer vision and machine learning algorithms, real-time 
driving scene understanding has become increasingly realistic.  As one of the key elements of 
self-driving technology, high-precision maps are attracting wide attention.(1)  Compared with 
the “qualitative” description of traditional maps, high-precision maps are more of a “quantitative” 
description.  They not only have more accurate coordinate information, but also have more 
accurate and richer road semantic information, which can provide accurate positioning, 
auxiliary environment perception, and decision planning for self-driving cars while improving 
the safety of autonomous driving.
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 Lane markings are an important traffic safety feature with the functions of separating road 
areas, stipulating the direction of travel, and providing guidance information for pedestrians.  
In addition, as one of the core elements of an auxiliary environment awareness module, lane 
detection technology is crucial in the autopilot field(2) and is a powerful tool not only for 
building high-precision maps but also for verifying their accuracy.(3)  Owing to its low cost and 
strong real-time performance, vision-based lane detection has become the key to full autopilot 
driving.(4)  Most traditional lane detection methods use the characteristics of the lane(5) but 
need to find specific lane features manually, such as lane edge features(6) and color.(7)  The low-
level features extracted by traditional methods can be combined with the Hough transform,(8) 
Kalman filter,(9) or particle filter(10) to detect lanes.  Traditional methods are easy to use but 
are frequently disturbed by noise sources such as object occlusion, low light intensity, and 
incomplete lane markings.  This means that the algorithm cannot achieve the required detection 
accuracy in a complex environment or poor weather and is not robust.(11)  When there are no 
markings on lanes, neither the feature-based nor model-based traditional lane detection methods 
can effectively segment the lane structure.
 Many lane detection methods use deep learning to solve these problems.  Lane detection 
methods based on deep learning or the strong feature extraction ability of convolutional 
neural networks (CNNs) are used to obtain the lane features.(12)  By dividing the lane sign in 
an image into small image blocks and tagging the bounding boxes of the blocks, the lane line 
is transformed into a target detection problem.  He et al. designed a type of network called a 
dual-view convolutional neutral network (DVCNN), which introduced the lane sign images on 
a perspective plane and a top plane into the network as a patch, separated the lane from other 
types of lane sign such as arrows, and then obtained the lane through a weighted cap filter and a 
global optimization function.(13)  Lee et al. proposed a vanishing point guided network (VPGNet) 
based on a CNN with a multitask structure, which used manually calibrated vanishing points 
as constraints.  They gridded the dataset to realize a special labeling method and obtained good 
detection results.  However, using this type of target detection method to solve the problem of 
lane detection is complex and requires a large amount of labeled information support, resulting 
in a low operation speed in the later stages.(14)

 Another approach is to use the method of image segmentation to separate the lane as a 
foreground from other regions and to solve the problem of lane detection from the perspective 
of semantic segmentation.  Pan et al. proposed an image semantic segmentation method called 
a spatial CNN (SCNN).  They used a visual geometry group (VGG)(15) network as the basic 
framework and transformed the traditional convolutional connection based on a layer-to-layer 
approach to a new convolutional operation based on a slice-to-slice approach.  This method 
resolved the situation when a lane is blocked.(16)  Kim and Park proposed an end-to-end transfer 
learning method, which combined a CNN with the random sample consensus (RANSAC) 
algorithm to detect the lanes to the left and right of the current lane.(17)  Neven et al. proposed 
a network called LaneNet based on the SegNet(18) network infrastructure, which is composed 
of an encoder–decoder structure.(19)  The main feature of the structure is that it contains two 
decoders, one to detect the segmented branch of the channel and the other to segment the 
embedded branch of the road region.  However, the CNN in most of the above methods contains 
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a large number of parameters, which leads to a lower operation speed, a more complex network 
structure, and a larger number of downsampling layers, which in turn lead to a reduction in 
spatial resolution and loss of detail in the output image.
 Hence, in this paper, we propose a DC-VGG-SAD network, which is based on a full 
convolutional network (FCN)(20) with an optimization algorithm.  This proposed network 
improves the lane detection method of a VGG network and uses dilated convolution (DC)(21) to 
remove part of the downsampling layer in the network so that the output image of the network 
has a larger receptive field.  The complexity of the network can be reduced, ensuring detection 
accuracy.  Moreover, adding self-attention distillation (SAD)(22) between the encoder and 
decoder of the network speeds up the information transmission.  In this study, experiments were 
carried out on a network based on two large network datasets: TuSimple(23) and CULane.(15)

2. Network Architecture

2.1 DC-VGG network

 An FCN is different from the traditional CNN in that it replaces fully connected layers 
with a convolution layer, so it can input images of any size, making it suitable for semantic 
segmentation.  As an encoder structure, the VGG-16 network can classify and analyze the local 
pixel values of images and obtain high-order semantic information.  In the encoder stage, the 
last three layers of the VGG-16 network structure are fully connected layers, but too many 
fully connected layers will lead to a large number of parameters, thereby reducing the network 
computing efficiency.  Therefore, the FCN converts the three fully connected layers into a 
convolutional layer.  In this manner, the entire network is realized by a convolutional layer.  The 
advantage of using a convolutional layer instead of fully connected layers is that it can retain 
the position information of the image and reduce the amount of calculation of parameters.  
The number of layers of the decoder corresponds to the number of network layers of the 
encoder, meaning that the deconvolution of the decoder is extended to four layers.  According 
to the characteristics of the jump structure, the characteristic image output by the encoder is 
introduced into the decoder to reduce the amount of detailed information lost in the process of 
upsampling.
 A dilation rate parameter is added in DC, which represents the number of points in the 
convolution kernel and increases the reception field of the model without reducing the size of 
the feature graph.  The feature mapping of the network is magnified after the 10th convolutional 
layer, and the continuous downsampling operation distorts the network output image, so that 
the 11th to 13th convolutional layers are transformed into an extended convolution layer and 
the step size is doubled.  Through the DC layer, the convolutional layer can achieve a larger 
receptive field, which makes the spatial information richer and the prediction results of pixels 
more precise.  In addition, to ensure a finer segmentation effect of the network, a jump structure 
is used, i.e., the n-layer feature map is upsampled 2n times to the size of the original image.  The 
details of the structure are shown in Fig. 1.  This type of jump structure can obtain finer effects 
while taking into account global information.



4508 Sensors and Materials, Vol. 32, No. 12 (2020)

2.2 SAD mechanism embedding

 As a simple yet novel approach, SAD allows a lane detection network to reinforce the 
representation learning of itself without the need for additional labels and external supervision.  
In addition, it does not increase the inference time of the base model.  In a real-world traffic 
environment, lanes are not always continuous and sometimes may even be missing.  The 
characteristics of SAD can overcome these problems.  As the name implies, SAD allows a 
network to exploit attention maps derived from its own layers as the distillation targets for 
its lower layers.  Such an attention distillation mechanism is used to complement the usual 
segmentation-based supervised learning.  
 Hence, we use a SAD connection between the encoder and the decoder.  The convolutional 
operation is limited by the size of the convolutional kernel, and its receptive field can only cover 
a local area.  Although we increase the receptive field by increasing the expansion convolution, 
the computational complexity of the entire network is still very large.  SAD is one method that 
can be used to solve this problem.  Using the structural characteristics of SAD, global context 
information can be introduced into the feature graph, which can also improve the transmission 
of spatial information.  SAD allows us to train small networks with excellent visual attention on 
a par with that of very deep networks.  
 In summary, we enhance the representation learning of CNN-based lane detection models 
by SAD.  SAD is only used in the training phase and incurs no computational cost during its 
deployment.  We verify the usefulness of SAD in boosting the performance of lane detection 
networks.  Our lightweight model, DC-VGG-SAD, achieves state-of-the-art lane detection 
performance on TuSimple and CULane.  It can also serve as a strong backbone to facilitate 
future research on lane detection.  Figure 2 shows the overall network architecture proposed in 
this study.  After the operation of each convolution layer, pooled layer, and so forth, the output 
image is displayed in the form of pixels.

Fig. 1. (Color online) Jump structure used in training stage.
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2.3 Loss function

 “Learning” in a neural network refers to the process of automatically obtaining the optimal 
weight parameters from the training data.  The purpose of learning is to find the weight 
parameters that can minimize the value of a loss function.  In general, many neural network 
models dealing with classification problems use cross entropy as the loss function.  If only 
the lane line is detected, the other areas outside the lane line in the image can be set as the 
background, which we regard as a simple dichotomy problem.  However, there are many more 
background pixels than driveway pixels.  Therefore, according to the discriminative loss based 
on the one-shot method proposed by De Brabandere et al.,(24) the role of this loss function is 
to make the pixel values of the same lane as close to the clustering center as possible while the 
pixel values of different lanes are as far away as possible from the corresponding clustering 
center.  This is described in detail by Eqs. (1)–(3):
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where NC is the number of lane lines, μC is the average embedding vector of a lane pixel set C 
relative to the clustering center, ||∙∙∙|| represents distance, Lvar and Ldist are variance and distance 
losses, respectively, and δv and δd are the differences between the two loss values.  Through 
the action of these two loss functions, the pixel classification results of different lane lines are 
further optimized, thus improving the aggregation effect of pixels belonging to the same lane.

Fig. 2. (Color online) Overall architecture of network.
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3. Experimental Analysis

3.1 Lane datasets

 The proposed network structure was verified by performing many experiments on two 
widely used lane datasets: TuSimple and CULane.
 The TuSimple dataset is used for the lane detection of structured roads, with the data 
collected from the San Diego Freeway in California in the United States, mostly under stable 
light conditions.  In contrast, the images in the CULane dataset were collected in Beijing, one 
of the largest and most crowded cities in the world, and the dataset provides many challenging 
traffic scenarios for lane detection.  Table 1 shows the detailed data of the two datasets.
 The number of frames in the TuSimple dataset is much less than that in the CULane dataset, 
but the frames were taken on a highway and the environment is relatively simple.  The frames 
in the CULane dataset were taken from complex road scenes, and we mainly use this dataset as 
a test set to verify the stability of the network.

3.2 Evaluation indexes of accuracy

 Different datasets will have differences in the parameters and pixel size of image data due to 
differences in the collection vehicles and acquisition equipment.  Thus, the accuracy evaluation 
indexes are also different after processing different datasets.  In this paper, we use the official 
evaluation index standards of the TuSimple and CULane datasets.  
(a) TuSimple dataset
 The main evaluation indexes are accuracy, false positive, and false negative, as shown in 
Eqs. (4)–(6), respectively.  Table 2 gives the meanings of the symbols in the equations.
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Table 1
Dataset descriptions.
Dataset Frames Train Validation Test Resolution Scenarios Environment
TuSimple 6408 3268 358 2782 1280 × 720 1 Highway
CULane 133235 88880 9675 34680 1640 × 590 9 Urban and highway
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(b) CULane dataset
 To judge whether a lane in the CULane dataset was successfully detected, we regard the lane 
as a line with a width of 30 pixels, and we calculate the intersection of the actual and predicted 
values of the lane divided by the union of the corresponding actual and predicted values.  The 
result of this calculation is called the intersection–union ratio or Intersection over Union (IoU).  
Predictions greater than a specific threshold are regarded as true positives.  Assuming that the 
threshold is strictly set to 0.5, the final F1 score is used as the final evaluation index.

 1
2 Precision RecallF
Precision Recall
⋅ ⋅

=
+

 (7)
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Equations (7)–(9) show how the accuracy is determined.  TP is true positive, that is, the 
prediction is true and the reality is also true; FP is false positive, that is, the prediction is true 
but the reality is false; FN is false negative, that is, the prediction is false but the reality is true.

3.3 Experimental setup

 In this study, the hardware environment used in the experiment included an Nvidia 1080Ti 
GPU equipped with 8 GB of video memory.  The algorithm was developed using the PyCharm 
development tool and TensorFlow deep learning framework platform in a Windows 10 
environment.  In the process of training, the network model in this study did not use any pre-
training model for optimization nor did it employ commonly used data enhancement methods 
such as random clipping, rotation, scale scaling, affine transformation, and random noise 
superposition.  In this manner, the effects of different methods on the final lane detection results 
could be fully tested.  
 The gradient optimization strategy of adaptive moment estimation (Adam)(25) was used to 
train the accurate model rapidly and improve the convergence speed of the network’s function.  

Table 2
Notation.
Variable Definition
Cclip Number of correct points detected
Sclip Number of truth points
Nt Number of lanes
Fpred Number of lanes with error detected
Mpred Number of lane lines missed
Ngt Number of lanes in actual label
Npred Actual number of lanes
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The initial learning rate of the training set was 0.001 and the weight attenuation coefficient was 
0.1.  Because the video memory capacity of the GPU is only 8 GB, we set the batch size of the 
dataset to 2.  All input images were rescaled from 1280 × 720 resolution to 512 × 320 resolution. 
Using the label coordinates provided by the dataset, we used the CVPolylines function in 
OpenCV to generate the lane line according to the method given in the official document and 
generated two types of grayscale image with a width of 30 pixels: a binary map with a white 
pixel value of 255 and another area with a black pixel value of 0.  To distinguish different lane 
lines, different lane lines with different pixel values were marked and the background of the 
image was black.  

3.4 Analysis of results

3.4.1	 Analysis	of	effectiveness	of	DC

 DC enlarges the receptive field of the convolutional kernel while keeping the number of 
parameters constant and ensuring that the size of the output feature map remains unchanged.  
Hence, to ensure the same receptive field, DC is added to the network to reduce the large 
number of parameters compared with that in the normal network, such that the amount of 
calculation greatly decreases and the running time shortens.  When testing the TuSimple 
dataset, we used three evaluation indexes: accuracy, missed detection rate, and false detection 
rate.  Because the false positive and false negative values are small and difficult to observe, 
to better visualize them, the values of these two indicators were subtracted from 1, and the 
resulting values were visualized.  
 As shown in Fig. 3, the accuracy improved from 94.39 to 94.78 when DC was added to the 
original network.  When the SAD module was added to the network, the accuracy significantly 
improved to 95.67, which demonstrates that the addition of these two modules enables the 

Fig. 3. (Color online) Accuracy evaluation of network.
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network to better detect lane lines.  It can also be seen from Fig. 4 that the addition of the 
extended convolutional structure can make up for the incompleteness of lane detection caused 
by occlusion and incomplete lanes.
 The bottom three rows of Fig. 4 show results for the original network, the network with 
DC, and the network with DC and the SAD module from top to bottom.  When the original 
images in the first row are detected, the results for the original network include missed and 
false detections.  In the right column, for example, the picture in the first row is the original 
image, and the sky blue and white lines on the left in the second row are examples of false 
detection.  There is a break in the middle of the yellow line in the image in the third row of the 
same column, which is a missed detection.  In addition, adding the expanded convolutional 
network to the original network significantly improves the detection, making up for some of 
the incomplete lane detections caused by occlusion and incomplete lane lines, but there is still 
obvious roughness at the edges of the lane lines.  After adding the SAD module, this problem is 
clearly reduced.

3.4.2	 Analysis	of	effectiveness	of	SAD

 Figure 4 shows that the SAD module helps optimize the lane shape.  The use of SAD adds 
weights to the feature map, which enables the network model to better understand the spatial 
structure relationship, particularly at the edges of the lane lines.  The results show that the edges 
of the lane lines are smoother, which can meet the requirements for lane detection in this study.  
For the TuSimple dataset, while ensuring detection accuracy, the detection speed of the network 

Fig. 4. (Color online) Effect of convolutional network on lane detection in different scenes. (a) Normal road 
environment; (b) crowded road environment; and (c) shadow road environment.

(a) (b) (c)
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proposed in this paper is higher than those of most mainstream convolutional networks, and the 
detection speed of the improved network is twice that of the original network.  The results for 
the accuracy and speed of different methods can be seen in Table 3.
 We also evaluated the proposed network through the CULane dataset.  Figure 5 shows the 
lane detection accuracy for five different scenarios in CULane, and the proposed convolutional 
network is compared with the current high-quality network, with the F1 score used as the 
evaluation index.  The data detection accuracy of the proposed DC-VGG-SAD network is 
slightly higher than those of other networks in normal driving scenarios, but at night or when 
there is no line, the detection accuracy is not as good as that of the SCNN network.  Hence, the 
next direction in future research will be to solve the problem of accurate detection of lane lines 
in more complex environments.

4. Conclusion and Future Work

 We proposed a lane detection network model based on improved semantic segmentation, 
which is mainly based on the VGG-16 and SAD mechanisms, to optimize the encoder–decoder 
in the network structure.  In the encoder stage, the DC structure is used to replace the last three 
fully connected layers in the VGG-16 network.  The SAD module stage is added between the 
encoder and the decoder, and a deconvolutional network with the same number of layers is set 
up in the decoder stage to convert the feature graph into an attention-weighted feature graph 

Table 3
Comparison of accuracies and running speeds of different networks.
Method Accuracy Runtime (ms)
VGG 94.39 20.7
SAD 93.64 13.2
SCNN 96.58 134.2
LaneNet 96.38 20.1
DC-VGG (ours) 94.78 12.7
DC-VGG-SAD (ours) 95.67 10.5

Fig. 5. (Color online)  Comparison of lane detection accuracies of different networks in different environments.
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and accumulate the corresponding layers in the decoder process.  The experimental results 
show that the detection speed of the modified network is twice that of the original network, and 
the detection accuracy is improved from 94.39 to 95.67.  The data detection accuracy of the DC-
VGG-SAD network proposed in this study is slightly higher than those of other networks in 
normal driving scenarios, which demonstrates that the proposed method can improve detection 
without the use of a complex post-processing mechanism.  The experimental results also show 
that the accuracy of the original network is significantly improved.  
 In future work, the detection and classification results will be employed in a simple forward 
collision warning strategy, which may be very helpful for assisted driving in some simple 
structured environments.  We also intend to fuse the proposed method with an electronic map 
or GIS to realize a better result.  By matching the observed road states with a priori electronic 
map information, the detection and classification results can also be used to locate a self-driving 
vehicle accurately in the lateral direction.  Moreover, the forward collision warning strategy 
also needs to be improved for use in daily driving.
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