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	 When evacuating a building after a disaster such as an earthquake, it would be useful to 
detect the trajectory of an evacuation path by pedestrian dead reckoning (PDR) and record it 
in a person’s smartphone; this could help rescue staff to trace back to where an injured person 
remains in the building. Considering this application, we present a novel scheme to recognize 
motion states of a person, including walking, descending stairs, and ascending stairs, using the 
person’s smartphone, focusing on the angle of the thigh detected by a rotation vector sensor 
and acceleration values. The proposed scheme mainly solves the existing problem of height 
estimation using barometers, in which sensors have a time lag of their output, giving inaccurate 
estimation. Also, the main benefit of the proposed scheme compared with related works is that 
it requires only these sensor values obtained when the person is walking or running on one 
floor of a building as reference values, which are used to recognize other motion states, where 
the scheme requires training data of only a part of the target motion states for recognition. A 
performance evaluation with ten experimental participants shows that the proposed scheme 
achieves a recall rate of each motion state of over 80% and an F-value of around 0.8.

1.	 Introduction

	 One of the prominent issues in relief activities after an earthquake occurs is the rescue of 
injured persons in buildings. There are often damaged places in a building where people cannot 
pass, especially at stairs or in corridors, and the rescue staff outside the building cannot obtain 
sufficient information about such places in advance. Here, we consider scenarios in which 
evacuating persons receive location information of injured persons and record the trajectory 
of evacuation paths in their smartphones. This information is passed to rescue staff when they 
exit the building, which could help the rescue staff reach the injured persons. In this scenario, 
localization of their evacuation paths will be needed. The first intuitive approach for this issue 
is to employ existing smartphone localization functions. Moayeri et al. evaluated the indoor 
location accuracy of the existing smartphone localization framework for several movement 
scenarios such as walking, sidestepping, walking backward and crawling.(1) The localization 
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application programming interface (API) used in this study was the fused location provider (FLP) (2) 
in Android phones and Core location(3) in iPhones. These localization schemes mainly rely on 
WiFi or cellular signals in the indoor environment, assisted by sensors such as magnetometers 
and barometers. The benefit of this approach is clearly that localization APIs are available for 
all devices without prior installation. However, it was shown that localization error is as large as 
tens of meters particularly in an area with weak WiFi signals.(1) Since cellular or WiFi reception 
is unlikely to be available after disasters owing to severe damage or heavily concentrated traffic 
in many cases, we would need indoor pedestrian dead reckoning (PDR) using smartphones 
without the help of wireless signals. 
	 PDR in indoor environments estimates the moving direction, displacement, and height from 
an initial position using multiple sensors of a smartphone.(4–7) Movement across different floors 
is typically detected from a change in average atmospheric pressure. However, barometers 
embedded in smartphones are known to have a time lag on the order of seconds when the height 
changes, and the time lag varies among smartphones. Thus, in some cases where there are paths 
of multiple persons moving to different floors and the path each person used is to be identified, 
this time lag could lead to estimation error. 
	 To solve this problem, motion recognition on the basis of steps will be effective. Motion 
recognition presented in the literature basically relies on a recognition model constructed by 
using training data for all target motion states in advance.(8–11) The drawback of this is the cost 
and time needed to collect training data.
	 We present a novel scheme for recognizing motion states of a person, including walking, 
walking or running downstairs, and going upstairs, by focusing on the angle of the thigh 
during movement. The benefit of this scheme is that it employs training data only for horizontal 
movement on one floor of a building and not for movement on stairs. It exploits the relative difference 
in sensor values compared with those obtained in movement on one floor to recognize the 
motion state. 

2.	 Background

2.1	 Scenario and problem statement 

	 Figure 1 illustrates an overview of the scenario we assume in this work. An evacuating 
person receives attribute information of injured persons he or she encounters during evacuation 
through mobile peer-to-peer (P2P) communication while the location information and 
evacuation trajectory are recorded on his or her smartphone. These data are passed to rescue 
staff outside the building. After that, motion recognition is assumed to be performed offline.
	 In general, indoor PDR employs an acceleration sensor and gyro sensor for movement on 
one floor of a building, while using a barometer to estimate movement on stairs. It is often 
supported by map matching to reduce the accumulated estimation error. However, when 
tracking movement on stairs, some of the barometers embedded in smartphones have a time 
lag before outputting a stable value when the height changes, which makes accurate recognition 
difficult. Figure 2 shows an example of a time sequence of barometer values obtained in our 
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preliminary experiment. The device model used in this experiment is Nexus 6, which was 
released in 2014. Let us focus on three timings: when the person starts going downstairs, 
finishes going downstairs and starts walking along a corridor, and starts going upstairs. The 
sensor time lags at each timing are approximately 2, 3, and 4 s, respectively. Furthermore, we 
confirmed that there is individual variability, for example, another device of the same model 
has no time lag. The same experiment was also performed using four different devices models, 
iPhone6s, iPhone7, Galaxy S9, and Pixel 3a XL. Maximum time lag values of them were 
approximately 3, 2, 0, and 0 s, respectively. These models were released in 2015, 2016, 2018, and 
2019 respectively. From these results, as an overall trend, it can be said that longer time lag is 
seen in older models. Consequently, estimating whether the person is on the stairs from only an 
instantaneous barometer value inevitably will yield inaccurate results during time lag. 
	 For example, let us consider the scenario shown in Fig. 3, where a person has to leave 
the emergency stairs owing to damage of the stairs. Then, possibly, he or she stays there for 
several seconds and moves to another set of stairs on the same floor by running and restarts 
going downstairs. There are three candidates for the next set of stairs: an escalator that stops 
in an emergency, and normal stairs A and B. This floor layout exists in the building of Toyosu 
campus, Shibaura Institute of Technology. We denote the shortest paths on the floor for moving 
from the emergency stairs to each of the candidates by paths (a), (b), and (c). As mentioned in 
Introduction, our system is aimed at assisting the estimation of the trajectory of evacuation 
paths, and in this case, it is fundamentally important to estimate to which set of stairs the 
evacuator moved. For this objective, it would be effective to identify which path a person took 
using the length of time for which the person continuously ran on this floor as one of the key 
values. The length of each path is about 21, 27, and 36 m. Assuming that a person runs along 
either of these paths, we can roughly estimate the required time length. When the height of 
the person is 170 cm, the stride of a single step is estimated to be about 0.6 times the person’s 
height, as is widely known, and the time required to take two steps is set to around 0.6 s on the 
basis of our preliminary experiment, the velocity of running is calculated to be 3.4 m/s. Then 

Fig. 2.	 (Color online) Example of barometer output 
time sequence when a person walks downstairs and 
upstairs.

Fig. 1.	 (Color online) Scenar io of evacuation 
trajectory recording in a building.
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the time required to travel each path is about 6.1, 8.0, and 10.7 s, respectively. If the barometer 
time lag is negligible, we can derive these values of time from time periods for which the 
barometer value is continuously constant. However, considering a case where a person having 
a device with a barometer time lag of 4 s goes along path (a) and another case where he or 
she has a device with no barometer time lag goes along path (c), the time period for which the 
barometer value is continuously constant will be around 10 s in both cases, making it difficult 
to distinguish between them. This problem must be avoided. 
	 Clearly there is large individual variability of the time lag among devices of the same model, 
and it is not known in advance. It is not realistic to measure the time lag of all barometers in 
smartphones in advance because of the individual variability. Thus, correctly identifying the 
motion state of each step requires not only instantaneous barometer values but also those of 
other sensors.
	 Among the five smartphone models used in our preliminary experiment of the barometer 
as described above, the model for which this time lag problem will arise the most is Nexus 6, 
whose sensor has a maximum time lag of 4 s. iPhone6s and iPhone7 also have time lags that, 
although smaller than the time lag of Nexus 6, will degrade the route estimation accuracy to 
a certain extent. Overall, the problem described here arises more often in old models than 
in recent models. Since many people continue to use smartphones of older models in their 
daily lives because they are familiar with their usability, it is important to cope with the 
aforementioned problem caused by barometer performance. 

2.2	 Related works

	 Indoor 3D PDR, which is particularly suited to estimating the period of time in which a 
person moves with a change in height, has been widely studied.(8–13) The schemes presented 
in Refs. 8 and 9 are used to detect whether a person moves on the same floor or moves to 

Fig. 3.	 Example of movement scenario in which barometer time lag affects recognition accuracy.
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different floors from the change in the instantaneous atmospheric pressure, although they 
do not deal with the delay of the barometer output when the height changes. Kourogi et al., 
presented a scheme for recognizing whether a person is walking, going upstairs or downstairs, 
or using elevators from the acceleration sensor value using a Kalman filter framework,(10) and 
it achieved a recognition accuracy of over 90% in experiments. It does not show the number of 
subjects in the experiment, nor describe how to cope with the difference in movement behavior 
among different persons in various motion states and therefore the accuracy is degraded. 
Yi et al. presented a scheme for recognizing the motion mode of a person, whether the person 
is walking, going upstairs or downstairs, or using elevators, from the acceleration sensor 
value obtained using a support vector machine (SVM) or a hidden Markov model (HMM).(11) 
Schemes were presented for recognizing the motion mode of a person as well as the state of the 
device, such as whether it is being held, used for calling, or kept in a pocket, using an SVM and 
k Nearest Neighors (kNN) in Ref. 12 and using only an SVM in Ref. 13. These schemes have 
the common feature that they use sensors other than a barometer to detect moving to different 
floors. However, the use of the SVM inevitably requires a training dataset for each motion 
mode (and the state of the device in Refs. 12 and 13) in advance. Furthermore, the motion state 
of running downstairs was not considered. This motion state often arises in evacuations and is 
an important target of recognition.

3.	 Principle of Motion State Recognition from Angle of Thigh

	 We present a scheme for recognizing the motion state of a person. This scheme can cope 
with the time lag of the barometer and only requires training data of part of the target motion 
states in advance. The target motion states for recognition are walking, running, walking 
downstairs, running downstairs, and walking upstairs. In this section, we briefly outline the 
principle of the scheme.

3.1	 Characteristics of angle of thigh when person is in motion

	 When a person moves, both legs swing with behavior that varies depending on the motion 
state. In this section, we assume a person puts a smartphone in a front pocket of the pants with 
the screen vertical when standing straight, and we consider how the angle of the thigh on which 
the smartphone is resting varies during the period of a motion state.
	 The angle of the thigh Φ is defined as zero when a person stands with the knees straight and 
increases in the counterclockwise direction. Thus, Φ is positive when the leg is lifted or put 
forward while it is negative when the leg is behind the upper body, as shown in Fig. 4(a).
	 We focus on the values of Φ in the three leg states during the period of a motion state, as 
shown in Fig. 4(b). Φmax is the angle when the person takes a step forward on the leg with the 
smartphone. Φstand is the angle when the leg is temporarily straight in the vertical direction 
during the motion state. Φmin is the angle when the person takes a step forward with the leg 
that does not hold the smartphone. In addition, we define two values, Φvar-t = Φmax − Φmin and 
Φvar-b = Φstand − Φmin, and we examine how they depend on the motion state.
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	 Figures 5(a)–5(e) show the time sequence of Φ during two steps for five motion states of 
the same person, obtained in our preliminary experiment. These results in Fig. 6 depict an 
approximate comparison of Φvar-t, Φvar-b, and Φmin for each motion state in descending order. 
In general, the value of Φvar-t roughly corresponds to the stride length or the degree of thigh 
lift when the person is ascending or descending stairs. When running, a person tends to take 
longer strides than in other motion states. Also, the person lifts the thighs higher when walking 
upstairs than in other states, leading to larger Φvar-t values. In contrast, when going downstairs, 
a person generally takes shorter steps and the thigh lift is smaller, thus Φvar-t is smaller than that 
in other states. 
	 Φvar-b corresponds to the degree by which the thigh is behind the upper body during steps. It 
is larger when the person moves on one floor than when moving on stairs, and it becomes larger 
when the stride is longer. Therefore, Φvar-b tends to be largest when running. When descending 
stairs and the leg on which the smartphone is resting lags behind the upper body, a person bends 
the knee of this leg to follow the other leg, and Φvar-b tends to be smaller than in other motion 
states. Finally, Φmin has similar characteristics to Φvar-b. The difference is that Φmin is negative 
and smaller (its absolute value is larger) when the leg is further behind the upper body, while 
Φvar-b is positive and larger in accordance with its definition. Therefore, the descending order of 
Φmin among the motion states is the opposite of that of Φvar-b.
	 On the basis of these characteristics, if Φvar-t, Φvar-b, and Φmin are obtained for the walking 
state of a person, other motion states are likely to be recognized by comparing the values of 
these parameters with those of the walking state.
	 Besides these five states, the state of running upstairs would also arise in some evacuation 
scenarios. We decided not to include this state as a recognition target, because of the finding in 
our experiments that the time sequence of Φ during two steps in this state has similar features 
to those of walking or running and key feature values are not available at present for this state. 
Investigating key sensor values corresponding to this state is one aim of our future work.

Fig. 4.	 (Color online) Definition of angle of thigh Φ and notations of some values during a motion state 
comprising two steps. 

(a) (b)
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(a) (b)

(c) (d)

(e)

Fig. 5.	 (Color online) Example of time sequence of Φ during two steps in each motion state. (a) Walk. (b) Run. (c) 
Walk downstairs. (d) Run downstairs. (e) Walk upstairs.

Fig. 6.	 (Color online) Approximate order of range of Φ in each motion state in descending order of values.
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3.2	 Characteristics of vertical acceleration value and time length of steps in each motion 
state

	 The characteristics of the vertical acceleration value and the time length of two steps in each 
motion state can also be exploited for motion state recognition. In general, vertical acceleration 
values are larger when running than when walking, or when running downstairs than when 
walking downstairs. Also, the time length of two steps tends to be shorter in the running state 
than in the walking state, and shorter when running downstairs than when walking downstairs. 
These values should be employed as feature values for recognition.

3.3	 Estimation of angle of thigh using rotation vector sensor

	 A change in the angle of the thigh on which the smartphone is resting directly changes 
the pose of the smartphone. We employ the rotation vector sensor, which has been adopted in 
recent Android smartphones, to obtain this angle. It is a virtual sensor comprising gyro and 
acceleration sensors and outputs a value representing the rotation required from the predefined 
initial pose to attain the current pose in the world coordinate system. As depicted in Fig. 7(a), X, Y, 
and Z axes of the world coordinate system always face toward the east, the north and the vertical 
direction respectively. This is different from the device coordinate system used by most existing 
smartphone inertia sensors, in which X, Y, and Z axes are defined on the screen of the device, 
as illustrated in Fig. 7(b). Consequently, directions of axes in the world coordinate system do 
not change regardless of the device pose, whereas those in the device coordinate system change 
depending on the device pose. 
	 The initial device pose in the rotation vector sensor is defined so that X, Y, and Z axes in 
the device coordinate system face towards the same directions as the X, Y, and Z axes in the 
world coordinate system [Fig. 8(a)]. Then, when the pose of the device changes, the sensor 
outputs rotation axis v and rotation angle r. This means the current device pose is obtained by 
a one-time rotation from the initial pose around rotation axis v by rotation angle r in the world 
coordinate system, as shown in Fig. 8(a). The sensor value is actually expressed by a four-
dimensional number called a quaternion qp, which consists of a scalar and a three-dimensional 
vector. 

Fig. 7.	 (Color online) (a) World coordinate system. (b) Device coordinate system.

(a) (b)
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	 Furthermore, it is known that qp can be decomposed as a product of three quaternions that 
correspond to rotation around the X axis, Y axis, and Z axis in the world coordinate system. Let 
us consider the case where a device changes its pose from “a” to “b” and then to “c”. Also, we 
look at the change from “a” to “c” directly. When we name the quaternions representing these 
three changes as qab, qab, and qac, respectively, the formula qac = qbc ∙ qab holds, where the 
operator “ ∙ ” stands for the Hamilton product. When the device is stored in the front pocket so 
that the screen becomes vertical when standing straight, a rotation from the initial pose to the 
current pose represented by qp is equivalent to performing the three rotations around the X, Y, 
or Z axis in the world coordinate system in sequence. Here, the angles of rotation performed 
around each axis is named φ, ψ, and θ, as illustrated in Fig. 8(b) including the direction of 
rotation. There are two types of rotation sequence.
	 Type 1 rotation sequence: In this sequence, a device is first rotated from the initial pose by 
angle φ around the X axis, then rotated by angle ψ around the Y axis, and finally rotated by 
angle θ around the Z axis. Thus, qp can be written as follows.
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                

	 (2)

	 Type 2 rotation sequence: In this sequence, a device is first rotated from the initial pose by 
angle ψ around the Y axis, then by angle φ around the X axis, and finally by angle θ around the 
Z axis. Thus, qp can be written as follows.

 Fig. 8.	 (Color online) Characteristics of a rotation vector sensor. (a) Initial pose and output value of sensor. (b) 
Notations of rotation angles around X, Y, and Z axes.

(a) (b)
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	 (3)

	 In both types of rotations, values of φ, ψ, and θ are not known in advance and must be 
derived from qp by solving the equations.
	 The type of sequence that should be applied depends on the device pose in the front pocket 
when standing straight. Type 1 is applied in the case that the Y axis of the device coordinate 
system (simply referred to as the Y axis hereafter in this section) faces vertically upward and 
the screen faces backward (toward the opposite of the moving direction), or the case that the 
Y axis faces vertically downward and the screen faces forward. Likewise, type 2 is applied in 
the case that the Y axis faces vertically upward and the screen faces forward, or the case that Y 
axis faces vertically downward and the screen faces backward. It is not possible to know which 
type should be applied in advance since the current device pose is unknown. However, when 
the current pose is given, only one of Eq. (2) or (3) is solved or both equations give the same 
solution. Thus, the scheme attempts to solve both Eqs. (2) and (3), and adopts the result of the 
equation that is solved.
	 When a person lifts or lowers his/her legs while moving, the smartphone rotates around an 
axis parallel to the horizontal plane. The angle of the thigh Φ is expressed using φ as follows.

1)	 When the device is stored so that the Y axis faces vertically upward 
	 [ ]90 degΦ ϕ= − .
2)	 When the device is stored so that the Y axis faces vertically downward
	 [ ]90 degΦ ϕ= + .

	 Since it is not possible to know in advance the direction of the Y axis when standing straight, 
motion recognition is performed by using φ instead of by calculating Φ. 
	 θ corresponds to the angle of a person’s turn around the Z axis, i.e., the vertical axis. ψ 
corresponds to the angle of rotation of the device around the Y axis or Z axis in the device 
coordinate system. In this paper, we assume the variance of ψ during a person’s movement is 
negligible in accordance with the results of our preliminary experiments and that ψ is constant. 
	 Currently, this approach has some limitations in terms of the range of applicable cases. 
There can be cases where the device is not stored in the clothes, i.e., a person holds the device or 
it is stored in a bag. In these cases, neither Eq. (2) nor (3) can be solved. Also, when the device 
is stored in places other than a front pocket of the pants, such as a back pocket of the pants or 
a shirt pocket, this scheme cannot detect the movement of the thigh. These cases are currently 
beyond the scope of this paper, and we aim to extend the range of applicable cases in the future.
	 Another issue is the effect of sensor errors on performance. When a rotation vector sensor 
value contains error either in the rotation angle or the rotation axis or both, it could affect 
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recognition accuracies since the performance of the proposed scheme relies on the accuracies of φ, 
ψ, and θ obtained by Eqs. (2) and (3). Furthermore, in the case that errors are large, it is possible 
that the quaternion representing a sensor value cannot be decomposed using the equations, 
which means a failure of pose estimation. To cope with this problem, we must analyze the 
distribution of errors included in φ, ψ, and θ given the largest amount of error in the sensor 
value, and then calculate the probability distribution of recognition accuracy with the given 
distribution of errors. Such studies are the topics of our future work.

4.	 Proposed Method

	 Using the principles mentioned in Sect. 3, we present a scheme for detecting each motion 
state from the time sequence of the thigh angle and the acceleration value assuming a person 
puts the smartphone in a front pocket of the pants.

4.1	 Overview of detection sequence

	 This scheme employs three types of sensors for recognition: a rotation vector sensor, an 
acceleration sensor, and a barometer. Motion recognition consists of the following sequence.
	 Procedure 1) Step detection using acceleration sensor
	 Procedure 2) Segmentation of rotation vector sensor data every two steps
	 Procedure 3) Recognition of walking and running on one floor
	 Procedure 4) Recognition of motion states for all segmented data

4.2	 Step detection and segmenting sequence of rotation vector sensor values

	 For a sequence of rotation vector sensor data obtained over the entire evacuation time period, 
a time sequence of φ is obtained using Eqs. (2) or (3). Then, it is segmented every two steps by 
using step detection, whose time length is called a motion in this paper, 
	 Step detection only using a smartphone has been extensively studied,(14–17) and previous 
methods can basically be applied in the proposed scheme. These methods have additional 
capabilities besides simply detecting step counts in normal movements; detecting steps when 
walking while swinging the hand holding the smartphone,(14,17) detecting both step length 
and step counts,(15,17) coping with falsely detected walking states where the user rocks the 
smartphone while stopping.(16) Consequently, these algorithms are too complex to be used for 
our purpose because, for example, motion state recognition is incorporated within them, or they 
require both acceleration sensor and gyrosensor values, or the algorithms are based on machine 
learning. Since we mainly aim to evaluate the principles of the proposed scheme presented in 
Sect. 3, a simple algorithm is sufficient and has benefits in terms of implementation. As another 
approach, we tested a step counter embedded in a smartphone. However, its accuracy was low 
in the model used in our experiment (Nexus 6) and was not acceptable. For these reasons, we 
adopted a simple step count algorithm based on the detection of the peak acceleration sensor 
value for reducing implementation complexity. 
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	 A smartphone acceleration sensor generally outputs sensor data represented in the device 
coordinate system. First, it is transformed into data represented in the world coordinate system 
to enable analysis of the data independent of the device pose. We denote acceleration sensor data 
represented in the device coordinates as ( ),  , t

dev dev dev deva x y z=


 and denote transformed data 

represented in the world coordinates as ( ),  , t
enu enu enu enua x y z=


. We focus on zenu′ = zenu − g, the 
acceleration along the vertical axis minus gravitational acceleration, and perform the following 
step detection using this value.
1)	 Configure a threshold Astep and detect the time at which zenu′ becomes larger than Astep. 

Tentatively set the time as a step timing.
2)	 In a period of time later than the time detected in 1), find a sequence of data that begins 

at the time when zenu′ becomes smaller than Astep and ends at the time when zenu′ again 
becomes larger than Astep. The end time is set so that it is later by no less than the predefined 
time of ts from the time zenu′ becomes smaller than Astep. Set this end time as the tentative 
timing of the next step.

3)	 Between the two times detected in 1) and 2), find the time at which zenu′ reaches a maximum 
and set it as the exact timing of a step.

	 Figure 9 depicts an example of step detection and sequence segmentation in the motion state 
of walking. The orange line shows a sequence of zenu′, vertical acceleration minus gravitational 
acceleration, mentioned in Sect. 4.2. The time T(k) (k = 1, 2, ...), shown by the green broken 
lines, indicates the timing of the kth step detected by the above algorithm with Astep = 4.0 m/s2 
and ts = 0.25 s. The time period between T(k) and T(k + 2) (k = 1, 3, 5 ...) is defined as the ith 
motion, where i = [k/2] + 1. In the time period of each motion, the maximum value of zenu′ 
denoted by zmax, the time length of the period denoted by tmotion, φmax, and φmin are detected. 
	 Next, the scheme detects φstand, the value of φ at the moment the person is standing straight, 
in each motion. Although φstand should be either 90 or −90 deg depending on the device 
orientation in the pants, it often takes values that are largely different from these because there 
are cases where the legs of a person in motion do not become vertical, particularly on stairs. 
Subsequently, the scheme detects φstand by the following procedure. 

Fig. 9.	 (Color online) Example of sequence segmentation of φ.
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1)	 Set a tentative value of φstep, denoted by φtent. Find time t in the φ sequence of the motion 
such that φ(t) = φtent. Here, φtent is chosen so that there are no less than three different values 
of t satisfying this condition, and we represent these three values as t1, t2, and t3 in ascending 
order.

2)	 Find φstep by the following formula:

	 ( ) ( ){ }3 2 2 1arg min
tent

stand abs t t t t
ϕ

ϕ −= − −   .	 (4)

Then, Φvar-t and Φvar-b are calculated as Φvar-t = φmax − φmin and Φvar-b = φstand − φmin in 
accordance with the definitions in Sect. 3.

4.3	 Recognizing walking and running states in continuous horizontal movements

	 Before detecting motion states in horizontal movements, the proposed scheme finds the 
time periods during which the person moves continuously on the same floor using a sequence 
of atmospheric pressure data. It finds a period of time during which atmospheric pressure 
values are stable, i.e., do not change by more than the predetermined Pth-fl for TFL, where 
TFL > (2 × TRT).
	 TRT is set as slightly larger than the maximum time lag of typical smartphone barometers. 
This period of time is used to judge whether the person walked on the same floor for the time 
duration of TFL − (2 × TRT). The reason why 2 is multiplied with TRT is to provide a margin and 
avoid using sensor values obtained during the time lag. Since the raw atmospheric sensor data 
include small spontaneous fluctuations even when moving on the same floor, we first apply a 
moving-average filter of a 2 s window to the raw data before applying this detection method.
	 Next, for each motion (time period of two steps), the scheme detects whether the person is 
walking or running on the basis of Φvar-t and tmotion compared with predetermined thresholds 
Φvthresh and tmthresh. To define Φvthresh and tmthresh, the scheme requires datasets of Φvar-t and 
tmotion for walking and running on the same floor collected in advance by a small number of 
people. In this study, we collected such data from four persons for this objective. Using the 
datasets, the scheme determines that the person is walking if Φvar-t < Φvthresh or tmotion > tmthresh; 
otherwise the person is running.
	 After recognizing the motion states on the same floor, the scheme obtains a distribution of 
the following data for the time periods during which the person is recognized to be walking: 
Φvar-t, Φvar-b, Φmin, tmotion, and zmax. They are used as reference values to detect the other 
motion states, as described in the next subsection. These distributions are denoted by v̂ar tΦ −  (walk), 

v̂ar bΦ −  (walk), ( )m̂in walkΦ  (walk), ( )m̂otiont walk (walk), and ( ) ,ˆmaxz walk (walk), respectively.

4.4	 Recognizing motion states for all motions except continuous horizontal movements

	 By the procedure described in Sect. 4.3, the motion states for motions other than those on the 
same floor are recognized in accordance with the flowchart shown in Fig. 7. Here, P90 and P10 
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mean the 90th percentile and the 10th percentile of each distribution, respectively. Comparisons 
and conditions provided in this flowchart basically follow the observations on human motions 
described in Sects. 3.1 and 3.2.
	 For this scheme, the only training data that must be prepared in advance are time sequences 
of φ and acceleration values for the walking and running states on the same floor. This is a 
major benefit of this scheme.
	 On the other hand, a movement that is not continuous such as a single step walk is not 
detected by the proposed scheme since sensor data segmentation is performed with a unit of two 
steps. We believe this is not a serious issue and it is not associated with the barometer time lag 
problem stated in Sect. 2.1. 

5.	 Performance Evaluation

5.1	 Configuration

	 We performed evaluation experiments in the research building and the classroom building 
in Toyosu Campus of Shibaura Institute of Technology. The research building has 14 stories 
with two emergency staircases and the classroom building has seven stories with two normal 
staircases. These buildings are connected on each floor. The participants of the experiment 
started in the corridor on the 12th floor of the research building and moved in the following 
sequence. 
	 The route map of the movement is illustrated in Fig. 11. The numbers in brackets in the 
figure correspond to those in the following descriptions.

Fig. 10.	 Flowchart of motion state recognition except for movements on same floor.
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1)	 Run to the stairs on the same floor (1) and run downstairs to the 9th floor (2). Then walk 
downstairs to the 6th floor (3). The stairs include multiple landings.

2)	 Leave the stairs and walk to stairs in the classroom building on the same floor (4). 
3)	 Run down the stairs to the 4th floor (5) and then walk down to the second floor (6). Walk on 

this floor for approximately 20 steps (7). Finally, walk up to the 4th floor (8).
	 There were 10 participants. They include four persons for which data of Φ were collected for 
walking and running in advance to determine Φvthresh and tmthresh by the process described in 
Sect. 4.3. A Nexus 6 smartphone was stored in the front left pocket of the pants throughout the 
experiment so that the Y axis in the device coordinate system faced vertically upward and the 
screen faced forward when standing straight. 
	 The parameters of the scheme are configured as listed in Table 1. The sampling rate of 
sensors was set to 200 Hz.

5.2	 Results for recognition accuracy

	 Table 2 shows the recognition accuracy of each motion state. The value in each cell is 
calculated as the number of times the motion state was correctly recognized divided by the 
number of true motion states indicated in the same row. Thus, the values in the cells marked in 
yellow are the recall rates of true motion states.
	 The recall rates of walk downstairs and run downstairs are below 70%. As recognition 
errors, walk downstairs is often recognized as run downstairs and vice versa. When we focus 
on solving problems caused by the barometer time lag such as described in Sect. 2.1, it would 
be sufficient to distinguish go downstairs from horizontal movement regardless of whether it 
is walk downstairs or run downstairs. In this viewpoint, it would be possible to consider the 
results in the light orange cells as correct recognition and the recall rates would exceed 80% for 
all motion states.
	 Table 3 shows F values of results in each motion state. Furthermore, as with Table 2, Table 4 
shows F values where walk downstairs and run downstairs are considered to be the same 
motion state of go downstairs. In Table 4, the F value is minimum in the run state, 0.78, while it 
exceeds 0.8 in other motion states.

Fig. 11.	 (Color online) The route map of the movement in the experiments.
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	 Figure 12 shows the range of Φvar-t in each motion state for all participants as a box-whisker 
plot, together with ( )kˆ walvar tΦ −  (walk). The box of ( )kˆ walvar tΦ −  (walk) is lower than that for the states of 
running and walking upstairs, which means that it acts as a key metric for detecting these two 
motion states. Also, Fig. 13 shows Φmin in each motion state together with ( )kˆ walminΦ  (walk) for all 
participants. These results show that ( )kˆ walminΦ  (walk) is an effective metric for detecting running 
downstairs and walking downstairs and distinguishes them from the walking state. 
	 Table 5 shows the recall rate for each participant. The scheme gives a high recall rate for 
most of the participants, although the accuracy is very low in some motion states for participant 
No. 8. This is partly related to the results in Table 6, which shows the recognition accuracy of 
walking and running on floors obtained with procedures described in Sect. 4.3. The accuracy 

Table 4
F values when walk downstairs and run downstairs 
are considered to be the same motion state of go 
downstairs.

Walk Run Go 
downstairs

Walk 
upstairs

0.836 0.775 0.889 0.859

Table 2
(Color online) Recall rate for each motion state.

Ground truth 

Walk Run Walk
 downstairs

Run
 downstairs

Walk 
upstairs

Estimation 
results

Walk 82.0 (%)
(1337/1630)

6.8 (%)
(37/544)

8.0 (%)
(91/1140)

7.8 (%)
(61/784)

3.7 (%)
(43/1166)

Run 3.9 (%)
(64/1630)

89.5 (%)
(487/544)

0.1 (%)
(1/1140)

6.8 (%)
(53/784)

9.2 (%)
(107/1166)

Go 
downstairs

Walk 
downstairs

6.1 (%)
(99/1630)

0.4 (%)
(2/544)

67.5 (%)
(769/1140)

22.1 (%)
(173/784)

1.5 (%)
(18/1166)

Run 
downstairs

2.0 (%)
(33/1630)

1.5 (%)
(8/544)

22.4 (%)
(255/1140)

59.9 (%)
(470/784)

0.1 (%)
(1/1166)

Walk 
upstairs

6.0 (%)
(97/1630)

1.8 (%)
(10/544)

2.1 (%)
(24/1140)

3.4 (%)
(27/784)

85.5 (%)
(997/1166)

Table 1
Parameter configuration.
Symbol Value Meaning
Astep 4.0 m/s2 Threshold of accelerator value to detect peak
ts 0.25 s Threshold of minimum time difference between a step and the next step
TRT 4 s Presumed maximum time lag of barometers
Pth-fl 0.03 hPa Threshold of barometer value fluctuation to detect horizontal movement
Φvthresh 50 deg Threshold of angle of thigh difference to recognize walking and running in horizonal movement
tmthresh 0.9 s Threshold of time length of a motion to recognize walking and running in horizonal movement

Table 3
F-values. 

Walk Run Walk 
downstairs

Run 
downstairs

Walk 
upstairs

0.836 0.775 0.699 0.606 0.859



Sensors and Materials, Vol. 33, No. 1 (2021)	 105

Fig. 12.	 (Color online) Distributions of Φvar-t and 
( )kˆ walvar tΦ −  (walk) for all participants.

Fig. 13.	 (Color online) Distributions of Φmin and ( )kˆ walminΦ
(walk) for all participants.

Table 6
Recall rate of walking and running states on the same floor in the recognition procedure.

Participant No.
1 2 3 4 5 6 7 8 9 10

95% 
(63/66)

98%
(78/80)

94%
(49/52)

98%
(92/94)

98%
(44/45)

98%
(60/61)

81%
(56/69)

87%
(41/47)

99%
(66/67)

100%
(50/50)

Table 5
Recall rate for each participant.

Recall rate for a participant (%)

Walk Run Walk
 downstairs

Run
 downstairs

Walk 
upstairs

Participant 
No.

1 88.5 91.2 76.7 62.0 89.2
2 77.6 93.9 93.5 61.8 62.5
3 80.4 89.8 92.9 52.9 82.2
4 95.0 72.3 14.1 67.1 76.9
5 84.3 91.5 92.1 86.2 91.2
6 78.0 100.0 16.1 86.9 82.5
7 80.2 82.0 61.5 89.0 93.8
8 62.9 83.0 63.0 51.0 88.8
9 84.6 95.4 92.7 2.7 94.2

10 79.3 93.0 90.0 38.9 84.7

is relatively low for participants No. 7 and No. 8. The recognition accuracy when moving on 
the same floor varies among the participants, which affects ( )ˆ walkΦ  (walk) and leads to variation of 
the recognition accuracy among the participants for other motion states. Thus, improving the 
recognition accuracy for motion on the same floor for some of the participants will be a key 
issue in improving the performance of the proposed scheme.
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6.	 Discussion

	 In this section, we describe effect of errors. First, we consider what will happen when a 
person’s movement does not correspond to any motion state that the proposed scheme can 
recognize. Among the motions seen in evacuation and evaluated in Ref. 1, let us take walking 
backward and sidestepping as examples. Regarding walking backward, assuming that step 
detection correctly detects steps, the scheme will recognize the movement as walk since the 
patten of leg swing in two steps resembles that of walking forward. This error will be solved 
by improving the recognition algorithm so that it detects whether Φ reaches Φmax or Φmin when 
vertical acceleration zenu′ reaches zmax in a period of two steps, hence distinguishing walking 
forward from walking backward on this basis of this result. Regarding sidestepping, the first 
issue is that the step detection adopted in the proposed scheme and described in Sect. 4.2 does 
not correspond to sidesteps. This error will be solved by introducing sidestep detection schemes 
reported in the past literature such as Ref. 18. The second issue is that a thigh swing that occurs 
when a person sidesteps causes device rotation around an axis directed from the back to the 
front of the body. Using Eq. (2), the angle of this rotation is obtained from a change of ψ, not φ. 
Thus, it is necessary to develop additional algorithms to recognize sidestepping (walk or run) 
using a time sequence of ψ by the analysis of movement patterns, similar to that described in 
Sect. 3.1.

7.	 Conclusions

	 We presented a scheme to detect five motion states of a person, including movement up and 
down stairs, in an indoor environment at every two steps using the angle of the thigh and the 
acceleration with only training data obtained from walking and running on the same floor in 
advance. The evaluation by experiments showed that the proposed scheme achieves an F-value 
of recognition of over 0.8 for motion states other than running, for which the F-value is 0.78. 
Owing to its satisfactory performance, we believe that the scheme will be useful for achieving 
our initial objective of avoiding the time lag problem in recognition using only a barometer.
	 For future work, we plan to investigate the relationship between data for walking and 
running on the same floor and those on stairs for each person, and explore the possibility 
of using different types of recognition algorithm in accordance with the characteristics of a 
person’s movement to reduce the variation in recognition accuracy among persons.
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