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 Traffic census data are essential for investigating traffic volumes and vehicle movements, and 
count mechanization is currently the most efficient way to obtain and utilize advanced traffic 
census data. However, efforts to mechanize traffic censuses have not progressed significantly 
in Japan owing to the price of such systems, the size of the necessary equipment, and privacy 
issues. In this paper, we propose a novel vehicle-counting sensor system that is inexpensive 
and easy to set up. Our system is based on a piezoelectric vibration sensor that senses road 
vibrations from passing vehicles. More specifically, the system consists of (i) a vibration sensor 
device that we designed and prototyped in-house and (ii) a passing vehicle estimation method 
that determines the number of passing vehicles from the vibration sensor data. Our system, 
which achieves high accuracy owing to the use of machine learning (ML), makes it possible to 
conduct traffic censuses by simply placing the sensor on sidewalks next to the road that is being 
surveyed. To demonstrate the utility of our system, we conducted an experiment in which the 
vibration sensor was placed on a sidewalk, and then linear discriminant analysis (LDA) was 
used to estimate the number of vehicles that were traveling on the adjacent road using only the 
data collected from the vibration sensor. Our results showed that the number of passing vehicles 
could be estimated with an accuracy of 98.3%.

1. Introduction

 Traffic censuses, which investigate traffic volumes and vehicle movements, provide essential 
data that will allow planners to develop more efficient road improvement plans and thus help 
reduce carbon dioxide (CO2) emissions. In Japan, a national road/street traffic situation survey 
known as the “Traffic Census” is conducted once every five years. In this census, the traffic 
volumes of Japan’s highways, national roads, and prefectural roads are investigated.
 However, as of the latest (2015) road traffic census report, more than 50% of the censuses 
were still being counted manually.(1) Figure 1 shows the rates of the different vehicle-
counting processes used in the last three censuses. Here, it can be seen that the rate of the 



2 Sensors and Materials, Vol. 33, No. 1 (2021)

manual counting process declined by only 13% in the last 10 years, and that the contributions 
of mechanized counting processes remain low, primarily because such vehicle counters are 
expensive, require large machines, and have long setup times. Image-based vehicle-counting 
methods that use existing cameras, including surveillance cameras, have been attracting 
significant attention recently.(2,3) However, although some parties feel it would be ideal to 
count vehicles via such existing cameras, others have voiced concerns about the need to protect 
drivers’ privacy. Moreover, it is difficult for camera systems to count vehicles correctly in dark 
locations or at night.
 Other vehicle-monitoring methods include recording and analyzing the noise of moving 
vehicles via microphone arrays. Methods involving the generation of sound maps from the time 
differences of sounds recorded by vertical and horizontal array microphones have been studied.(4) 
For example, Ishida and coworkers examined the use of microphone arrays and realized a 
workable vehicle counting system.(5–9)

 However, although the cost of the sound map and microphone array system was not high, 
it required the use of a pole to mount the vertical and horizontal array microphones, which 
significantly increased its deployment cost. Furthermore, the high volumes of automotive 
exhaust gases and the large amounts of tire shavings encountered on roads with heavy traffic 
roads can reduce the service life of the microphones, while strong winds can produce noise 
levels that exceed the dynamic range of the system. Taken together, these factors indicate that 
the system is not sufficiently robust for practical use. Infrared-type traffic counters have also 
been put into practical use, but these counters are not widely used because they require the 
construction of installation such as standing poles on roads.
 In this paper, we propose an inexpensive, easy-to-use vehicle-counting sensor system that 
can be can be employed simply by placing the sensor on a sidewalk adjacent to the road under 
observation. As shown in Fig. 2, our system uses a piezoelectric sensor to collect roadway 
vibrations caused by passing vehicles.(10–12) More specifically, the piezoelectric device converts 
vibrations to electric signals, after which the system extracts the characteristics of those 
electric signals as features based on mel-frequency cepstral coefficients (MFCCs). The number 
of vehicles were counted by machine learning (ML) to identify each vehicle recorded by the 
sensor.

Fig. 1. (Color online) Traffic census investigation trends in Japan.(1)
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 The benefits of using our vibration sensor system are as follows: (1) the system can be set 
up nondisruptively, (2) it is robust against weather conditions because the sensor is connected 
to the vibration source mechanically rather than through the air, and (3) the sensor is based on 
emission-free passive monitoring technology. 
 In previous studies of vehicle detection, multiple vibration sensors and a combination of a 
geomagnetic sensor and a vibration sensor were used.(13,14) In this research, we measure traffic 
volume with a single sensor by learning as information based on the road surface condition by 
cutting out and learning the vibration waveform itself.
 Similar studies using in-house-based vibration sensor systems were conducted previously.(15–19) 
For example, Kashimoto et al. proposed a method for locating the position of a user by 
analyzing the vibration generated by a pedestrian.(20) Additionally, a method using a vibration 
sensor to sense walking behavior within a room, including the directions and number of 
multiple persons crossing the measurement area, has been proposed.(21)

 In this study, we apply similar technology to vehicle counting and investigate the most 
efficient way to achieve the sensitivity necessary to detect the weak roadway vibration signals 
generated by passing vehicles, and then use that information to count those vehicles. We 
evaluated only one lane of two-lane roads, because the purpose of this research is to realize an 
easy low-cost setup with an infrared traffic counter that counts only one lane.
 The remainder of this paper is organized as follows. We explain the details of our in-house 
designed and developed vibration sensor in Sect. 2, and we then present a method for detecting 
passing vehicles from the obtained sensor signals in Sect. 3. We describe our vehicle-counting 
system in Sect. 4 and provide details of our field test and results in Sect. 5. Finally, we conclude 
the paper in Sect. 6.

2. Vibration Sensor

2.1 Piezoelectric device

 As explained above, our system is based on an in-house designed and developed piezoelectric 
vibration sensor. Piezoelectric devices are made from crystals such as potassium sodium 
tartrate and lead zirconate titanate. In such crystals, the cation shifts at a temperature below the 

Fig. 2. (Color online) Counting passing vehicles via road vibrations.
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Curie point and polarization occurs in specific but scattered directions. However, when a strong 
electric field is applied to a crystal in this state, the polarization direction remains the same 
even when the electric field is removed. Then polarization is neutralized with floating charges 
in the air produced by the piezoelectric device. When pressure is applied to such a piezoelectric 
device, each crystal shrinks, thus reducing the polarization of the piezoelectric element. At a 
certain point, the neutralized electric charges become excessive and generate a voltage.

2.2 Piezoelectric vibration sensor device

 Figure 3 shows a basic diagram of our piezoelectric vibration sensor unit. This structure, 
which was designed to transmit vibrations from a road to a piezoelectric device, was also 
designed to be placed easily on tilted surfaces. A paper-insulated metal weight (hereinafter 
called a floating weight) rests on the sensor tray in direct contact with the piezoelectric element, 
and the floating weight is allowed to move freely inside the guide housing. The sensor tray 
under the piezoelectric element is electrically insulated from a road by the bottom of the sensor 
tray and it is pressed against the ground by the weight of the surrounding guide housing.

2.3 Voltage generated in piezoelectric device

 Figure 4 shows a simplified sketch of Fig. 3, focusing on the force applied to the piezoelectric 
device. The piezoelectric elements are polarized and the applied force is perpendicular to the 
electric field axis. Therefore, according to the piezoelectric equation, the relationship between 
the force applied to the element and the voltage can be expressed as

   Qd
F

=  [C/N],  (1)

where the force applied to the piezoelectric element is F [N], the generated charge is Q [C], 
the mass of the floating weight is m [kg], the acceleration is a [m/s2], and the equivalent 
piezoelectric constant is d. If the capacitance of the piezoelectric element is C [F] and is 
constant, the relationship among voltage, capacitance, and charge is

Fig. 3. (Color online) Basic diagram of vibration 
sensor unit.

Fig. 4. (Color on l ine) Volt age generated by 
piezoelectric element.
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   QV
C

=  [V]  (2)

 Then, by substituting Eq. (1) into Eq. (2), we obtain

   F dV
C
⋅

=  [V],  (3)

where the longitudinal equivalent piezoelectric constant is constant at d.
 The relationship between force and acceleration is shown by

  F m a= ⋅  [N], (4)

where the mass m of the weight is constant.
 By substituting Eq. (4) into Eq. (3), we obtain

   m a dV
C
⋅ ⋅

=  [V]. (5)

 As shown by Eq. (5), the generated voltage is proportional to the acceleration of the vibration 
applied to the piezoelectric element.

3. Sensing Road Vibrations during Vehicle Passage

3.1 Construction of prototype measurement system

 Figure 5 shows a block diagram of the prototype measurement system, which consists of 
four blocks. The first block is the piezoelectric sensor unit, which converts vibrations into 
electrical voltage signals, as explained in Sect. 2.3. We used a 7BB-41-2L0 sensor (Murata 
Manufacturing, Kyoto, Japan) for this system. The second block is the amplifier, which has an 
impedance conversion circuit to improve the signal-to-noise ratio (SNR) of the input signal. 
Figure 6 shows a photograph of the amplifier. The third block is an Audio Interface UA-25EX 

Fig. 5. (C o l o r  o n l i n e)  B l o c k d i a g r a m o f 
measurement system.

Fig. 6. (Color onl ine) Impedance conversion 
amplifier.
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Universal Serial Bus (USB) (Roland DG Corp., Shizuoka, Japan) that converts analog signals 
from the amplifier into pulse code modulation (PCM) signals (16 bit, 44.1 kHz). To avoid 
clipping the input signal, the gain of the USB is adjusted so that a −15 dBV sinusoidal 1 kHz 
analog signal is recorded as 0 decibels relative to the full scale (dBFS). Signal data are recorded 
to PC from the vibration sensor as audio data.

3.2 Vibration sensor voltage output when a vehicle passes

 In our preliminary experiments, as shown in Fig. 7, we placed our prototype vibration 
sensor system on a sidewalk adjacent to a roadway on the grounds of Nara Institute of Science 
and Technology and recorded the vibration signals generated when a vehicle passed on the 
measurement lane. Figure 8 shows the waveforms and spectrograms of vibration signals 
recorded when a vehicle passed at speeds of (a) 5 km/h (very low speed), (b) 10 km/h (low 
speed), and (c) 30 km/h (moderate speed). The main component of the signal band when the 
vehicle passed was from 1 to 2 kHz. From these results, we found that our sensor could detect a 
passing vehicle even at the very low speed of 5 km/h. 
 The waveforms and spectrograms of the vibration signals also show that higher vehicle 
speeds result in larger, but shorter-duration, high-frequency signal levels. Conversely, lower 
vehicle speeds produce smaller and longer-lasting high-frequency signal levels. Generally, noise 
is generated by the impact and friction of moving vehicle tires with the ground surface, and the 
vibration frequencies of such generated noise are high.(22) We confirmed these phenomena in 
our preliminary experiment. 

4. Vehicle Counting System

 On the basis of the results of the preliminary experiments mentioned above, we improved the 
structure of the sensor unit to make it capable of data collection on general roads. The target of 
this system is the number of vehicles passing through the measurement lane of a two-lane road, 
as shown in Fig. 9. We then constructed a data collection and analysis system similar to that 
shown in Fig. 5.

Fig. 7. (Color online) Experimental environment of 
preliminary experiment.

Fig. 8. (Color online) Waveforms and spectrograms 
of passing vehicles.
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 Then, using our improved sensor system, we conducted a vehicle counting experiment as 
follows:
1) The vibration sensor was placed on the sidewalk adjacent to the road being surveyed in order 

to record vibration levels.
2) To obtain training data, we also set up a camera on the same sidewalk and recorded a video 

of passing vehicles.
3) The times at which vehicles passed on the measurement lane were recorded from the peak 

energy of recorded audio data. 
4) The audio data before and after the peak point were extracted and labeled for 1 s before and 

after the peak, thus producing 2 s segments.
5) The data were classified using the ML algorithm according to whether or not a vehicle 

passed on the measurement lane.

4.1 Vibration sensor 

 Figure 10 shows various views of the vibration sensor used in our later experiments. This 
device was improved in several ways from the sensor unit introduced in Fig. 3. For example, 
the housing of the sensor unit shown in Fig. 3 was susceptible to water penetration, so the 
improved sensor was provided with a new watertight structure. Additionally, the improved 
sensor was equipped with two weights, as well as a leveling pad for it to receive vibrations more 
efficiently. Furthermore, to facilitate the use of the system on inclined roadways, the sensor tray 
was modified to have an inverted cone-shaped structure for it to efficiently make contact with 
various ground surfaces.

4.1.1 Tray-holding weight

 The improved sensor is equipped with a weight attached to the outside of the sensor tray, 
called the tray-holding weight, which was not used in the prototype sensor. The purpose of 
this 500 g weight, the mass of which was carefully determined by empirical observations, is to 
ensure that the sensor tray is kept in firm contact with the ground surface. The position of the 
tray-holding weight also protects the piezoelectric sensor element inside the sensor tray from 
rain and roadside dust. 

Fig. 9. (Color online) Target two-lane road of this system.
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4.1.2 Floating weight

 As in the prototype sensor, the floating weight rests on the top of the piezoelectric element 
inside the sensor tray, and the floating weight moves freely in the tray. When nearby moving 
vehicles produce vibration, the ground and sensor tray also move. However, the floating weight 
tends to stay in the same position because of the law of inertia. As a result, pressure is produced 
by the acceleration of the sensor tray. Since the floating weight is not locked mechanically to the 
sensor tray and tray-holding weight, it can vibrate freely. As with the tray-holding weight, the 
mass of the floating weight was carefully determined. This is because, if the floating weight is 
too heavy, it exerts too much pressure on the sensor tray. In this device, the mass of the floating 
weight was set at approximately 300 g on the basis of empirical observations made during the 
preliminary experiments.

4.2 Extraction of recorded data when a vehicle passes

 As shown in Fig. 11, to use ML to count the number of passing vehicles, we prepared 
vibration sound data that had been recorded by the sensor over a long period of time, detected 
the vehicle passage times, and then extracted the relevant recorded data. In addition, labeling 
was performed using the correct data obtained from the video recordings taken simultaneously. 
We used the following processes for our ML analysis.

4.2.1 Marking of recorded data

 We marked points where many high-frequency peaks were observed using the following 
process because, as described in Sect. 3.2, numerous high-frequency signals were detected 
when vehicles passed in front of the sensor (Fig. 11):

Fig. 10. (Color online) Various views of improved vibration sensor.
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1)  The recorded signals were converted to spectrograms by short-time Fourier transform (STFT) 
using a Hamming window in each segment with 16384 samples (0.37 s). 

2)  Next, we calculated the trend of energy versus time by summing the power spectrograms of 
signals higher than 300 Hz because the recorded data included humming noise (50 to 60 Hz), 
which we refer to as energy trend data.

3)  Finally, we marked peaks on energy trend data that were higher than the empirically 
determined threshold.

4.2.2 Preventing double marking

 In some cases, two or more signal peaks can result from the noise of one passing vehicle 
because of widely separated vehicle axles or other reasons. In such cases, the same vehicle 
could be counted more than once. We prevented such double marking by using the following 
empirically determined method.

Fig. 11. (Color online) Conceptual diagram of marking algorithm.



10 Sensors and Materials, Vol. 33, No. 1 (2021)

 The maximum speed limit on a local road in Japan is 60 km/h, the average length of a 
vehicle is approximately 4 m, and the average distance between vehicles is calculated to be 
empirically 4 m from the average vehicle length. Therefore, the time interval t (minimum) is 
calculated as

 
3

4 [m] 4 [m] 3600 [s] 0.5 [s]
m60 10
h

t +
= ⋅

 ×   

 . (6)

 Since it is clear that two or more vehicles cannot pass within a 0.5 s period, we can reduce 
the number of peaks as shown in Fig. 12.

4.2.3 Extraction of analysis data

 As explained above, we extracted 2 s segments of recorded data for each marked point (1 s 
before and after the mark) because the duration of the high-frequency component accompanying 
a passing vehicle was approximately 2–5 s. This value was determined by empirical 
measurements during the preliminary experiment described in Sect. 3.

4.3 ML estimations 

 The sounds produced by a moving vehicle can provide important clues related to its 
operation. The same applies to vehicle-generated vibrations. By applying ML techniques, we 
can count the number of passing vehicles from vibration data. Figure 13 shows a block diagram 
of our ML estimation process.

4.3.1 Preprocessing

 We extracted eight features from the 2 s data segments and then performed ML 
preprocessing. MFCCs were selected on the basis of the finding that the audio characteristics of 

Fig. 12. (Color online) Reducing the number of incorrect markings.
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vehicle sound data occupy a band very close to that of human voice signals, which means that 
vehicle vibrations can be handled similarly. The process reshapes the matrix (8 × 173) to a vector (1 
× 1384), which is used as the input for linear discriminant analysis (LDA). Figure 14 shows an 
example of the results obtained when MFCCs are calculated for 2 s of audio data.

4.3.2	 Dimensionality	reduction	and	LDA	classification

 To apply LDA, we assigned one of the two data label classes below to the extracted data. 
Labeling was accomplished by watching the video footage of all recorded data, selecting the 
correct answer, and then extracting the 2 s segment containing the audio peak. The two label 
classes are as follows.

1. Pass through measurement lane: data when a vehicle passes through the 
measurement lane

0. Noise: data when a vehicle does not pass through the measurement lane 

Fig. 13. (Color online) Block diagram of ML estimation.

Fig. 14. (Color online) MFCC results.
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Fig. 16. (Color online) Measurement setup on public road.

 Figure 15 shows a diagram of our LDA process. This LDA process generates a new axis onto 
which it projects data in a way that minimizes the variance and maximizes the distance between 
the means of the classes.

5. Field Test

5.1 Field testing

 We tested our system on the public road located at 2-2 Katamachi, Miyakojimaku in Osaka 
City, Osaka Prefecture, Japan, and recorded data for 15 min.
 Figure 16 shows the field test measurement setup. The sensor unit was placed on the 
sidewalk adjacent to the measurement lane, and it counted the number of passing vehicles in the 
measurement lane. We also recorded a video of the road where vehicles passed and treated the 
recorded video as ground truth data.

Fig. 15. (Color online) Diagram of LDA process.
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5.2 Results

5.2.1 Checking the correct vehicle count number

 Using our proposed method, we extracted 173 markings. When the number of passing 
vehicles on the measurement lane was checked from the recorded video, 60 of the 173 peaks 
corresponded to the number of vehicles passing in the measurement lane, and 113 peaks 
corresponded to noise. Vehicles that have passed the measurement lane were large vehicles, 
microcars, trucks, and motorcycles, but there were no tank trucks or large trucks. The 
breakdown of noise revealed that the noise was attributable to vehicles passing in the opposite 
lane, the footsteps of pedestrians, bicycles, and motorcycles.

5.2.2 ML evaluation

 Next, we analyzed the test data using LDA algorithms and evaluated the results in terms of 
accuracy, precision, recall, and F-measure. These metrics were calculated using the number of 
prediction results obtained by solving Eqs. (7)–(10). The terminologies used in these formulas 
are as follows:

• TP: Test data item is correctly predicted as “1”. Pass through measurement lane.
• TN: Test data item is correctly predicted as not “1”. Pass through measurement lane.
• FP: Test data item is incorrectly predicted as “1”. Pass through measurement lane.
• FN: Test data item is incorrectly predicted as not “1”. Pass through measurement lane.

 
 +   

 +  +  + 
TP TNAccuracy

TP FP TN FN
=  (7)

  =  
 +  
TPPrecision

TP FP
 (8)

   
   
TPRecall

TP FN
=

+
 (9)

 ( )
2  =  

 
Precision RecallF measure

Precision Recall
⋅ ⋅

−
+  (10)

5.2.3 Evaluation of optimal number of MFCC dimensions

 We determined the optimal number of MFCC dimensions using the above evaluation 
parameters. As shown in Fig. 17, the accuracy, precision, recall, and F-measure for each ML 
parameter were evaluated using LDA at various numbers of MFCC dimensions. Since we found 
that the accuracy saturates at around eight dimensions, we used eight MFCC dimensions in our 
ML process.
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5.2.4 Results 

 Table 1 shows the results of 10-fold cross-validation obtained after applying ML using 
our LDA process. These results show that ML-based LDA made it possible to count passing 
vehicles with high accuracy. The accuracy of the proposed system is about 98%, which is higher 
than that of the current system of infrared traffic counters commonly used in Japan (95%). 
Therefore, our proposed system is considered to have adequate performance.

5.3 Comparison with existing systems 

 Figure 18 shows the comparison of our method with the conventional method, which 
achieved traffic count using air pipes, air pressure sensors, and other counting devices. The cost 
of air pressure and pipe sensors is high because they need to be embedded in the ground. They 
also require time install and are not suitable for temporary installation for use in, for example, 
a traffic survey census. Infrared-type traffic counters do not require embedding, but they 
require construction of structures for installation such as standing poles on a road. On the other 
hand, piezoelectric sensors cost only a few dollars each, which makes our system cheaper than 
existing systems, even after considering the cost of other components, cover, and assembly. The 
total cost also becomes low because it does not require any installation work.
 In addition, our system requires only to be put on the ground and it does not require any 
setting up. In the case of an infrared sensor, the distance from, the angle to, and obstacles on 
the roadway must be taken into consideration for the setup. On the other hand, in the case of 
a piezoelectric sensor, the vibration travels through the ground and reaches the sensor even if 
there is an obstacle. Therefore, our system is easy to set up without considering the distance, 
angle, or obstacles.

Fig. 17. (Color online) Evaluation of optimal number of MFCC dimensions.
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6. Conclusion

 In this paper, we proposed a vibration-sensor-based vehicle counting system that is 
inexpensive and easy to set up and use. In our proposed system, the vibration sensor is placed 
on the sidewalk next to the observed road, where it measures and records vibrations caused by 
passing vehicles transmitted through the road. This is accomplished by converting the output 
voltage of a piezoelectric sensor unit into an audio signal, and then extracting features from 
the measured data using MFCCs. Finally, the system determines whether a vehicle has passed 
on the measurement lane by applying ML to an LDA process. From our obtained experimental 
results, we confirmed that our proposed system could count the number of vehicles traveling on 
a measurement lane with an accuracy of 98.3%. Although our present method only counts the 
number of passing vehicles, the recorded signal data include unique information on each passing 
vehicle. Therefore, as part of our future work, we will evaluate whether it is possible to judge 
correctly even when vehicles of different sizes and weights pass by. We are also considering 
ways to identify the type of passing vehicles by using vibration data and ways to count vehicles 
passing on multiple lanes with a single sensor.

Table 1
Results of 10-fold cross-validation.

Evaluation results
Accuracy 98.3%
Precision 98.3%
Recall 96.7%
F-measure 97.5%

Fig. 18. (Color online) Comparison of our methods with conventional measurement methods.
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