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 Using the principle of radar interferometry, we analyzed the temporal coherence changes 
of five typical ground features (residential areas, vegetation, bare soil, bridges, and factories 
and warehouses) in urban areas of Beijing using 29 images from Sentinel-1A equipped with a 
C-band synthetic aperture radar (SAR) sensor over one year.  The results of the study showed 
the following.  (1) Among the five typical ground features, the coherence of vegetation was the 
lowest.  Owing to changes in its state and atmospheric conditions, the coherence of vegetation 
fluctuated sharply over the year.  The coherence of factories and warehouses was the highest 
and relatively stable over the year.  (2) Classifying the five typical ground features into artificial 
and natural features, we found that the artificial features of factories and warehouses, residential 
areas, and bridges maintained a high degree of coherence over the year.  Among them, the 
coherence of residential areas was the most stable.  The natural features of vegetation and bare 
soil were affected by the changes in their states and atmospheric conditions over the year.  The 
research results can be used for the classification of land use types, the statistical analysis of 
urban green coverage, and the extraction of points with high coherence in long-term surface 
deformation inversion.  

1. Introduction

 In recent years, with the improvement of sensor technology and the quality of sensing 
data, remote sensing has become an important technique for obtaining geospatial information.  
Remote sensing can not only rapidly and synchronously acquire spatial data over a large area 
and measure and produce topographic maps of various scales and other spatial information 
products, but also be used for digital elevation model (DEM) production,(1–3) surface 
deformation inversion,(4–7) land use type classification,(8–10) forest biomass mapping,(11,12) 
and terrain slope information extraction.(13)  Recently, higher requirements have been placed 
on the acquisition of remote sensing information and information-processing technology.  
Interferometric synthetic aperture radar (InSAR) technology is a new technology that emerged 
in this context.(14)  As one of the most promising research fields in microwave remote sensing, 
InSAR can penetrate clouds, fog, smoke, and dust, enabling the all-weather and large-scale 
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acquisition of surface information, especially in cloudy and rainy areas,(15) where it is difficult 
for traditional optical sensors to image.  Therefore, SAR images have become very important 
sources of remote sensing data.
 Coherence is one of the key factors in ensuring the imaging performance of SAR data.  
Different ground features have different coherence values.(16)  Regarding the coherence of 
SAR, Ichoku et al.,(17) Andre and Morrison,(18) and Lv et al.(19) analyzed the factors affecting 
coherence and improved the coherence of different ground objects from the perspective of 
SAR system design and SAR image processing algorithm design.  Anura et al.(20) analyzed 
the seasonal variation in the coherence of SAR interferograms in Kiruna, northern Sweden.  
As one of the many specific applications of SAR image coherence, the extraction of urban 
changes is a hot research field.  Chang et al.(21) used a highly coherent pointy target of an urban 
area to extract the urban boundary.  Zhang et al.(22) combined the difference method and the 
coherence coefficient method to analyze the changes in an urban area, and verified the detection 
accuracy of the proposed method.  Pulvirenti et al.(23) theoretically discussed the advantages 
of combining intensity and coherence, and used SAR image coherence information for flood 
mapping in urban environments, which was verified with a flood case in Emilia-Romagna, 
northern Italy.  The results showed that the multitime trend analysis of coherence can greatly 
reduce the extraction error of a flood-inundated area caused by only considering the intensity 
data.  However, it is difficult to develop a flood mapping algorithm with the SAR coherence 
coefficient.  Wang et al.(24) used the sensitivity of polarized SAR signals in different time 
phases to classify land cover in urban areas in combination with backscattering intensity and 
coherence characteristics.  Wu et al.(25) used six images of ENVISAT ASAR with a time span of 
4 years to analyze the typical coherent features in the coastal area of central Jiangsu at different 
spatial scales.  The results showed that a change in spatial scale has a significant impact on the 
coherence for small-area features.  However, the impact is small for large-area features.  Many 
scholars have analyzed the factors that affect the coherence of SAR images from the perspective 
of sensor system design and seasonal variation, and have made some achievements.  However, 
when SAR image coherence has been applied to detecting urban changes, most studies did not 
consider the difference among different ground objects in urban areas.  Wu et al.(25) analyzed 
the impact of spatial scale changes on the coherence of typical features in urban areas, but they 
did not consider the impact of time on the coherence of features.  
 The aim of this study is to reveal the changes in the coherence of ground objects in urban 
areas over a year.  The data of 29 C-band radar images of the European Space Agency 
Sentinel-1A satellite in 2018 were collected and used for the study.  We used the technique of 
differential synthetic aperture radar interferometry (DInSAR) to analyze the coherence changes 
of five typical ground features in urban Beijing and considered the effect of the weather on 
the coherence.  Additionally, the reasons for the changes in the coherence of vegetation and 
bare soil are systematically discussed.  In Sect. 2, we briefly introduce the study area and 
experimental data.  Section 3 describes in detail the method of coherence analysis for different 
ground features in Beijing over one year.  In Sect. 4, we discuss and analyze the differences 
in coherence obtained for the different ground features.  Section 5 gives the conclusions of the 
study.
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2. Study Area and Experimental Data

2.1 Study area

 In this study, urban Beijing was selected as the research area, where the region of interest 
was 115.7–117.4°E, 39.4–41.6°N.  The total area of Beijing is 16410 km2.  In 2018, the forest 
greening rate was 61.5%.  The terrain of the city is high in the northwest and low in the 
southeast.  The city belongs to the warm temperate zone with a semi-humid and semi-arid 
monsoon climate.  Among the different types of urban coverage, five typical ground features 
were selected in the plain area to explore their changes in coherence over one year: residential 
areas, vegetation, bare soil (covered with dust-proof green nets), bridges, and factories and 
warehouses, which are shown in Fig. 1.

2.2 Experimental data

 To obtain the temporal changes in the coherence of the different ground features in the study 
area, 29 Sentinel-lA ascending images acquired by a SAR sensor were selected as the data 
source.  The data were acquired from January to December 2018.  The imaging band was the 
C-band (5.6 cm), the antenna transmission and reception were both vertical polarization (VV), 
the incident angle of the radar wave at the center of the images was 38.9°, the SAR image spatial 

Fig. 1. (Color online) Five typical ground features: (a) residential areas, (b) vegetation, (c) bare soil (covered with 
dust-proof green nets), (d) bridges, and (e) factories and warehouses. (f) Distribution of different features in study 
area (specific locations of five typical ground features have been indicated).

(a) (b) (c)

(d) (e) (f)
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resolution was 5 × 20 m2 (range direction×azimuth), and the ground coverage of each image was 
about 250 × 250 km2.  The external DEM was Shuttle Radar Topography Mission (SRTM) data 
with a resolution of 90 m, which was used to remove the topography phase effect.  DInSAR was 
performed on the acquired adjacent images, and a total of 28 pairs of interference images were 
acquired.

3. Ground Object Coherence Measurement and Data Processing

3.1	 Coherence	coefficient	of	ground	features

 SAR is a kind of radar, and coherence is one of the key factors used to ensure the azimuth 
imaging performance.  An important indicator of coherence is the coherence coefficient.  
Generally, for two random variables with complex Gaussian distributions z1 and z2, their 
normalized complex coherence coefficient can be expressed as 
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where < > represents the expected value and * represents the complex conjugate.  If the position 
and backscattering coefficient of a single scatterer in the resolution unit are the same in two 
SAR images and the radar viewing direction remains unchanged, then the echo of the resolution 
unit will remain unchanged.  For the pixels of two SAR complex images, γ = 0 means complete 
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 In an actual estimation, the method of window estimation is used to calculate the coherence 
coefficient of two SAR images.  The formula used is(27)
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where each summation is over the N adjacent pixels around the center pixel.

3.2 Time series DInSAR processing

 The choice of the SAR interferometric image pair mainly requires the consideration of the 
appropriate time and space baselines.  The larger the time baseline, the lower the coherence; 
the longer the spatial baseline, the greater the decoherence.  To study the temporal changes 
in the coherence of different features, it is necessary to control the spatial baseline within a 
certain range so that it does not exceed a certain threshold, so as to eliminate the effect of the 
spatial baseline on the coherence of different features.  In this study, the absolute value of the 
maximum vertical baseline is 120 m, and the 28 sets of processed interference pairs meet the 
above conditions, as shown in Table 1.
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 Because the Sentinel-1A satellite has high orbital accuracy and adopts the Terrain 
Observation by Progressive Scans (TOPS) mode imaging technology, the spatial baseline of the 
obtained interference pair is mostly below 70 m and the maximum spatial baseline is 114 m, 
so the effect of the spatial baseline on the coherence can be ignored.  To obtain the changes 
in coherence in the time series of typical features in the study area, 28 sets of time series 
differential interferograms and corresponding coherence coefficient maps between adjacent 
images of residential areas, vegetation, bare soil, bridges, and factories and warehouses were 
obtained.  The coherence coefficient maps were used to analyze the changes in the coherence of 
the five types of ground features in the urban area over one year.  The specific processing steps 
are as follows:
(1) The method of image cross-correlation was employed for coarse registration.  Of the adjacent 

image pairs, the one with the earlier imaging date is the master image.  For example, for 
the interference pair 20180103–20180115, the image with the date of 20180103 is the master 
image and the other image is the slave image.  The registration accuracy can reach 0.01 pixel 
in the azimuth direction.  Even though such a high accuracy was achieved, owing to the 

Table 1
Basic parameters of interference image pairs.
Serial number Master Slave Time baseline Vertical baseline
1 20180103 20180115 12 54
2 20180115 20180127 12 50
3 20180127 20180208 12 57
4 20180208 20180220 12 10
5 20180220 20180304 12 19
6 20180304 20180328 24 31
7 20180328 20180409 12 39
8 20180409 20180421 12 13
9 20180421 20180503 12 68

10 20180503 20180515 12 49
11 20180515 20180527 12 31
12 20180527 20180608 12 10
13 20180608 20180620 12 30
14 20180620 20180702 12 57
15 20180702 20180714 12 7
16 20180714 20180726 12 20
17 20180726 20180807 12 42
18 20180807 20180819 12 65
19 20180819 20180831 12 33
20 20180831 20180912 12 58
21 20180912 20180924 12 36
22 20180924 20181006 12 24
23 20181006 20181018 12 114
24 20181018 20181111 24 110
25 20181111 20181123 12 69
26 20181123 20181205 12 37
27 20181205 20181217 12 25
28 20181217 20181229 12 94
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change in the Doppler centroid in different bursts, phase discontinuity will still occur in the 
azimuth direction.  Therefore, it is necessary to accurately register each image.

(2) The offset of low-order terms between images was obtained by enhanced spectral diversity 
for fine registration.  In this algorithm, the phase consistency of the overlapped regions 
between adjacent bursts was considered as the iterative standard to eliminate the phase 
discontinuity in the overlapping regions.  Thus far, the image data of the top mode have 
been accurately registered, and the registration accuracy could meet the requirements of the 
subsequent interferogram generation.

(3) After the effects of the terrain and ground phases were removed by using orbit data and the 
reference DEM, the differential interferograms and master–slave image intensity maps were 
obtained.

(4) To improve the definition of interference fringes and reduce the decoherent noise caused 
by the spatial baseline, the 28 interference pairs were processed by Goldstein filtering, the 
coherence of each interference pair was calculated, and finally the filtered interference and 
coherence coefficient maps were obtained.

(5) Targeting the above five typical ground features, the changes in coherence over time were 
analyzed.

4.	 Analysis	of	Coherence	of	Typical	Features	over	Time	

4.1	 Test	results	of	coherence	of	typical	objects

 After performing differential interference processing 28 times for the five typical features, 
140 coherence coefficient maps were obtained.  Because of the limited space available, only 
the coherence coefficient maps and histograms of the different surface features in the imaging 
period from 20180819 to 20180831 were selected for a brief analysis.  Figure 2(a) shows the 
coherence coefficient diagrams of typical ground features and Fig. 2(b) shows the corresponding 
histograms.  
 It can be seen from Fig. 2 that in the period of 20180819–20180831, the coherence coefficient 
of residential areas was mainly distributed in the range [0.5, 0.9], and the corresponding ranges 
for vegetation, bare soil, bridges, and factories and warehouses were [0, 0.4], [0.1, 0.6], [0.4, 0.95], 
and [0.6, 0.95], respectively.
 Comparing the coherence coefficient maps and histograms of the different ground features, 
we found that if the coherence coefficient map of the ground object is bright, the pixel values 
in the corresponding histogram are mainly distributed in the range of [0.5, 1], which proves 
that the ground object has good coherence in the SAR image; in contrast, if the coherence 
coefficient map of the ground object is dark, the pixel values in the corresponding histogram are 
mainly distributed in the range of [0, 0.5].  In addition, the histograms for vegetation and bare 
soil are similar.  
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Fig. 2. Coherence coefficient maps and histograms of different typical features. (a1) and (b1) Coherence coefficient 
map and histogram of residential areas, respectively. (a2)–(a5) and (b2)–(b5) Coherence coefficient maps and 
histograms of vegetation, bare soil, bridges, and factories and warehouses, respectively.

(a1) (b1)

(a5) (b5)

(a4) (b4)

(a3) (b3)

(a2) (b2)
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4.2	 Analysis	of	the	coherence	of	typical	features	over	time

 The coherence coefficients of the five ground features obtained by DInSAR over one year 
are plotted in Fig. 3.  It can be seen from Fig. 3 that the coherence is highest for factories and 
warehouses over the year, with maximum, minimum, and average values of 0.86, 0.57, and 0.75, 
respectively.  However, the volatility from June to August is relatively high; possibly vegetation 
in the grounds of factories and warehouses grows luxuriantly during the summer, which 
affects the coherence characteristics of the area.  The coherence of residential areas and bridges 
is relatively consistent over the year, with a lower coefficient for bridges.  The maximum 
coherence coefficient of residential areas is 0.78, the minimum value is 0.65, and the average 
value is 0.72, while the corresponding values for bridges are 0.76, 0.57, and 0.67, respectively.  
The coherence coefficient of bare soil is low, with a maximum value of 0.78, a minimum value 
of 0.39, and an average value of 0.63, and decreases from January to August then steadily 
increases from September to December.  The coherence coefficient of vegetation is the lowest, 
with maximum, minimum, and average values of 0.68, 0.23, and 0.46, respectively.  
 From the above analysis, we found that the artificial ground features (factories and 
warehouses, residential areas, and bridges) maintained high backscattering characteristics over 
one year and the coherence coefficient was stable, while natural ground features (bare soil and 
vegetation) showed low backscattering characteristics and the coherence coefficient fluctuated 
greatly.
 A line chart of the coherence coefficients for bare soil and vegetation is shown in Fig. 4.  
It can be seen that the coherence coefficients of vegetation and bare soil are relatively stable 
from January 3 to April 9 then drop sharply from April 9 to April 21, before rising sharply 
from May 3 to May 15.  After that, the coherence coefficients decrease approximately linearly, 
then increase again from August 31 to September 12, after which they increase approximately 

Fig. 3. (Color online) Line chart of changes in coherence of ground features.
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linearly.  A strong correlation was found in the coherence changes of bare soil and vegetation.  
To explore the reason for this, a further analysis of the coherence coefficients of bare soil and 
vegetation was carried out.
 According to the research results of Kubica et al.(28) and Bai et al.,(29) the coherence of 
ground objects is affected by the time interval of SAR images, the wavelength parameters, and 
the properties of the ground objects, such as the dielectric constant, surface roughness, and 
backscattering intensity.  In this experiment, Sentinel-1A data were used for interferometric 
processing, while the time and spatial baselines did not exceed a certain threshold, so their 
impact on coherence can be ignored.  The wavelength parameters were determined by the radar 
satellite system parameters.  Therefore, only the change in dielectric constant caused by the 
state of the ground object and the atmospheric conditions, and the effect of time decoherence 
caused by changes in weather were considered here.
 By querying the meteorological data of Beijing in 2018 (http://tianqi.2345.com/wea_ 
history/54511.htm), we found that from April 4 to April 21, there were thirteen days of cloudy 
and rainy weather.  
 There are three possible reasons for the sudden drop in the coherence of vegetation and 
bare soil from April 9 to April 21.  (1) The weather varied during this period, reducing the 
coherence through atmospheric phase noise.  (2) This period was dominated by cloudy and 
rainy days accompanied by a strong wind, causing the ground features of vegetation and bare 
soil to rapidly change.  (3) The dielectric constant of soil was changed by rainfall, enhancing the 
backscattering coefficient and reducing the coherence of ground objects.
 There are two possible reasons for the enhanced coherence of vegetation and bare soil from 
May 3 to May 15.  (1) During the imaging period, the weather was relatively stable, that is, 
mainly sunny with no strong wind.  Therefore, the morphology and structure of vegetation and 
bare soil were relatively stable.  (2) The sunny weather restored the original dielectric constant 
of the soil, so the backscattering intensity was relatively stable and the coherence was improved.

Fig. 4. (Color online) Coherence variations of vegetation and bare soil.

http://tianqi.2345.com/wea_%20history/54511.htm
http://tianqi.2345.com/wea_%20history/54511.htm
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 From May 15 to August 31, the coherence coefficients of vegetation and bare soil linearly 
decreased, which was mainly related to seasonal factors.  In summer, the morphology and 
structure of vegetation and bare soil were easily affected by external environmental factors, so 
the coherence tended to decrease.
 From August 31 to September 12, the coherence coefficients of vegetation and bare soil 
increased again.  There are two possible reasons for this.  (1) The atmospheric conditions were 
relatively stable during this period, so the dielectric constant was stable.  (2) This period was in 
autumn and plants grew slowly, so the terrain was relatively stable.  In addition, the effects of 
external environmental factors were small, thus improving the coherence.  
 From September 12 to December 29 (autumn and early winter), the morphology and 
structure of the vegetation and bare soil were stable with little effects from external 
environmental factors.  Therefore, the coherence increased approximately linearly, then tended 
to be stable from January 3 to April 9 (winter and early spring).

5. Discussion and Conclusions 

 The coherence coefficient is a very important parameter in radar interferometry, and it can 
directly reflect the characteristics of surface changes.  In this paper, taking into the urban area 
of Beijing as the research object, 29 Sentinel-1A images acquired by a SAR sensor were used to 
analyze the changes in the coherence of typical features in the area over one year.  The research 
results are as follows:
(1) The coherence of artificial features was well maintained over the year.  Among them, 

residential areas had the most stable coherence, with a coherence coefficient variation of 
0.13 over the year, and their scattering characteristics were not easily affected by external 
environmental variables.  In contrast, the coherence of natural features (vegetation and bare 
soil) fluctuated greatly over the year, with the coherence coefficient ranging by as much as 0.45.  
Their scattering characteristics were easily affected by changes in dielectric constant caused 
by the state of the features and atmospheric conditions.  The coherence of natural features 
was low.

(2) It is of practical value to study the temporal changes in the coherence of different ground 
features.  For example, the results can be used for the rough classification of land into 
different types and the effective selection of points with high coherence in SAR images.  In 
this paper, the variations in the coherence coefficients of vegetation and bare soil over a 
year were analyzed by considering the state of the ground surface, the dielectric constant, 
and changes in the weather, but the mechanism causing the changes in coherence was not 
discussed in depth and should be studied in the future.

(3) In general, the coherence of different ground objects will be affected by changes in weather.  
In spring (March to May) and summer (June to August), the coherence of different ground 
objects tended to decrease and fluctuate greatly, whereas the coherence in autumn (September 
to November) and winter (December to February) tended to increase and the coherence from 
December to February was relatively stable.



Sensors and Materials, Vol. 32, No. 12 (2020) 4613

Acknowledgments

 This study was sponsored by the National Natural Science Foundation of China (grant no. 
41871367), the Ministry of Science and Technology of the People’s Republic of China (grant no. 
2018YFE0206100), the Importation and Development of High-Caliber Talents Project of Beijing 
Municipal Institutions (grant no. CIT&TCD201704053), the Science and Technology Project of 
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (grant 
no. 2017-K4-002), the Scientific Research Project of Beijing Educational Committee (grant no. 
KM201910016007), the Major Projects of Beijing Advanced Innovation Center for Future Urban 
Design (grant no. UDC2018031321), and the BUCEA Postgraduate Innovation Project.

References

 1 A. Elmzoughi, R. Abdelfattah, and Z. Belhadj: Proc. 2009 16th IEEE Int. Conf. Image Processing (2009) 1337.
 2 L. Ai, L. Pang, H. Liu, M. Sun, and S. He: Proc. Int. Conf. Geo-Informatics in Resource Management and 

Sustainable Ecosystem. (2015) 464.
 3 D. Xiang, T. Tang, Y. Ban, Y. Su, and G. Kuang: Appl. Geophys. 116 (2016) 86. https://doi.org/10.1016/

j.isprsjprs.2016.03.009
 4 P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti: IEEE Trans. Geosci. Remote Sens. 40 (2002) 2375. 

https://doi.org/10.1109/TGRS.2002.803792
 5 M. Pietro., G. Giorgia, D. Matthew, P. Daniele, and M. Giovanni: Remote Sens. 10 (2018) 287. https://https://

doi.org/10.3390/rs10020287
 6 D. Perissin, Z. Wang, and H. Lin: ISPRS J. Photogramm. Remote Sens. 73 (2012) 58. https://doi.org/10.1016/

j.isprsjprs.2012.07.002
 7 S. Dong, S. Samsonov, H. Yin, S. Ye, and Y. Cao: Environ. Earth Sci. 72 (2014) 677. https://doi.org/10.1007/

s12665-013-2990-y
 8 M. Chini., R. Pelich, L. Pulvirenti, and N. Pierdicca: Remote Sens. 11 (2019) 1. https://doi.org/10.3390/

rs11020107
 9 C. H. Lu, C. F. Ni, C. P. Chang, J. Y. Yen, and R. Y. Chuang: Remote Sens. 10 (2019) 1318. https://doi.

org/10.3390/rs10081318
 10 V. Perumal: J. Appl. Remote Sens. 7 (2013) 1. https://doi.org/10.1117/1.JRS.7.073592
 11 K. Hachem, M. Jurchescu, F. Grecu, A. Ozer, and M. Visan: Adv. Remote Sens. 3 (2014) 23. https://doi.

org/10.4236/ars.2014.31003
 12 J. Hagberg, L. Ulander, and J. Askne: IEEE Trans. Geosci. Remote Sens. 33 (1995) 331. https://doi.

org/10.1109/36.377933
 13 A. Novellino, F. Cigna, M. Brahmi, A. Sowter, L. Bateson, and S. Marsh: Geosci. J. 7 (2017) 19. https://doi.

org/10.3390/geosciences7020019
 14 M. Watanabe, R. Bahador, T. Ohsumi, H. Fujiwara, C. Yonezawa, N. Tomii, and S. Suzuki: Earth Planets 

Space. 68 (2016) 131. https://doi.org/10.1186/s40623-016-0513-2
 15 J. DeLaurentis: IET Radar Sonar Navig. 5 (2011) 561. https://doi.org/10.1049/iet-rsn.2010.0225
 16 C. Xie, Z. Li, and X. Li:  J. Glaciol. Geocryol. 30 (2008) 868. https://doi.org/1000-0240(2008)05-0868-07
 17 C. Ichoku, A. Karnieli, Y. Arkin, J. Chorowicz, T. Fleury, and J. Rudant: Int. J. Remote Sens. 19 (2010) 1147. 

https://doi.org/10.1080/014311698215658
 18 D. Andre and K. Morrison: Proc. 2016 11th European Conf. Synthetic Aperture Radar (2016) 1187. 
 19 X. Lv, M. Xing, Y. Deng, S. Zhang, and Y. Wu: IEEE Trans. Geosci. Remote Sens. 47 (2009) 2884. https://doi.

org/10.1109/TGRS.2009.2018532
 20 B. Anura, D. Michael, H. Stephen, A. Stefan, E. Jonas, and L. Brad: Int. J. Remote Sens. 37 (2016) 370. https://

doi.org/10.1080/01431161.2014.915435
 21 Z. Chang, W. Zhao, R. Yang, and T. Xue: Proc. 2012 2nd Int. Conf. Remote Sensing, Environment and 

Transportation Engineering (2012) 1.
 22 X. Zhang, W.  Liu, and S. He: J. Eng. Sci. Technol. Rev. 11 (2018) 18. https://doi.org/10.25103/jestr.113.03
 23 L. Pulvirenti, M. Chini, N. Pierdicca, and G. Boni: IEEE Trans. Geosci. Remote Sens. 54 (2016) 1532. https://

doi.org/10.1109/TGRS.2015.2482001

https://doi.org/10.1016/j.isprsjprs.2016.03.009
https://doi.org/10.1016/j.isprsjprs.2016.03.009
https://doi.org/10.1109/TGRS.2002.803792
https://doi.org/10.3390/rs10020287
https://doi.org/10.3390/rs10020287
https://doi.org/10.1016/j.isprsjprs.2012.07.002
https://doi.org/10.1016/j.isprsjprs.2012.07.002
https://doi.org/10.1007/s12665-013-2990-y
https://doi.org/10.1007/s12665-013-2990-y
https://doi.org/10.3390/rs11020107
https://doi.org/10.3390/rs11020107
https://doi.org/10.3390/rs10081318
https://doi.org/10.3390/rs10081318
https://doi.org/10.1117/1.JRS.7.073592
https://doi.org/10.4236/ars.2014.31003
https://doi.org/10.4236/ars.2014.31003
https://doi.org/10.1109/36.377933
https://doi.org/10.1109/36.377933
https://doi.org/10.3390/geosciences7020019
https://doi.org/10.3390/geosciences7020019
https://doi.org/10.1186/s40623-016-0513-2
https://doi.org/10.1049/iet-rsn.2010.0225
https://doi.org/1000-0240(2008)05-0868-07
https://doi.org/10.1080/014311698215658
https://doi.org/10.1109/TGRS.2009.2018532
https://doi.org/10.1109/TGRS.2009.2018532
https://doi.org/10.1080/01431161.2014.915435
https://doi.org/10.1080/01431161.2014.915435
https://doi.org/10.25103/jestr.113.03
https://doi.org/10.1109/TGRS.2015.2482001
https://doi.org/10.1109/TGRS.2015.2482001


4614 Sensors and Materials, Vol. 32, No. 12 (2020)

 24 X. Wang, C. Erxue, Z. Li, and W. Yao: Acta Geod. Cartogr. Sin. 44 (2015) 533. https://doi.org/10.11947/
j.AGCS.2015.20130244

 25 H. Wu, H. Zhang, C. Wang, and Y. Tang: Remote Sens. Technol. Appli. 24 (2009) 109. https://doi.org/10.11873/
j.issn.1004-0323.2009.1.109

 26 T. Wu, H. Zhang, C. Wang, Y. Tang, and H. Wu: Chin. Sci. Bull. 53 (2008) 3705. https://doi.org/10.1007/
s11434-008-0331-4

 27 R Touzi, A. Lopes, J. Brunique, and P. Vachon: IEEE Trans. Geosci. Remote Sens. 37 (1999) 135. https://doi.
org/10.1109/36.739146

 28 V. Kubica, X. Neyt, and H. Griffiths: IEEE Trans. Aerosp. Electron. Syst. 52 (2016) 1568. https://doi.
org/10.1109/TAES.2016.140831

 29 Z. Bai, S. Fang, J. Gao, Y. Zhang, G. Jin, S. Wang, Y. Zhu, and J. Xu: Sci. Rep. 1 (2020) 1. https://doi.
org/10.1038/s41598-020-63560-0

About the Authors

 Jiaojie Li received her B.S. degree in surveying and mapping engineering 
from North China University of Water Resources and Electric Power in 2019. 
She is currently a graduate student in photogrammetry and remote sensing 
at Beijing University of Civil Engineering and Architecture. Her research 
interests include the monitoring of coseismic deformation fields based on 
DInSAR technology. (2108160219002@stu.bucea.edu.cn)

 Xuedong Zhang is an associate professor and master tutor of Beijing 
University of Civil Engineering and Architecture. He graduated from China 
University of Mining and Technology (Beijing) in 2012 with a doctorate 
degree in engineering and is currently engaged in research on InSAR and 
urban remote sensing. He has published more than 30 related papers and won 
four provincial and ministerial awards. (zhangxuedong@bucea.edu.cn)

 Xianglei Liu received his B.S. and M.S. degrees in geographic information 
systems from Shandong University of Science and Technology in 2005 and 
2008, respectively. He received his Ph.D. degree in photogrammetry and 
remote sensing from Tongji University in 2012. He is a professor at Beijing 
University of Civil Engineering and Architecture. His research interests are in 
deformation monitoring based on GBSAR and high-speed videogrammetric 
measurement. (liuxianglei@bucea.edu.cn)

https://doi.org/10.11947/j.AGCS.2015.20130244
https://doi.org/10.11947/j.AGCS.2015.20130244
https://doi.org/10.11873/j.issn.1004-0323.2009.1.109
https://doi.org/10.11873/j.issn.1004-0323.2009.1.109
https://doi.org/10.1007/s11434-008-0331-4
https://doi.org/10.1007/s11434-008-0331-4
https://doi.org/10.1109/36.739146
https://doi.org/10.1109/36.739146
https://doi.org/10.1109/TAES.2016.140831
https://doi.org/10.1109/TAES.2016.140831
https://doi.org/10.1038/s41598-020-63560-0
https://doi.org/10.1038/s41598-020-63560-0

