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	 We propose a novel fuzzy control strategy for hybrid electric vehicles (HEVs) based on the 
feature selection genetic algorithm of multivariate data, which greatly shortens the selection 
time of the optimal parameters of the traditional genetic algorithm. Firstly, we take the fuel 
consumption and emission of an HEV as the optimization index, and develop a novel fuzzy 
control method considering parameters of the fuzzy controller with high correlation with the 
objective function, in which the membership function parameter is optimized by the feature 
selection genetic algorithm. Finally, the performances of the fuzzy control strategy for an HEV 
and the novel fuzzy control strategy optimized by the feature selection genetic algorithm under 
the New European Driving Cycle (NEDC) and Urban Dynamometer Driving Schedule (UDDS) 
cycle conditions are analyzed and compared. The results show that the proposed fuzzy control 
can greatly improve the fuel economy and reduce the emission of HEVs.

1.	 Introduction

	 In recent years, with the energy crisis becoming increasingly severe, hybrid electric vehicles 
(HEVs) with high efficiency, low energy use, and low emissions have been an important 
technology toward solving the energy crisis and reducing environmental pollution. Achieving 
the balance of emissions and driving range has become a bottleneck restricting the further 
development of HEVs.
	 Many scholars and research institutions have carried out considerable research on 
optimization algorithms for the emissions and driving range of HEVs.(1–6) Among them, various 
intelligent algorithms are the most prominent, such as fuzzy control algorithms. Fuzzy control 
is rule-based control, which directly uses language-based control rules. A fuzzy control system 
has strong robustness, and the influence of disturbances and parameter changes on the control 
effect is greatly weakened. It is especially suitable for the control of nonlinear, time-varying, 
and time-delay systems.
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	 However, fuzzy controllers are more mature and popular, and there are many methods of 
parameter optimization.(7–10) For example, a trial and error method with repeated design and 
debugging can be used to find a more reasonable solution to specific problems. However, a trial 
and error method cannot guarantee the selection of the most appropriate parameter values, and 
the data extraction time is long. Yi et al.(11) proposed a method of automatic design of fuzzy 
controllers, and optimized the parameters of a fuzzy controller with a genetic algorithm of 
multigroup coevolution. Lucio et al.(12) used a genetic algorithm to realize the nondifferentiable 
and highly nonlinear optimization of fuzzy controller parameters. This algorithm searched 
for all the solutions in the feasible solution space without gradient information of the objective 
function, without falling into the trap of a local minimum value or the dead cycle phenomenon. 
A genetic algorithm is a global optimization algorithm,(13) which is suitable for the parameter 
optimization of an HEV fuzzy controller.
	 However, there are some problems to be solved when the traditional genetic algorithm 
is used to optimize a fuzzy controller. When the traditional genetic algorithm is used to 
optimize the fuzzy control rules and membership function of a fuzzy controller, because there 
are many parameters to be optimized, including the number of fuzzy rules, the structure of 
the fuzzy rules, and the shape and division of the membership function, the structure of the 
gene string becomes more complex and the size of the initialization population is increased 
when coding the parameters to be optimized.(14) The main reason for this is that many of the 
parameters to be optimized in a fuzzy controller are not closely related to the objective function 
to be calculated, and most of them have a low correlation with the objective function to be 
optimized.(15) Therefore, it is suggested that an improved fuzzy control algorithm based on 
the genetic algorithm can be applied to the design of an HEV control algorithm to reduce the 
strong nonlinearity of the system, eliminate dead cycles, and effectively improve the accuracy 
of vehicle dynamic control.
	 We have developed a novel fuzzy control method considering the parameters of a fuzzy 
controller with high correlation with the objective function, in which the membership function 
parameter is optimized by the feature selection genetic algorithm. A genetic algorithm based 
on the feature selection of multivariate data is proposed. The proposed algorithm first evaluates 
the features of the dimension, adjusts the weight of each feature according to the difference 
between similar nearest neighbors and dissimilar nearest neighbors of multivariate data, and 
guides the search of the genetic algorithm on the basis of the feature weight, so as to improve 
the search ability of the proposed algorithm and the accuracy of the obtained features. Then, the 
fitness (or objective) function of features is calculated by combining the feature weights, and 
the fitness is used as the evaluation index to start the genetic algorithm. The optimal feature 
subset is obtained, and the efficient and accurate feature selection of multivariate data is finally 
realized. Compared with the traditional algorithm,(11–15) the proposed algorithm greatly shortens 
the selection time.
	 In this paper, the novel fuzzy control strategy based on the feature selection genetic 
algorithm is applied to the design of an HEV energy management control algorithm. The 
structure of the paper is as follows. The genetic fuzzy optimization method based on feature 
selection is developed in Sect. 2. Section 3 focuses on the experimental parameter setting. 
Experimental results are presented in Sect. 4. Finally, the conclusions are given in Sect. 5.
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2.	 Genetic Fuzzy Optimization Method Based on Feature Selection

	 The genetic fuzzy control algorithm based on feature selection combines the genetic 
algorithm based on feature selection with the fuzzy control system,(16) optimizes the fuzzy 
control strategy, and applies the optimization results to the actual control process. In this paper, 
the feature selection genetic algorithm is used to optimize the membership function parameter.

2.1	 Design of genetic algorithm based on feature selection

	 The flow of the genetic algorithm based on feature selection is shown in Fig. 1. From Fig. 1, 
it can be seen that the optimization process based on the feature selection genetic algorithm of 
multivariate data is a typical iterative process. The basic steps are as follows:

Fig. 1.	 (Color online) Flow chart of genetic algorithm based on feature selection of multivariate data.
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(1)	The m file (the text file used to save a MATLAB source program) of fuzzy controller 
parameters is selected by using the characteristics compiled by MATLAB software, and the 
parameters to be optimized are optimized.

(2)	In accordance with the coding strategy, the initial population is randomly generated.
(3)	The individual strings in the population are encoded and decoded, and the minimum value of 

the objective function, namely, the fitness function, is calculated to evaluate the population 
and ensure the orientation of the population.

(4)	The genetic strategy and genetic operator are determined, including the population size, 
selection, crossover and mutation methods, and the genetic operation parameters such as 
crossover probability and mutation probability.

(5)	It is judged whether the population performance meets the optimization index or the 
maximum number of iterations has been reached. If these conditions are not satisfied, the 
algorithm returns to step (3).

	 Compared with the traditional genetic algorithm, the genetic algorithm based on feature 
selection adds a process of feature selection optimization. In addition, the basic process of the 
genetic algorithm based on feature selection is essentially the same as that of the traditional 
genetic algorithm. The parameters of the problem to be solved are encoded to form the initial 
population, and the individuals in the population are selected, crossed, and changed. According 
to the adaptability of individuals to the environment, the process of survival of the fittest is 
realized. From the perspective of optimization of the search, the genetic operation can optimize 
the solution of the problem from generation to generation until the maximum number of 
iterations is reached, and the best parameters for the optimization problem can be found.
	 In summary, to solve the problem that the feature dimension is too high in feature-based 
vehicle sensor information filtering of HEVs, which affects the classification and filtering, a 
genetic algorithm is used for feature selection, the optimal solution is searched for by genetic 
operations, and the genetic operator is dynamically adjusted according to the population 
evolution. In order to take into account the operational efficiency and classification accuracy, 
feature selection is needed, which involves selecting some of the most effective data from a 
group of vehicle sensor data (using multivariate data analysis) with the greatest impact on the 
final objective function to form an optimal feature.
	 In this paper, the optimal parameter of feature selection, i.e., the supercapacitor power 
distribution factor Kuc, is selected. In the fuzzy controller, Kuc is determined by the output 
membership function gaussian {x, c, σ}. The Gauss-type membership function in Eq. (1) needs 
the two parameters, c and σ, to be determined together,

	 { }
21

2, ,
x c

gaussian x c e σσ
− −  

 = ,	 (1)

where parameter c determines the position of the Gaussian function and σ affects the coverage 
area of the fuzzy subset. By adjusting the values of c and σ, the membership function of the 
fuzzy controller is optimized and the final output of the fuzzy controller is determined.
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	 The genetic algorithm based on feature selection cannot directly deal with the parameters 
of the membership function, so it is necessary to transform the parameters of the membership 
function into chromosomes composed of gene strings in the genetic space by coding. If a string 
is used to represent a membership function parameter on the corresponding domain, and these 
strings are connected in an appropriate form, the membership function of each fuzzy subset on 
the domain can be represented.(17) In order to solve the problem of coding membership function 
parameters, we should first find a suitable coding method for a single membership function 
parameter. The specific coding method is as follows.
	 Suppose that the range of the supercapacitor power distribution factor Kuc to be optimized is

	 Kuc_min ≤ Kuc ≤ Kuc_max.	 (2)

	 Kuc is represented by n-bit binary number b, then b can be determined by the following 
formula. In this paper, we string all binary numbers of parameters to be optimized into a binary 
string and set n = 7. 

	
_

_ _
(2 1) uc uc min

uc max uc min

nb
K K

K K
−

−
= − 	 (3)

	 The optimization effect of the genetic algorithm based on feature selection is closely related 
to the selection of the objective function, and the fitness function in the genetic process can be 
set as the objective function of the HEV. In this paper, the fuel consumption and emission values 
of the HEV are selected as the objective function, and the objective function is established and 
optimized by varying the weight ratio. The specific objective function is

	
 min ( ) ( ), ( ), ( ), ( ), ( )

s.t. ( ) 0, 1,2, ...,

eng x
X

j

J X Fuel X FCR X CO X HC X NO X

g X j J
∈Ω

 =  

≥ =
,	 (4)

where J(X) is the control objective function of the HEV; gj(X) ≥ 0, j = 1, 2, ..., J is a set of 
nonlinear inequality constraints including the dynamic performance indicators of HEVs. X is 
the set of parameters to be optimized for practical problems; Ω is the feasible solution space; 
Fueleng(X) is the fuel consumption of the internal combustion engine; FCR(X) is the equivalent 
fuel value converted from the electric energy of the lithium ion battery and the supercapacitor 
unit; CO(X), HC(X), and NOx(X) are the emission values of CO, HC, and NOx, respectively.
	 For the analysis of the fuel consumption of HEVs, in addition to the calculation of the fuel 
consumption of the internal combustion engine, the electric energy consumed by the lithium ion 
battery and the supercapacitor unit should also be converted to its equivalent fuel value FCR. 
The calculation equation is
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	 ( ) 210b u rbF F
FCR

l
+ −−

= × ,	 (5)

where FCR is the equivalent fuel value converted from the electric energy of the lithium 
ion battery and the supercapacitor unit; F(b+u) is the equivalent fuel value of the total energy 
consumed by the lithium ion battery and the supercapacitor unit; Frb is the equivalent fuel 
value of the total energy recovered by the lithium ion battery and the supercapacitor unit during 
regenerative braking; l is the driving distance of the HEV.
	 Fuel consumption and emission values interact with each other. The best emission index is 
likely to lead to reduced fuel economy. In the multiobjective optimization, to ensure the best 
fuel economy and emission performance of HEVs, the specific form of J(X) is
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where ωi is the weight of the fuel consumption and emission values of the HEV; Fueleng
* and 

FCR* are customized fuel consumption targets; CO*, HC*, and NOx
* are target emission values. 

In this paper, the federal emission regulations(18) are selected, and the target values and weights 
adopted are shown in Table 1.

3.	 Experimental Parameter Setting

	 The initial population is represented by a binary value, and the length of the coding string 
directly affects the optimization degree of the target value. In different cases, the selected 
encoding length L is different. When the membership function parameters are encoded by 
symbols, the coding method of the problem is used to determine the length L; when membership 
function parameters are encoded by floating-point numbers, the number of decisions determines 
the length L. In this paper, L = 112.
	 The size of the initial population M represents the number of parameters in the population 
to be optimized. When the number of parameters to be optimized is small, the operation 
speed of the genetic algorithm is improved but the diversity of the population is reduced; when 
there are many parameters in the population to be optimized, the difficulty of calculating the 

Table 1
Objective values and weights.

Objective value Weight
Fueleng

* 7.5 L/100 km 0.5
FCR* 4.3 L/100 km 0.2
CO* 1 g/km 0.1
HC* 0.1 g/km 0.1
NOx

* 0.08 g/km 0.1
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optimization process of the parameters to be optimized is increased, reducing the operation 
efficiency of the genetic algorithm. The population size M selected in this paper is 100.

3.1	 Design of genetic operators

	 Genetic operators include the selection operator, crossover operator, and mutation operator. 
For the selection operation, we adopt the roulette proportion selection strategy,(19) and the 
probability P(Xi) of the selected parameters to be optimized is

	
1

( ) ( ) / ( )
M

i i i
i

P X f X f X
=

= ∑ ,	 (7)

where M is the size of the population; f(Xi) is the fitness of the parameter to be optimized. Each 
feasible solution is proportional to its fitness. The larger the fitness value, the better the quality 
of the feasible solution.
	 After completing the design of the genetic operators, it is necessary to consider the setting 
of the number of termination iterations. When the genetic algorithm runs to the end of iteration 
T, it will stop running and select the optimal control parameters from the current population. 
Considering the complexity of the optimization process, we set the number of iterations before 
termination T to 50.

3.2	 Constraint conditions 

	 In order to optimize the fuel economy and emission of HEVs, the power performance index 
of HEVs and the constraints of lithium ion batteries and supercapacitor units must be qualified. 
The specific constraints are given in Table 2.
	 If only the power performance constraints of the HEV are considered in the calculation 
of the objective function, then the energy of the lithium ion battery and the supercapacitor is 
zero at the end of the whole cycle. Therefore, the state of change (SOC) values and the power 
and energy of the lithium ion battery and the supercapacitor must be restricted. In practical 
operation, the safety ranges of the lithium ion battery and supercapacitor SOCs are generally 
0.2–1 and 0.5–1, respectively.
	 In this paper, the difference between the lithium ion battery and supercapacitor SOCs at the 
beginning and end of the cycle is limited as follows.

Table 2
Constraints on power performance of HEVs.
Index name (unit) Value
0–97 km/h acceleration time t1 (s) 13.7
64–97 km/h acceleration time t2 (s) 7.2
Maximum gradient (%) 27
Maximum speed (km/h） 0.1
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	 Pbat_min ≤ Pbat ≤ Pbat_max	 (8)

	 Puc_min ≤ Puc ≤ Puc_max	 (9)

	 Ebat_min ≤ Ebat ≤ Ebat_max	 (10)

	 Euc_min ≤ Euc ≤ Euc_max	 (11)

Here, Pbat and Puc are the powers of the lithium ion battery and supercapacitor, and Ebat and Euc 
are the energies of the lithium ion battery and supercapacitor, respectively.

4.	 Experimental Results

	 In order to verify the effectiveness of the HEV fuzzy control strategy optimized by the 
feature selection genetic algorithm combined with the HEV simulation model under the 
New European Driving Cycle (NEDC) and Urban Dynamometer Driving Schedule (UDDS) 
cycle conditions, the off-line simulation method is used to solve the optimal fuzzy controller 
parameters. The optimized fuzzy controller based on the feature selection genetic algorithm 
is applied to the fuzzy control strategy of the HEV, and the results are compared with those of 
the non-optimized HEV. The simulation results of the vehicle fuzzy control strategy are also 
compared.

4.1	 Comparison of SOC between lithium ion battery and supercapacitor before and after 
optimization

	 Under the NEDC cycle condition, the changes in the SOC before and after optimization are 
shown in Fig. 2. In the figure, SOC_bat1 and SOC_uc1 are the pre-optimization curves and 

Fig. 2.	 (Color online) Comparison of SOC changes under NEDC driving cycle condition before and after 
optimization.
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SOC_bat2 and SOC_uc2 are the post-optimization curves. After optimization, the SOC_bat 
fluctuation of the lithium ion battery is small, the fluctuation of SOC_uc of the supercapacitor 
increases, and the effect of peak cutting and valley filling of the supercapacitor is strengthened.

4.2	 Fuel economy comparison of HEV before and after optimization

	 Figures 3 and 4 respectively show the optimized fuel consumption curve of the HEV before 
and after optimization under the NEDC cycle condition.
	 The unit of the ordinates in Figs. 3 and 4 is g/s. Integrating the curves gives the total fuel 
consumption of the whole cycle, and integrating the NEDC gives the cycle mileage. We divided 
the total fuel consumption obtained by the above integration by the total driving mileage, then 
converted it into the fuel consumption per 100 km. According to Figs. 3 and 4, under the NEDC 
cycle condition, the total fuel consumption of the vehicle is 6.253 L/100 km under the fuzzy 
control strategy optimized by the feature selection genetic algorithm. Compared with the fuzzy 
control strategy before optimization (6.856 L/100 km), the fuel consumption is reduced by 8.8%.
	 Figures 5 and 6 respectively show the optimized fuel consumption curve of the HEV before 
and after optimization under the UDDS cycle condition.

Fig. 3.	 (Color online) Fuel consumption curve before optimization under NEDC driving cycle condition.

Fig. 4.	 (Color online) Fuel consumption curve after optimization under NEDC driving cycle condition.
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Fig. 5.	 (Color online) Fuel consumption curve before optimization under UDDS driving cycle condition.

Fig. 6.	 (Color online) Fuel consumption curve after optimization under UDDS driving cycle condition.

	 From Figs. 5 and 6, it can be concluded that under the UDDS cycle condition, the fuel 
consumption of the whole vehicle is 6.624 L/100 km under the fuzzy control strategy optimized 
by the feature selection genetic algorithm. Compared with the fuzzy control strategy before 
optimization (7.320 L/100 km), the fuel consumption is reduced by 9.5%. The results show that 
the fuel economy of the HEV has been greatly improved compared with the original fuzzy 
control strategy, and the effectiveness of the improved fuzzy logic control strategy based on the 
feature selection genetic algorithm is verified.

4.3	 Emission comparison of HEVs before and after optimization

	 Figures 7 and 8 respectively show the emission curve of the HEV before and after 
optimization under the NEDC cycle condition. Figures 9 and 10 respectively show the emission 
curve of the HEV before and after optimization under the UDDS cycle condition. From Figs. 
7–10, the optimized emission curve of the HEV under the NEDC and UDDS cycle conditions 
was obtained. The specific emission value data is shown in Table 3.
	 It can be seen from Table 3 that under the NEDC cycle condition, the emission values of HC, 
CO, and NOx of the HEV optimized by the feature-based genetic algorithm are 0.244, 1.117, and 
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Fig. 7.	 (Color online) Emission curve before optimization under NEDC driving cycle condition.

Fig. 8.	 (Color online) Emission curve after optimization under NEDC driving cycle condition.

Fig. 9.	 (Color online) Emission curve before optimization under UDDS driving cycle condition.

Fig. 10.	 (Color online) Emission curve after optimization under UDDS driving cycle condition.
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Table 3
Emission values after fuzzy control optimization.
Driving cycle Emission values (g/km) Optimal emission values (g/km)

NEDC HC CO NOx HC CO NOx
0.286 1.329 0.123 0.244 1.117 0.101

UDDS HC CO NOx HC CO NOx
0.295 1.524 0.148 0.256 1.317 0.125

0.101 g, respectively. Compared with the optimized vehicle fuzzy control strategy, the emission 
values of HC, CO, and NOx are reduced by 14.7, 15.9, and 17.9%, respectively. Under the UDDS 
cycle condition, the emission values of HC, CO, and NOx of the HEV optimized by the feature 
selection genetic algorithm are 0.256, 1.317, and 0.125 g, respectively. Compared with the 
vehicle fuzzy control strategy before optimization, the emission values of HC, CO, and NOx are 
reduced by 13.2, 13.6, and 15.5%, respectively.

5.	 Conclusions

	 We proposed a novel fuzzy control strategy of HEVs based on the feature selection genetic 
algorithm, which greatly shortens the selection time of the optimization parameters of the 
traditional genetic algorithm. 
	 Firstly, feature selection based on the genetic algorithm of multivariate data was proposed. 
The proposed algorithm first evaluates the features of the dimension, adjusts the weight of each 
feature according to the difference between similar nearest neighbors and dissimilar nearest 
neighbors of multivariate data, and guides the search of the genetic algorithm based on the 
feature weight so as to improve the search ability of the proposed algorithm and the accuracy 
of the obtained features. Then, the fitness (or objective) function of the features is calculated by 
combining the feature weights, and the fitness is used as the evaluation index to start the genetic 
algorithm. 
	 Finally, the performances of the fuzzy control strategy of the HEV and the fuzzy control 
strategy optimized by the feature selection genetic algorithm under the NEDC and UDDS cycle 
conditions were analyzed and compared. The results show that the novel fuzzy control greatly 
improves the fuel economy of the HEV, reducing the emission values, causes the SOC of the 
lithium ion battery to fluctuate in a small range, and causes the SOC of the supercapacitor 
to fluctuate in a large range. The improved fuzzy control plays an enhanced role in the peak 
cutting and valley filling of the supercapacitor, ensures that the lithium ion battery basically 
works in a constant-current output mode, and optimizes the lithium separation. The discharging 
process of the sub-battery verifies the effectiveness of the optimized fuzzy control strategy and 
realizes the control function of the vehicle controller.
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