
4587Sensors and Materials, Vol. 32, No. 12 (2020) 4587–4602
MYU Tokyo

S & M 2430

*Corresponding author: e-mail: wangchao2019@tongji.edu.cn
https://doi.org/10.18494/SAM.2020.3135

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Improved Slanted Edge Methods of Measuring Modulation 
Transfer Function Based on Structured Total Least L1-, L2-norm 

Edge Fitting for Urban Remote Sensing Images 

Yanmin Jin, Yifeng Li, Xiaohua Tong, Chao Wang,* and Sicong Liu

College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

(Received September 30, 2020; accepted December 16, 2020)

Keywords:	 MTF, structured total least L1-, L2-norm, slanted edge approach, urban remote sensing image

	 In this paper, we present improved slanted edge methods of measuring the modulation 
transfer function (MTF) based on structured total least L1-, L2-norm edge fitting for urban 
remote sensing images.  The structured total least L1-, L2-norm methods are used to establish 
slanted edge fitting models, which take the errors in both the design matrix and observation 
vector in the fitting model into consideration.  The slanted edge fitting parameters are estimated 
under the two norm criteria of L1 and L2.  The proposed methods are applied to both simulated 
and actual images.  The results showed that the edge fitting parameters and MTF values 
calculated by the proposed methods are closer to the true values than those obtained by the 
traditional slanted edge method based on classical least-squares fitting.  It is also found that 
when the data contain a large amount of noise, the structured total least L1-norm edge fitting 
has the greatest robustness.

1.	 Introduction

	 The modulation transfer function (MTF) depicts the modulation degrees at different spatial 
frequencies.(1)  The MTF can be calculated and analyzed as a way of evaluating the quality of 
remote sensing images, which can reflect the state of the sensor.(2–4)  Accurate measurement of 
the MTF is a basic and important task in image quality evaluation and restoration.(5–7)

	 The slanted edge approach,(7,8) which is an improvement of the edge approach, is widely 
used for measuring the MTF.  It is convenient to use, and only areas in an image with obvious 
edges need to be selected.  It is also not affected by the slanted angle of the edge.  Qin and Gong 
proposed a slanted edge method to calculate the point spread function (PSF) of remote sensing 
images.(8)  Xie et al. analyzed in detail the factors that may affect the MTF results in the slanted 
edge method,(9) such as the edge angle and measurement error.  The slanted edge approach 
generally includes four steps: (1) Edge extraction: The least squares (LS) method is usually 
adopted to calculate the slanted edge using the edge points.  (2) Calculation of the edge spread 
function (ESF).  (3) Calculation of the line spread function (LSF).  (4) Measurement of the MTF.  
Steps (2)–(4) are based on the results of step (1).  Therefore, it is of high importance to obtain an 
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accurate slanted edge in step (1).  The specific steps and the influence of the accuracy of slanted 
edge fitting will be elaborated on in Sect. 2.
	 In recent years, many scholars have further improved and developed the slanted edge 
method.  Fan et al.(10) and Qu et al.(5) proposed a gradient operator to improve the traditional 
edge method, which can obtain more accurate edges and increase the accuracy and stability 
of the PSF.  Their methods can reduce the influence of noise on edge fitting.  Deng(6) and 
Birchfield(11) proposed measuring the MTF with the total least squares (TLS) method with the 
aims of considering the errors in both the observation vector and design matrix in the edge 
fitting process and improving the accuracy of edge fitting compared with the LS method.  Qu 
and Zhang introduced an edge fitting method based on the robust LS method, which improves 
the accuracy of slanted edge fitting in the presence of noise.(12)  Xie et al. analyzed the ill-
posedness in ESF regression caused by noise and proposed a regularized slanted edge method 
to solve the problem by incorporating a Tikhonov regularization term.(13)  In the edge fitting 
model, however, some elements of the design matrix also contain errors.  Also, when the data 
contain a large amount of noise, greater robustness of the edge fitting method is required.  
Therefore, in this paper, we study the edge fitting method with the aim of improving the 
accuracy and robustness of edge fitting in the measurement of the MTF.
	 We propose improved slanted edge methods for measuring the MTF based on structured 
total least L1-, L2-norm fitting for urban remote sensing images.  The LS method is usually 
adopted to calculate slanted edges.  However, some of the elements in the design matrix in the 
edge fitting model could contain errors.  The TLS method and its extensions have attracted 
much research attention recently.(14–19)  The TLS method takes into account the errors in both 
the observation vector and design matrix caused by noise in the image, instead of simply 
considering the errors of the observation vector.  
	 The rest of this paper is organized as follows.  In Sect. 2, the specific steps of the slanted 
edge approach and the influence of the accuracy of slanted line fitting are elaborated on.  The 
proposed edge fitting methods based on structured total least L1-, L2-norm fitting are also 
presented.  In Sect. 3, experiments conducted on both simulated and actual remote sensing 
images are introduced and the results are analyzed and discussed in detail.  Finally, the 
conclusions are presented in Sect. 4.

2.	 Improved Slanted Edge Method Based on Structured Total Least L1-, L2-norm 
Fitting

	 The commonly used slanted edge approach,(7,8,13) as shown in Fig. 1, generally includes four 
steps.  (1) In edge extraction, it is necessary to select a region of interest (ROI) with a slanted 
edge in the image, which should contain different uniform features on the two sides of the edge.  
Details of the two substeps of step (1) are as follows.  Substep 1) Determination of the subpixel 
edge points: A cubic polynomial is usually used to fit a few pixels around the pixel with the 
largest gray-scale changes in each row of the image.  The location of the subpixel is derived 
from that where the second derivative of the cubic polynomial is zero.  Substep 2) Edge fitting: 
The LS method is usually adopted to calculate the fitted image edge.  (2) In the calculation of 



Sensors and Materials, Vol. 32, No. 12 (2020)	 4589

the ESF, the ESF is obtained by projecting the pixels in the image along the direction of the 
slanted edge in the direction perpendicular to the slanted edge.  (3) In the calculation of the LSF, 
the Fermi function is widely used to fit the initial ESF points and obtain the ESF curve.  The 
LSF curve is obtained by differentiating the ESF.  (4) Finally, the MTF of the image is obtained 
by performing a one-dimensional fast Fourier transform (FFT) and normalization to the LSF, 
and the MTF value at the Nyquist frequency is evaluated.  
	 The accuracy of the fitted edge has a relatively significant influence on the establishment 
of the ESF.  Figure 2(a) shows the details of establishing the ESF.  In Figs. 2(a) and 2(b), the 
dots represent the centers of pixels.  The two solid slanted lines represent the edge and a 
line perpendicular to the edge.  The dashed lines represent the projections of the points in 
the direction perpendicular to the edge.  Figure 2(b) shows the influence of an inaccurately 
fitted edge on establishing the ESF.  The thick lines represent the ESF established with one 
inaccurately fitted edge.  The distance from the point to the edge is changed, resulting in an 
inaccurate ESF.  The classical LS method is usually used to fit edge points, which generally 
only considers the errors in the observation vector.  However, in the linear edge fitting model, 
some of the elements in the design matrix also contain errors.  Also, the fitting process is 
affected by random or gross noise, which may lead to an inaccurately fitted edge.  In this paper, 
we propose improved MTF measurement methods based on structured total least L1- and L2-
norm edge fitting, which take into consideration the errors in both the observation vector and 
design matrix.

2.1	 Structured total least L2-norm (STL2N) edge fitting model

	 To consider the errors in both the design matrix and observation vector in the edge fitting 
model, the fitting model of the edge based on the errors-in-variable (EIV) model is constructed 
as follows:

	 ( )y A+ = +y v A E ξ ,	 (1)

where y is the n × 1 observation vector, which represents the rows of the pixels of the slanted 
edge in the ROI, 1 2 3[ ... ]ny y y yy = , vy is the residual vector of y, 

1 2 3
[ ... ]

ny y y y yv v v v=v , 
A is the n × 2 design matrix, 1[ ]T

n×=A x1 , 1 2 3= [ ... ]nx x x xx  represents the columns of the 

Fig. 1.	 Slanted edge approach.
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pixels on the edge, 1[ ]T
A n x×=E v0 , vx is the residual vector of x, 

1 2 3
[ ... ]

nx x x x xv v v v=v , and ξ 
is the 2 × 1 unknown parameter vector, ξ = [b0 b1].
	 Assuming that ∆vx is a small increment in vx and ∆EA is a small increment in EA, we 
obtain(14,15)

	 JA∆vx = ∆EAξ,	 (2)

where JA is the Jacobian matrix of A with respect to x and 1 1 1[ ... ]A diag b b b=J .
	 Therefore, the first-order linearized form of the errors in Eq. (1) can be expressed as

	 vy = Aξ − y + JA∆vx + (A + EA)∆ξ .	 (3)

	 Under the L2-norm criterion, the objective function can be expressed as 

	 ( ) ( )0 0 0 0min
TT

y y x x x x
 + + ∆ + ∆  
v v v v v v .	 (4)

	 Equation (3) can be expressed as

	 BX = l,	 (5)

where =
 
  0

A AJ A + E
B

l
, T T

x= ∆ ∆  X v ξ , and ( )T T
x= − ∆  l y A vξ .  

	 The unknown parameter vector ξ can be derived by iteratively solving Eq. (5),(14,15) and the 
parameters of the fitted edge can be subsequently obtained.

Fig. 2.	 (a) Establishment of ESF and (b) influence of inaccurately fitted edge on establishment of ESF.

(a) (b)
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2.2	 Structured total least L1-norm (STL1N) edge fitting model

	 In this section, the structured total least L1-norm edge fitting algorithm is derived on the 
basis of the structured total least norm method.(14,15)  It is designed for the case when there is 
gross noise in the images.
	 Under the L1-norm criterion, the objective function can be expressed as

	 0min y x x
 + + ∆  

v v v .	 (6)

	 The slack variables ∂1, ∂2, β1, β2, γ1, γ2, κ1, and κ2 are introduced as follows: 

	

1 2

0
1 2

1 2
0

1 2 1 2

y

x x

x x

β β
γ γ

κ κ β β

= ∂ − ∂

 + ∆ = −

∆ = −
∆ = − = − −

v

v v

v v

ξ
,	 (7)

where ∂1, ∂2, β1, β2, γ1, γ2, κ1, and κ2 ≥ 0.
	 By substituting Eq. (7) into Eq. (6), we obtain

	 min
y y x x

 
 v v v vI I I I 0 0 0 0 θ ,	 (8)

where 1 2 1 2 1 2 1 2[ ]T T T T T T T Tθ β β γ γ κ κ= ∂ ∂ .  
	 By substituting Eq. (7) into Eq. (3), we obtain

	 ( ) ( )( )1 2 1 2 1 2A Aκ κ γ γ∂ − ∂ = − + − + −A y J A + Eξ .	 (9)

	 By considering θ in Eq. (8), we can express Eq. (9) as

	 ( ) ( )
y yv v A A A A

 − − − = − 0 0I I A + E A + E J J A yθ ξ ,	 (10)

and the fourth formula in Eq. (7) as

	 0
y y y yv v v v x

 − − = − 0 0 0 0I I I I vθ .	 (11)

	 The optimization problem expressed by Eqs. (8), (10), and (11) can be solved by a linear 
programing method, for example, the simplex method.  Furthermore, the parameters of the 
fitted edge can be obtained.
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3.	 Experiments, Results, and Discussion

3.1	 Simulation experiment

	 A simulation experiment was designed and performed to verify the effectiveness of the 
proposed slanted edge methods based on STL1N and STL2N edge fitting.  A blank image with 
a size of 40 × 40 pixels was first constructed.  Then the position of the edge in each row was 
calculated using the linear equation y = b0 + b1x with predetermined parameters.  To verify the 
effectiveness of the proposed methods for different edge angles, we considered five slanted edge 
angles of 8, 15, 22.5, 30, and 37°.  The edge angles and the corresponding values of b0 and b1 
are shown in Table 1.
	 To obtain a degraded edge, the Fermi function was used to assign values to each line of the 
image:(20)

	 =
exp

aFermi d
x b

c

+
− 

 
 

.	 (12)

	 The Fermi function is commonly used to fit the initial ESF points and to obtain the ESF 
curve.  In our simulation experiment, the Fermi function was used to degrade the edge.  Using 
the Fermi function to fit the ESF can reduce the influence of noise.  By designing a slanted edge 
line, one can derive the positions of points on the edge accordingly.  Using the Fermi function 
to degrade the edge will not affect the positions of the designed edge, because parameter b 
can control the column of the edge in each row.  Therefore, the error caused by degrading the 
boundary is avoided.  Parameters a, d, and c were set as 180, 20, and 0.5, respectively, and b was 
the column of the subpixel where the line intersected each row of the original image.  In this 
way, a degraded edge image with gray values of 200 in the bright area and 20 in the dark area 
was obtained.  The simulated image is shown in Fig. 3.
	 Generally, actual remote sensing images have no such uniform gray values on both sides of 
an edge.  Therefore, Gaussian white noise was added to the designed images.  Three schemes 
were designed, in which the added noise had a mean value of 0 with variances of 0.001 × 255 × 
255, 0.002 × 255 × 255, and 0.003 × 255 × 255.  The simulation experiment was repeated 1000 
times for each scheme to obtain statistically reliable results.  Subsequently, the results of fitted 
edges and calculated MTF values were compared and analyzed.

Table 1 
Edge angles and line parameters.
Edge angle b0 b1

8° −135 7.11537
15° −8 3.73205
22.5° −30 2.41421
30° −16 1.73205
37° −8 1.32704
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	 The designed and known edge angles were assumed as the true values, and the angles of the 
fitted straight edge lines obtained by LS, STL2N, and STL1N fitting were compared with the 
true values.  The reason for choosing the edge angle as the evaluation criterion is that it is an 
important factor for fitted edges.  
	 Furthermore, the fitted edges obtained by the LS, STL2N, and STL1N methods were used 
for measuring the MTFs of the images.  The MTF value at the Nyquist frequency was regarded 
as the true value, which was calculated from the degraded image without noise.  The absolute 
values of the errors were compared.
	 For the edge angle of 8°, the edge fitting results obtained by the LS, STL2N, and STL1N 
methods were first compared and analyzed.  In each of the 1000 simulations, the method that 
generated the smallest absolute difference between the fitted edge angle and the true value 
was called the optimal method.  The numbers of times the LS, STL1N, STLS1N methods were 
optimal among the 1000 simulations were counted and are shown in Table 2.  In the table, 
numbers in bold represent the highest number of times the method was optimal in each scheme.  
	 The following can be seen from Table 2.  (1) When the variance of the added Gaussian 
white noise was relatively small (Scheme 1), the numbers of times the LS, STL2N, and STL1N 
methods were optimal were almost the same.  (2) However, with increasing variance of the 
added Gaussian white noise (Schemes 2 and 3), the numbers of times the STL2N and STL1N 
methods were optimal became significantly higher than that of the LS method, with the STL1N 
more often optimal than the STL2N method.  This indicates that the STL1N method is more 
robust than the STL2N method in a scheme with a larger amount of noise.  The distributions of 
the absolute angle differences for different slanted edge angles will be further analyzed in Fig. 4.

Fig. 3.	 (a) Designed edge position and (b) degraded edge image.

(a) (b)

Table 2 	
Numbers of times the LS, STL2N, and STL1N edge fitting methods were optimal.
Gaussian white noise LS STL2N STL1N
Scheme 1 322 353 325
Scheme 2 255 333 412
Scheme 3 130 266 604
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Fig. 4.	 (Color) Distributions of absolute angle differences obtained by three edge fitting methods. (a) 8° Scheme 1. (b) 
8° Scheme 2. (c) 8° Scheme 3. (d) 15° Scheme 1. (e) 15° Scheme 2. (f) 15° Scheme 3. (g) 22.5° Scheme 1. (h) 22.5° 
Scheme 2. (i) 22.5° Scheme 3. (j) 30° Scheme 1. (k) 30° Scheme 2. (l) 30° Scheme 3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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	 Table 3 shows the mean fitted edge angles for five slanted edge angles of 8, 15, 22.5, 30, and 
37°.  Numbers in bold represent the results with the smallest difference between the fitted edge 
angle and the true value.  Tables 4 and 5 respectively show the means and standard deviations of 
absolute differences between the fitted edge angle and the true value obtained by LS, STL2N, 
and STL1N fitting for the five angles.  Numbers in bold represent the smallest value in schemes 
for a specific edge angle.
	 From the results presented in Tables 3–5, it can be seen that the means and standard 
deviations of absolute angle differences obtained by the STLS1N and STLS2N methods are 
smaller than those obtained by the LS method in all three schemes for the different slanted 
angles.  Also, the STLS1N method is the most robust in Scheme 3.  The results indicate that 
the proposed improved slanted edge methods based on the STLS1N and STLS2N methods are 
effective for different edge angles.

Fig. 4.	 (Color) (Continued) Distributions of absolute angle differences obtained by three edge fitting methods. (m) 
37° Scheme 1. (n) 37° Scheme 2. (o) 37° Scheme 3.

(m) (n) (o)

Table 3
Mean angles obtained by LS, STL2N, and STL1N fitting methods for five angles.
Angle Method Scheme 1 Scheme 2 Scheme 3

8°
LS 8.05684 8.77591 11.83241

STL2N 8.01343 7.98605 8.02108
STL1N 8.01986 7.98244 7.99108

15°
LS 15.04721 15.35254 16.85636

STL2N 15.01078 15.02344 15.02496
STL1N 15.01670 15.01377 15.01351

22.5°
LS 22.52887 22.71916 23.53586

STL2N 22.50623 22.51616 22.50321
STL1N 22.5081 22.50428 22.5031

30°
LS 30.02679 30.12559 30.67983

STL2N 30.01609 30.01152 30.00742
STL1N 30.01886 30.00765 29.99841

37°
LS 37.01832 37.0719 37.3854

STL2N 37.01228 37.0055 36.98281
STL1N 37.01148 37.00589 36.99799
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	 Additionally, the absolute angle differences from the true values obtained by the three 
methods were classified into the ranges of 0–0.01°, 0.01–0.05°, 0.05–0.1°, 0.1–0.15°, and 0.15–0.5°, 
0.5–1°, and >1°.  The distributions of the absolute angle differences classified into these ranges 
are shown in Fig. 4.  
	 It can be seen from Fig. 4 that with increasing variance of the noise (Schemes 2 and 3), there 
are more times that the absolute angle difference is greater than 1° for the LS method than for 
the STL1N and STLS2N methods.  Also, the mean absolute angle differences obtained by the 
STL1N method are all smaller than 1°.  

Table 4
Mean absolute angle differences obtained by LS, STL2N, and STL1N fitting methods for five angles.
Angle Method Scheme 1 Scheme 2 Scheme 3

8°
LS 0.056836 0.810225 3.849820

STL2N 0.134351 0.210921 0.546029
STL1N 0.019864 0.136256 0.171836

15°
LS 0.098658 0.413001 1.893801

STL2N 0.090114 0.195272 0.501312
STL1N 0.105055 0.142976 0.176895

22.5°
LS 0.091808 0.290894 1.102094

STL2N 0.087508 0.176535 0.417483
STL1N 0.097128 0.128196 0.16123

30°
LS 0.073311 0.201663 0.755948

STL2N 0.071701 0.148701 0.336806
STL1N 0.077802 0.109324 0.138516

37°
LS 0.060677 0.143989 0.484614

STL2N 0.059493 0.124033 0.27349
STL1N 0.066279 0.09386 0.109988

Table 5
Standard deviations of absolute angle differences obtained by LS, STL2N, and STL1N fitting methods for five 
angles.
Angle Method Scheme 1 Scheme 2 Scheme 3

8°
LS 0.21311 2.78659 7.26565

STL2N 0.12097 0.30799 0.72144
STL1N 0.13013 0.10254 0.13239

15°
LS 0.50619 3.37204 6.96941

STL2N 0.13583 0.39409 0.89412
STL1N 0.12394 0.16577 0.21713

22.5°
LS 0.13416 0.83604 1.97385

STL2N 0.11300 0.32022 0.67080
STL1N 0.12121 0.16082 0.20059

30°
LS 0.08869 0.52858 1.33158

STL2N 0.08883 0.25884 0.51790
STL1N 0.09587 0.13684 0.17477

37°
LS 0.09085 0.34500 0.87064

STL2N 0.08353 0.20880 0.41847
STL1N 0.08263 0.11751 0.13840
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Table 6
Mean absolute differences between MTF values obtained by three methods and true values.
Angle Method Scheme 1 Scheme 2 Scheme 3

8°
LS 0.006611 0.012675 0.030762

STL2N 0.006253 0.008692 0.014523
STL1N 0.006155 0.008096 0.010793

15°
LS 0.006482 0.127303 0.0277275

STL2N 0.006351 0.009845 0.0143956
STL1N 0.006352 0.009353 0.0113623

22.5°
LS 0.006878 0.0120225 0.0270605

STL2N 0.006889 0.0103214 0.0153558
STL1N 0.006875 0.0097678 0.0122057

30°
LS 0.007610 0.0122812 0.0257744

STL2N 0.007630 0.0112932 0.0161672
STL1N 0.007630 0.0108810 0.0141734

37°
LS 0.008547 0.014378 0.030195

STL2N 0.008530 0.013578 0.019334
STL1N 0.008433 0.012998 0.016431

	 The fitted edges obtained by the three methods were further utilized to calculate the MTF 
values of the simulated images at the Nyquist frequency.  Here, the MTF at the Nyquist and 
the frequency calculated from the image without Gaussian white noise was used as the true 
value.  The experiment was repeated 1000 times.  Tables 6 and 7 respectively show the means 
and standard deviations of absolute differences between the MTF values obtained by the 
three methods and the true values.  Numbers in bold represent the smallest mean or standard 
deviation of the MTF differences in each scheme and case.
	 From the results presented in Tables 6 and 7, the following can be seen.  (1) The absolute 
differences between the MTF values and true values obtained by the slanted edge method 
based on LS fitting are clearly larger than those for STLS1N and STLS2N.  (2) The standard 
deviations of the absolute differences between the MTF values and true values obtained by the 

Table 7
Standard deviations of absolute differences between MTF values obtained by three methods and true values.
Angle Method Scheme 1 Scheme 2 Scheme 3

8°
LS 0.007080 0.017489 0.030198

STL2N 0.0049455 0.0070917 0.0132824
STL1N 0.0046989 0.0062460 0.0083424

15°
LS 0.0056396 0.0163587 0.0317453

STL2N 0.0048261 0.0083371 0.0135047
STL1N 0.0048137 0.0072816 0.0087158

22.5°
LS 0.005344 0.015298 0.0326321

STL2N 0.005357 0.008366 0.0147122
STL1N 0.005342 0.007889 0.0092691

30°
LS 0.005886 0.012581 0.031929

STL2N 0.005889 0.008548 0.014081
STL1N 0.005884 0.007860 0.010728

37°
LS 0.007001 0.015483 0.038307

STL2N 0.006856 0.011008 0.016584
STL1N 0.006556 0.010008 0.012312
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slanted edge method based on STL1N are smaller than those of the other two methods in most 
schemes.  When the variance of the added Gaussian white noise is relatively small (Scheme 1), 
the results obtained by the slanted edge methods based on STL1N and STL2N are similar.  In 
Scheme 3, the MTF values obtained by the slanted edge method based on STL1N are closer to 
the true values than those obtained with the other two methods.  (3) The absolute difference 
between the MTF value and the true value increases as the angle increases.  This is because the 
same Fermi function is used to degrade the edge for the different slanted edge angles, and the 
noise will have a greater impact on the measured MTF of the image with a larger slanted angle.

3.2	 Experiment on urban remote sensing images

	 In this section, actual remote sensing images were used to further verify the feasibility of the 
proposed methods.  The data used were ZY-3 nadir-view images with a spatial resolution of 2.1 
m.  Two images of an urban area (images I and II) were used to measure the MTF value by the 
proposed methods and the LS-fitting-based method.  The study areas are shown in Figs. 5 and 6.

Fig. 5.	 Selection of edge area in image I.

Fig. 6.	 Selection of edge area in image II.
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Fig. 7.	 Fitted edges based on (a) image I and (b) image II.

(a) (b)

	 In Fig. 5, the area on the building roof with a slanted edge and obvious uniform features on 
both sides of the edge was selected.  Also the slanted edge was relatively clear and had little 
noise.  In addition, part of the airport in Fig. 6 had a slanted edge suitable for MTF calculation.  
The slanted edge in Fig. 6 was less clear and contained more noise than that in Fig. 5.  Figure 7 
shows the fitted edges obtained by the slanted edge methods based on LS, STPL1N, and STL2N 
for images I and II.  Figure 8 shows the ESFs obtained for the fitted edges using the above three 
methods for image II.  Figure 9 shows the MTF values obtained by the above three methods.
	 From the results presented in Figs. 7–9, the following can be seen.  (1) The fitted edges 
obtained by the three methods are almost the same for image I, which contained relatively 
small noise.  However, in Fig. 7(b), the fitted edge obtained by LS fitting is clearly different 
from those obtained by the STL1N and STL2N methods, with obvious deviations from the edge 
points.  (2) From Fig. 8, we can see that the points in the red frame are most concentrated for the 
edge fitted by the STL1N method, which illustrates that the ESF obtained by the STL1N method 
is more accurate than those obtained by the other two methods for image II.  (3) The MTF 
values obtained by the three methods are almost the same for image I.  For image II, owing to 
the influence of edge fitting, the MTF values obtained from the LS- and STL2N-fitted edges are 
smaller than that of the STL1N-fitted edge.  The MTF values are smallest for the LS method.  

Fig. 8.	 (Color) ESFs obtained for fitted edges using (a) LS, (b) STL2N, and (c) STL1N methods.

(a) (b) (c)
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The results proved the importance of the accuracy of edge fitting for MTF calculation and the 
effectiveness of the proposed methods.

4.	 Conclusions

	 Improved slanted edge methods of measuring the MTF based on structured total least L1-, 
L2-norm fitting for urban remote sensing images were proposed in this paper.  The accuracy of 
the fitted edge has a relatively significant influence on the establishment of the ESF.  The aim of 
the proposed methods is to improve the measurement of the MTF by using structured total least 
L1-, L2-norm edge fitting.  
	 Experiments with simulated and actual images were designed and conducted to test the 
feasibility of the proposed method.  In the simulation experiment, different slanted edge angles 
and Gaussian white noise with different variances were used.  The results showed the following.  
(1) When the variance of the added Gaussian white noise was relatively small, the differences 
between the fitted edge angles and the MTFs obtained by the LS, STL2N, and STL1N methods 
and the true values were almost the same.  (2) However, with increasing variance of the added 
Gaussian white noise, the differences between the fitted edge angles and the MTFs obtained by 
the STL2N and STL1N methods and the true values became smaller than those obtained by the 
LS method.  (3) The slanted edge method based on STL1N is more robust than the other two 
methods in the case of Gaussian white noise with larger variance in terms of the fitted edge 
angle and the difference in the MTF from the corresponding true value.  
	 Furthermore, two actual remote sensing images were used to test the proposed method.  The 
results indicate the following.  (1) The fitted edges and MTFs obtained by the three methods 
were almost the same for image I, which contained relatively little noise.  (2) For image II, 
which contained more noise, the edge obtained by LS fitting clearly deviated further from the 
edge points than those obtained by the proposed methods.  Also, the MTFs obtained by the 
proposed methods were larger than that obtained by the LS method.  The impact of noise on the 
establishment of the ESF needs to be further studied in future work.

Fig. 9.	 MTFs calculated from (a) image I and (b) image II.

(a) (b)
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