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	 After tumor detection in their breasts, women typically fear mastectomy; this affects 
curative care outcomes. Most tumors are benign. After resection and pathological examination, 
because of advances in medicine and treatment, the success rate of early breast cancer treatment 
can reach 60 to 90%. An accurate assessment of tumor extent is essential. In this study, a novel 
method of hyperparameter optimization of deep learning networks was proposed to classify 
tumors as malignant or benign. When setting hyperparameters in deep learning networks, most 
users use trial and error to determine them. In our experiments, the Taguchi method was used 
to select the impact factors. The orthogonal table design was used to conduct experiments. 
Then, the best combination of parameters was determined and significant impact factors were 
analyzed. The Breast Cancer Histopathological Database was used for analysis. This database 
was built in collaboration with the P&D Laboratory and contains 2480 benign and 5429 
malignant samples. The experimental results showed that the proposed method obtained a high 
accuracy of 83.19%.

1.	 Introduction

	 Breast cancer is the principal cause of death from cancers in women worldwide.(1) Early 
diagnosis can reduce breast cancer death rates and consequently improve the success rate of 
early breast cancer treatment to 90%.(2) Although histological image classification is critical 
in breast cancer diagnoses, the detection and categorization of abnormalities are difficult even 
for experienced pathologists.(3,4) Recently, machine learning techniques have been successfully 
used for handling classification in the medical field. Therefore, automatic detection and 
diagnosis of tumors through histological image processing and machine learning algorithms can 
increase the accuracy of breast cancer diagnosis.(5) Automated machine-learning-based tools 
will assist physicians in image analysis.(6) The diagnosis of medical images of breast cancer 
obtained by ultrasound by machine learning showed significantly better performance than that 
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of models trained on clinical features.(7) The complex processes of traditional machine learning 
algorithms, such as tedious preprocessing, segmentation, and manual feature extraction steps 
reduce their efficiency and accuracy.(8) To overcome these drawbacks of traditional machine 
learning techniques, deep learning networks have been used for efficient classification.(9) The 
present study focused on the application of deep learning networks for the classification of 
breast histopathology images.
	 Deep learning networks have multiple levels of abstraction, representation, and information, 
and have been successfully applied in various domains.(10–12) For example, convolutional neural 
networks (CNNs) based on the deep learning network architecture have been reported to be 
powerful tools for the automated classification of human cancer histopathology images.(13) 
Khosravi et al. designed several computational methods based on CNNs to effectively classify 
various histopathology images across different types.(14) Sabeena et al. used modified CNN-
based deep transfer learning for automatic mitosis detection in breast histopathology images.(15) 
In addition, a successful application of the CNN is the LeNet-5 system, which consists of two 
convolutional layers, two pooling layers, and a fully connected layer.(16) The following methods 
are used for the defect classification of benign tumor and malignant tumor features: single-
layer CNN,(17) rotation forest classifier and a parameter-free version of threshold adjacency 
statistics,(18) LeNet-5 stochastic gradient descent with momentum,(19) LeNet-5 adaptive moment 
estimation,(20) and LeNet-5 root mean square propagation.(21) Although traditional methods are 
capable of segmenting and detecting breast tumors using the Breast Cancer Histopathological 
Database (BreakHis), classification accuracy is limited.(22) To improve the accuracy of mitosis 
detection in breast histopathology images, we propose a hyperparameter-optimized CNN 
approach based on deep learning networks.
	 However, the training of a CNN based on deep learning networks typically requires 
a large amount of data to optimize the large number of network parameters, such as the 
number of filters, convolution kernel size, and number of output feature maps.(23) Therefore, 
hyperparameter optimization in deep learning models is effective for prototype selection and 
classifier selection, and it has been widely used for the optimization of general machine learning 
models.(24) Although several methods have been proposed for hyperparameter optimization, the 
Taguchi method is a unique experimental statistical design, which provides a reliable design 
solution, improves quality, and reduces costs because it allows optimization with the minimum 
number of experiments.(25) The Taguchi method is a statistical approach for optimizing process 
parameters by using an orthogonal array consisting of factors and levels to classify the results.(26) 
Debnath et al. applied the Taguchi method for network optimization in deep learning networks. 
They achieved superior classification using hyperparameter optimization to speed up training.(27) 
In this study, to develop deep learning networks, we presented a simple and efficient framework 
for the classification of breast histopathology images by using hyperparameter optimization 
with the Taguchi method.
	 The objective of this study was to use hyperparameter optimization of deep learning 
networks for the classification of breast histopathology images. The major contributions of the 
study are as follows: (1) obtaining the best combination, such as the convolution kernel size, 
number of filters, stride, and padding of hyperparameters by the Taguchi method; (2) adjusting 



Sensors and Materials, Vol. 33, No. 1 (2021)	 317

the hyperparameters in the network architecture to reduce the number of experiments compared 
with the traditional manual adjustment of hyperparameters; and (3) by analyzing the importance 
of each impact factor, the hyperparameters in CNN can be effectively optimized.
	 This study is organized as follows. Section 2 presents hyperparameter optimization methods 
for deep learning networks. Section 3 discusses the experimental results and data analysis. The 
final section presents conclusions and future studies. 

2.	 Materials and Methods

	 The purpose of this study was to optimize the hyperparameters of a CNN. On the basis of 
deep learning networks, we obtained the best hyperparameter combinations by performing 
experiments with the Taguchi method. In these experiments, BreakHis was used to improve 
the network performance. First, the experimental factors were set for many hyperparameters 
and the variation level of each factor was determined. The orthogonal arrays required for the 
experiment were designed. The results can be used to calculate the signal-to-noise (S/N) ratio, 
and the contribution of each factor can be analyzed through the variance to obtain the best 
hyperparameter combination for the network.

2.1	 Deep learning networks

	 This section introduces the architecture and hyperparameters of the deep learning networks, 
which contain selectable factors. We performed experiments based on the LeNet network 
structure. Figure 1 depicts the proposed deep learning network architecture, including an 
input, three-layer convolutional layer, two-layer pooling layer, fully connected layer, and final 
classification.
(a)	Input image size: The input image size in this study was 50 × 50 instead of 32 × 32 (original 

LeNet). To select hyperparameters of convolutional layers as experimental factors, more 
levels can be added so that the final output feature image is not less than 0.

(b)	Convolutional layers: The proposed network architecture contained three convolutional 
layers. The selected hyperparameters included convolution kernel size, number of filters, 
stride, and padding. The convolution kernel size affects the fineness of feature extraction, 
and the number of filters is related to the number of feature maps. Too many filters may 

Fig. 1.	 (Color online) Proposed deep learning network architecture.
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affect the training time. The stride is the step of the convolution kernel, which increases 
each time the feature is captured. The increase makes the extracted feature map smaller, and 
the calculation complexity also decreases. The padding was set to 0 for each input image 
periphery, which is used to increase the size of the feature map. The remaining layer changes 
the convolution kernel to 1 × 1 to reduce the dimension. After testing, the kernel does not 
significantly affect the network performance, and it is connected to the last fully connected 
layer.

(c)	Pooling layers: By referring to the LeNet network architecture, two pooling layers were 
inserted between the three convolutional layers. The hyperparameters of the pooling layer 
were not adjusted, and its size of 2 × 2 was maintained.

(d)	Activation function: After each convolutional layer, the ReLU activation function was added, 
which can ensure efficient gradient descent.

2.2	 Hyperparameter optimization using the Taguchi method

	 The Taguchi method is an engineering method that was introduced by Dr. Kazuhiro 
Taguchi. In this method, statistics are used to perform experiments and data analysis. The 
Taguchi method is used to design orthogonal arrays to reduce the number of experiments and 
observe the degree of variation among experiments. Variance analysis is used to determine the 
importance of factors, optimize quality, and reduce costs. Figure 2 depicts the experimental 
procedure of the Taguchi method.

Fig. 2.	 Flowchart of the Taguchi method experiment.
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(a)	Quality characteristics and factor selection
	 The orthogonal arrays in the standard Taguchi method are predefined according to the 
number of control factors and levels. Therefore, the quality characteristics are evaluated through 
experiments performed according to the defined orthogonal arrays. In this experiment, we 
defined the quality characteristics as the performance of the hyperparameters of the CNN based 
on deep learning networks and we calculated the S/N ratio for each experiment from multiple 
observations. The S/N ratio of the experimental results indicates the robustness of the network 
performance. In this experiment, the S/N ratio for the case of “larger is better” was evaluated as 
follows:

	 S/N = −10log 2
1

1 1S / N 10log
n

i i
db

n y=

 
= −   

 
∑ ,	 (1)

where n is the number of observations, yi is the efficiency of the ith observation, and the unit of 
the S/N ratio is the db value.
	 As presented in Table 1, Levels 2 and 3 were the levels of the experiment, A–D were the 
hyperparameters of the first convolution layer, and E–H were the hyperparameters of the second 
convolution layer. The original hyperparameters in LeNet were the 5 × 5 convolution kernel, 
which was amplified to 7 × 7 or reduced to 3 × 3 in the table because we wanted to determine if 
the recognition rates increase for large- or small-feature extraction. The stride and padding were 
increased to 2 and 1, respectively, to avoid an output image smaller than zero. After the first 
convolution layer, the output feature image was reduced, and some features were lost. Therefore, 
we increased the number of filters in the second convolutional layer and retained more features 
to increase the classification performance.
(b)	Design of the orthogonal array
	 After the control factors and levels were determined, the orthogonal array was designed 
according to the results of Table 1. First, we calculated the minimum number of experiments 
and selected the orthogonal array applicable to the experiment by comparing the total number of 
columns in the orthogonal array (see Table 2) and determined the number of experiments. The 
minimum number of experiments is the total degrees of freedom (DoF) plus one, as described 
in Eq. (2) and shown in Table 3. After the orthogonal array required for the experiment is 
selected, the orthogonal array is set according to the selected factors and levels.

Table 1
Levels of control factors.
No. Factors 1 2 3
A Conv1_Kernel size 3 5 7
B Conv1_Filter 4 6 12
C Conv1_Stride 1 2
D Conv1_padding 0 1
E Conv2_Kernel size 3 5 7
F Conv2_Filter 8 16 32
G Conv2_Stride 1 2
H Conv2_padding 0 1
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	 Minimum number of experiments = Total DoF + 1	 (2)

3.	 Experimental Results

	 The first subsection introduces the BreakHis data set, which is used in the CNN based on 
deep learning networks to classify benign and malignant tumors and determine the optimal 
hyperparameter combination using the Taguchi method. In the second section, the experimental 
results obtained using the orthogonal array and the factor significance analysis are presented.

3.1	 Data set

	 BreakHis was established by the Federal University of Parana (UFPR) and Pathological 
Anatomy and Cytopathology (P&D) Laboratory.(28) The data set is composed of 7909 
histopathological images with different magnifications of breast tumors taken from 82 patients, 
as presented in Table 4 and Fig. 3. The samples were collected through surgical open biopsy, 
namely, partial mastectomy or excisional biopsy, performed at a hospital with the patient under 
general anesthesia. Compared with needle aspiration cytology methods, this type of procedure 
can remove large tissue samples. The data set consisted of 2480 and 5429 images of benign and 
malignant tumors, respectively, with 700 × 460 pixels. The images were three-channel RGB 
images with 8-bit depth in each channel and were in PNG format. Images were divided into 
two main groups, those of benign tumors and malignant tumors. Histologically benign is a term 

Table 2
Calculation of DoF of each factor.

Orthogonal 
array Experiments Columns

Maximum 
number of rows 
at these levels

2 3 4 5
L4 4 3 3
L8 8 7 7
L9 9 4 4
L12 12 11 11
L16 16 15 15
L’16 16 5 5
L18 18 8 1 7
L25 25 6 3
L27 27 13 13
L32 32 31 31
L’32 32 10 1 9
L36 36 23 11 12
L’36 36 16 3 13
L50 50 12 1 11
L54 54 26 1 25
L64 64 63 63
L’64 64 21 21
L81 81 40 40

Table 3
Calculation of DoF of each factor.
No. Number of Levels DoF
A 3 2
B 3 2
C 2 1
D 2 1
E 3 2
F 3 2
G 2 1
H 2 1
Total 12
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referring to a lesion that does not satisfy any criterion of malignancy, such as mitosis, marked 
cellular atypia, basement membrane disruption, and metastasis. Malignant tumors represent the 
occurrence of cancer, and the lesion can invade and spread to distant sites and cause death.

3.2	 Experimental results and analysis

	 The minimum number of experiments was 13. With reference to Table 3, we selected the 
orthogonal array more than 16 times. This experiment adopted a mixture of levels of 2 and 3. 
To satisfy the level number, L36(211, 312) was selected as the experimental orthogonal array. A 
total of 36 experiments were conducted with the use of up to 11 factors with 2 levels and 12 
factors with 3 levels. In this experiment, levels 2 and 3 had four factors, and eight factors were 
classified as A–H. Table 5 depicts the experimental results. Each experiment contained three 
observations used to perform three tests on the same hyperparameter combination. In each 
test, the network training parameters should be cleared, and each observation is independently 
trained. The S/N ratio was calculated using Eq. (1). In this experiment, we used the S/N ratio 
with larger-is-better characteristics. Therefore, the larger the S/N ratio, the higher the robustness 
of the network composed of this factor.

Fig. 3.	 (Color online) Examples of images with magnification levels of (a) 40×, (b) 100×, (c) 200×, and (d) 400×.

Table 4
Number distribution of BreakHis data set at each magnification level.
Magnification Benign Malignant Total
40× 652 1370 1995
100× 644 1437 2081
200× 623 1390 2013
400× 588 1232 1820
Total no. of images 2480 5429 7909

(a) (b)

(c) (d)
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Table 5
Orthogonal array and the S/N ratios in the experiment.
No. A B C D E F G H y1 y2 y3 Avg S/N 
1 3 4 1 0 3 8 1 0 78.00 80.70 82.43 80.38 −1.904
2 5 6 1 0 5 16 1 0 80.15 71.85 82.39 78.13 −2.190
3 7 12 1 0 7 32 1 0 82.30 81.96 83.02 82.43 −1.679
4 3 4 1 0 3 16 1 0 82.89 82.85 80.28 82.01 −1.726
5 5 6 1 0 5 32 1 0 83.10 82.09 83.10 82.76 −1.644
6 7 12 1 0 7 8 1 0 68.31 68.65 68.31 68.42 −3.296
7 3 6 1 1 7 8 2 1 82.81 82.76 76.57 80.71 −1.879
8 5 12 1 1 3 16 2 1 82.43 80.78 82.26 81.82 −1.744
9 7 4 1 1 5 32 2 1 82.09 81.80 82.81 82.23 −1.699

10 3 12 2 0 5 8 2 1 81.54 83.19 83.48 82.74 −1.647
11 5 4 2 0 7 16 2 1 84.62 82.81 77.58 81.67 −1.777
12 7 6 2 0 3 32 2 1 82.30 82.93 82.09 82.44 −1.677
13 3 12 2 1 3 32 1 1 83.61 82.09 84.37 83.36 −1.583
14 5 4 2 1 5 8 1 1 82.39 82.17 82.76 82.44 −1.677
15 7 6 2 1 7 16 1 1 81.88 81.96 82.26 82.03 −1.720
16 3 12 2 1 5 8 2 0 83.94 83.06 82.13 83.04 −1.615
17 5 4 2 1 7 16 2 0 83.48 83.69 83.52 83.56 −1.560
18 7 6 2 1 3 32 2 0 83.19 82.81 83.10 83.03 −1.615
19 3 4 1 1 7 32 2 0 82.17 81.29 83.48 82.31 −1.692
20 5 6 1 1 3 8 2 0 82.55 81.88 83.94 82.79 −1.642
21 7 12 1 1 5 16 2 0 82.81 80.40 83.19 82.13 −1.713
22 3 6 1 1 7 32 1 1 83.90 83.78 82.68 83.45 −1.572
23 5 12 1 1 3 8 1 1 82.60 82.72 83.16 82.83 −1.637
24 7 4 1 1 5 16 1 1 82.76 83.40 83.02 83.06 −1.612
25 3 6 1 0 3 16 2 1 83.90 83.73 83.10 83.58 −1.559
26 5 12 1 0 5 32 2 1 82.85 80.53 81.96 81.78 −1.749
27 7 4 1 0 7 8 2 1 83.02 83.31 75.22 80.52 −1.912
28 3 6 2 1 5 16 1 0 82.81 83.14 82.68 82.88 −1.631
29 5 12 2 1 7 32 1 0 82.30 81.33 82.30 81.98 −1.727
30 7 4 2 1 3 8 1 0 82.55 84.24 81.92 82.90 −1.630
31 3 12 2 0 7 16 2 0 84.53 81.21 83.57 83.10 −1.611
32 5 4 2 0 3 32 2 0 84.32 82.09 82.68 83.03 −1.617
33 7 6 2 0 5 8 2 0 82.05 83.19 82.75 82.66 −1.654
34 3 4 2 0 5 32 1 1 82.22 82.89 82.01 82.37 −1.685
35 5 6 2 0 7 8 1 1 83.40 82.26 81.71 82.46 −1.676
36 7 12 2 0 3 16 1 1 83.35 82.68 80.40 82.14 −1.712

	 The response table for the S/N ratio, significance, and percentage contribution of each factor 
is presented in Table 6. When the level in the factor is changed independently, the robustness to 
the network performance changes. If the level of variation changes, then the greater the degree 
of variation in the network performance, the greater the effect this factor has on the network. 
We listed a factor as a significant one if the significance was higher than a threshold. When 
the optimization does not reach the goal, the level can be adjusted for the significance factor. 
Finally, the best parameter combination we selected was A1, B2, C2, D2, E1, F3, G2, and H2. 
The significance parameters were ranked in the order F > E > C > A > D > G > B > H. The 
percentage contribution order of the factors with the hyperparameter optimization to obtain a 
high accuracy rate is as follows: Conv1_Stride > Conv2_Filter > Conv2_Kernel size > Conv1_
Kernel size > Conv1_padding > Conv2_Stride > Conv1_Filter > Conv2_padding.
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	 Table 7 shows a comparison of the performance of the novel network with the original LeNet 
network. We trained the same data set (BreakHis) and tested the original network and the 
optimized network three times without retaining the training parameters. As shown in Table 7, 
compared with the original network, the proposed method has more average observations in the 
three tests, which proves that the proposed optimization method improved the robustness of the 
network. 
	 Table 8 presents a comparison of the performances using various methods. The single-layer 
CNN network architecture includes a convolutional layer and a pooling layer. The number of 
channels in the convolutional layer is 50, which extracts more feature maps.(17) For comparison 
with traditional manual feature extraction, the extracted features are added to the CNN 
training method.(18) In LeNet-5, the accuracy rates are obtained using different gradient descent 
methods.(19–21) Therefore, the experimental results prove that the performance of our method 
reaches 83.19%, which is significantly (5.69%) higher than that of the single-layer CNN method. 
The proposed optimized network architecture exhibited the best performance.

4.	 Conclusions

	 We proposed the hyperparameter optimization of deep learning networks. The Taguchi 
method was used to perform experiments on the BreakHis data set to classify tumors as 
malignant or benign. On the basis of the experimental results, the best hyperparameter 

Table 6
Response table for S/N ratio, significance, and percentage contribution of the factor.
Factor A B C D E F G H
Level 1 −1.675 −1.708 −1.825 −1.802 −1.670 −1.848 −1.794 −1.786
Level 2 −1.720 −1.705 −1.656 −1.679 −1.710 −1.713 −1.687 −1.695
Level 3 −1.828 −1.809 — — −1.842 −1.662 — —
Delta 0.153 0.104 0.169 0.123 0.172 0.186 0.107 0.091
Rank 4 7 3 5 2 1 6 8
Contribution (%) 12.11 6.99 21.01 11.10 15.90 18.22 8.6 6.07
Best level 1 2 2 2 1 3 2 2

Table 7
Comparison of network performance between the original network and our method.
ABCDEFGH y1 y2 y3 Avg
Original CNN 83.48 77.92 80.66 80.69
Our method 83.10 83.23 83.23 83.19

Table 8
Comparison of performances using various methods.
Method Performance (%)
Single−layer CNN(17) 77.50
RF classifier+PFTAS(18) 81.28
LeNet−5(Sgdm)(19) 80.69
LeNet−5(Adam)(20) 82.22
LeNet−5(RMSprop)(21) 82.58
Our method 83.19



324	 Sensors and Materials, Vol. 33, No. 1 (2021)

combination of a CNN based on deep learning networks can be obtained. The optimum 
parameters are as follows: Conv1_Kernel size = 3, Conv1_Filter = 6, Conv1_Stride = 2, 
Conv1_padding = 1, Conv2_Kernel size = 3, Conv2_Filter = 32, Conv2_Stride = 2, and Conv2_
padding = 1. The influence of each control factor on the network performance provides the basis 
for the adjustment of each hyperparameter and improves its performance. The results show that 
compared with the unoptimized CNN based on deep learning networks, the performance of 
the optimized networks was improved, and the proposed method is superior to other methods. 
However, the proposed hyperparameter method was limited to two convolution layers and 
only applied to the BreakHis data set in this study. Therefore, the proposed hyperparameter 
optimization of deep learning networks should be performed on a different data set to classify 
other medical histopathological images in the future.
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