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	 Different centers of mass (CMs) of a diesel engine were set to find their effects on the 
vertical vibration of an engine. To understand the effects and reduce vibration during sensing, 
we changed the location of the CM of the engine and performed a simulation to obtain data such 
as the vertical movements, velocity, torque, and acceleration of the vertical springs of isolators. 
The data showed that a 0.1 mm higher CM than the original CM of the engine reduced the 
amplitude of the vertical vibration by 4.35% and the velocity of the vertical vibration by 45.7% 
at a fixed rotation speed of the engine of 1000 revolutions per minute (rpm). Different CMs did 
not significantly affect the torque and acceleration. Instead, the phase of the vertical movements, 
the velocity, and the acceleration significantly changed with the CM in the simulation. The 
results imply that the CM needs to be considered in the design of the vibration isolation system 
of a diesel engine to increase the accuracy and lifetime of sensors used in vehicles under severe 
vibration conditions. 

1.	 Introduction

	 Diesel engines are widely used for passenger cars, heavy-duty vehicles, locomotives, ships, 
aircraft, and other machines. A diesel engine is more fuel-efficient and performs better at lower 
revolutions per minute (rpm) than a gasoline engine. Even with thin air, a diesel engine operates 
better with a turbocharger. In addition, the development of technology has enabled diesel 
engines to emit much less or nearly zero pollutants.(1) However, the high compression ratio of 
air to fuel generates a high pressure and temperature inside the cylinders of a diesel engine, 
leading to considerable vibration. The vibration of a diesel engine causes physical discomfort 
to passengers in vehicles and ships. In ships, the vibration causes the malfunction of various 
sensors.(2,3) It also hinders the appropriate operation of sensors, resulting in unexpected data.(4–6) 
Sensors are usually small and light but require high reliability. Thus, the vibration of ships with 
diesel engines is a major problem to be solved. Marine diesel engines have vibration isolation 
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systems to reduce vibration and noise, which are transferred to all parts of ships. The system 
must have vibration isolators at appropriate locations to obtain the best results. However, even 
with such a system, it is not easy to get rid of the vibration owing to the motion complexity 
in a diesel engine, although the development of electronics, sensors, and computer-aided 
measurement technology has led to improved vibration isolation systems in marine engineering. 
There have been many studies to find the vibration characteristics of diesel engines(1,7–12) and 
on how to reduce vibration with various vibration isolation systems.(13–16) However, there has 
been little research on how to precisely locate vibration isolators. To find the best locations of 
isolators, the effect of the center of mass (CM) of a diesel engine needs to be understood and 
assessed, which has not yet been reported. Thus, we investigate how the CM influences the 
vertical vibration of a diesel engine. As shown in this paper, the design and research of diesel 
engine vibration isolators can effectively reduce the overall vibration of the diesel engine, 
thereby improving the working conditions of sensors in vehicles. Our results provide basic 
information on how to study of the effect of the CM on multidirectional vibration. Then, a 
model can be established to find the best locations of vibration isolators for the vibration 
isolation systems of diesel engines. 

2.	 Methods

2.1	 Modeling of diesel engine for simulation

	 We used Pro-engineering (Pro/E) as a 3D tool for numerical modeling of a diesel engine and 
ADAMS, the most popular simulation software for multibody dynamics, to simulate vibration 
and collect data to investigate the vibration dynamics of a diesel engine. The diesel engine with 
many parts such as pistons, connecting rods, an engine block, and crankshafts modeled using 
Pro/E is shown in Fig. 1. We assumed that the small parts have little effect on the vibration. The 
numerical information and parameters of the model are imported into ADAMS as a form of 
initial graphics exchange specification (IGES) for the simulation using the parameters in Table 1. 
The conditions of the joints of parts were added according to the working conditions.

(a) (b)

Fig. 1.	 (Color online) Examples of models of (a) cylinder and (b) pistons with crankshaft modeled by Pro/E.
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	 The moment of inertia of the rotating parts of the diesel engine was calculated using 
ADAMS. In ADAMS, only stiffness and damping (k = 1 × 106 N·m, c = 0) were considered 
as important parameters for the simulation calculations. We maintained a rotation speed of 
1000 rpm to achieve stable rotation of the parts.(13) Then, the dynamic equation of the diesel 
engine power is 

	 9550 e
e

PM
n

= ,	 (1)

where Me is the output torque of the diesel engine in N·m, Pe is rating power in kW, and n is the 
rotational speed in rpm. 

2.2	 Modeling of vibration isolation system

	 We used four spring dampers as vibration isolators of the diesel engine (Fig. 2). The 
isolators were attached to the engine symmetrically at locations (1) (0.37, −0.19, 0.4), 
(2) (0.37, −0.19, −0.4), (3) (−0.37, −0.19, −0.4), and (4) (−0.37, −0.19, 0.4) [(x, y, z) in meters], 
where the y axis was perpendicular to gravity [(Fig. 2(b)]. The coordinate origin was set as the 

Table 1
Numbers and mass of each part of the model of the diesel engine.
No. Part Mass (kg) Number
1 Base 10 4
2 Piston pin 3.65 4
3 Piston 9.75 4
4 Engine body 2190.51 1
5 Connecting rod 16.4 4
6 Cylinder liner 14.34 4
7 Crankshaft 329.47 1
8 Flywheel 263.46 1

(a) (b)

Fig. 2.	 (Color online) Models of (a) diesel engine with vibration isolation system and (b) locations of vibration 
isolators of the diesel engine simulated by Pro/E.
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vertical and horizontal center of the engine. There were four springs in each isolator, which 
were used as actual vibration isolators. The length of each spring was 0.1 m, the spring constant 
of one of the vertical springs was kv = 1 × 106 N/m, and the spring constant of the other two 
springs was k = 1 × 1010 N/m. In this study, we only considered vertical vibrations as only 
vertical springs were stressed from vibration. 
	 With the fixed locations of the isolators, we set four different locations of the CM of the 
diesel engine (Table 2) for the vibration simulation. The original CM (CM1) was located on the 
crankshaft at (x, y, z) = (0, 0.222, 0). For the simulation, we changed the y coordinate of the CM 
to 0.223, 0.224, and 0.221 m to measure and compare the effect of different locations of the CM 
on the vibration dynamics. 

2.3	 Multibody dynamic equations of vibration

	 The dynamic model of the vibration is expressed as

	
,
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where Ф is the constraint equation of coordinate matrix q, Фq is the Jacobian matrix, and λ is 
the Lagrange multiplier.
	 In Cartesian coordinates, the model has the following differential algebraic equations. 

	 ( , ) ( , ) ( , , ) 0T
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Here, , , nq q q R∈  and , , nq q q R∈   are the position, velocity, and acceleration vectors of the model, 
respectively, t is time, M is an inertia matrix, and Q is a load vector with the initial conditions
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Table 2
CMs for each simulation.
No. y coordinate (m)
CM1 0.222 
CM2 0.223 
CM3 0.224 
CM4 0.221
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3.	 Results and Discussion

3.1	 Vertical movements of vibration isolators

	 To determine the effect of the CM of an engine body, we input the different CMs in Table 2 
in the simulation and plotted periodic time-response curves with ADAMS. We repeated 1000 
calculations for the first 2 s after the engine started. As shown in Fig. 3, different CMs of the 
engine body generated different vertical movements. The average vertical amplitudes of the 
engine were 0.788, 0.745, 0.787, and 0.746 mm for CM1, CM2, CM3, and CM4, respectively. 
CM2 had the least amplitude, which was 5.46% less than that of CM1, the original CM.
	 The velocity of each of the four vertical springs in the isolators is shown in Fig. 4 and Table 3. 
The result showed that the velocity of each spring had periodicity but with different vibration 
patterns. In general, the velocities with CM2 were lower than those with the other CMs. CM4, 
the CM with the lowest vertical location, had springs with the highest velocities except for 
spring (2). The velocities of springs (1), (3), and (4) with CM2 were lower than those with the 
other CMs. Spring (2) with CM2 had a higher velocity than those with CM1, CM3, and CM4. 
Spring (3) with CM2 had the lowest velocity of 48.18 mm/s, only 54.3% of the velocity with 
CM4. Nevertheless, CM2, the CM at (0, 0.222, 0) (m) vibrated slower while CM4 at (0, 0.221, 0) (m) 
vibrated faster than the other CMs. It is not clear why spring (2) with CM2 and CM4 had higher 
and lower velocities, which is contrary to the results for the other springs with the other CMs. 

3.2	 Torque of vibration 

	 Even though the amplitudes and velocities of the vertical movement of the springs are 
different in each location of the vibration isolators, the torques of the springs and their patterns 
are very similar. The calculated torques were ±206.71 N·m (CM1), ±207.27 N·m (CM2), 
±207.68 N·m (CM3), and ±207.06 N·m (CM4). The difference among the torques was less than 
0.47%. Figure 5 shows the torques of the diesel engine. The curves of the torques for each CM 

Fig. 3.	 (Color online) Amplitudes of vertical movements of the engine with different CMs.
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(a) (b)

(c) (d)

Fig. 4.	 (Color online) Velocity of vertical movements for each CM. (a) vertical spring of (1), (b) vertical spring of (2), 
(c) vertical spring of (3), and (d) vertical spring of (4).

Table 3
Velocity of vertical springs (mm/s).
Isolator CM1 CM2 CM3 CM4
(1) 101.03 91.36 112.44 127.59
(2) 89.66 99.20 95.57 74.04
(3) 71.41 48.18 59.75 88.64
(4) 124.57 113.42 126.93 133.05

Fig. 5.	 (Color online) Curves for torques for 
different CMs.
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were periodic and similar to trigonometric curves. The torques for the different CMs showed 
almost identical patterns with slight differences at the top and bottom of the torque curves.

3.3	 Acceleration of vibration in test

	 An accelerometer was installed on the upper side of isolator (1) to measure the acceleration 
at the rotation speed of 1000 rpm. The purpose of the measurement was to validate the 
simulation result by comparing the real data from the accelerometer with the simulated data. 
We used an LMS Test and lab vibration control system to obtain the acceleration data from 
the accelerometer. Figure 6 shows that the accelerations of CM2, CM3, and CM4 ranged from 
±8.14 to ±8.17 m/s2 and had similar amplitude and phase. However, CM1 had the acceleration 
of ±5.10 to ±8.17 m/s2 with amplitude and phase different from those of CM2, CM3, and CM4. 
The amplitude of CM1 was larger and the phase was 0.2 s different from than those of the other 
CMs.

4.	 Conclusions

	 Focusing on how to find appropriate locations of vibration isolators for a diesel engine and 
to ensure the high performance of sensors used in a wide variety of vehicles, we studied the 
effect of the CM on the vertical vibration of an engine. We modeled a diesel engine with Pro/E 
to perform simulations to investigate the vibration dynamics for different CMs with ADAMS. 
The vertical location of the CM was changed in the simulation to compare sensing parameters 
including the vertical movement, torque, velocity, and acceleration of each vertical spring of 
vibration isolators. The results showed that the location of the CM affects the vertical vibration 
pattern. When the CM was set 1 mm higher than the original CM, the vibration had a lower 
amplitude (4.35%) and velocity (45.7%) than those of the other CMs. The higher CM also had 
less acceleration. For this location of the CM, there was higher velocity only for vertical spring 
(2), which may have been caused by the unbalanced force induced by the vibration of the diesel 

Fig. 6.	 (Color online) Acceleration curves with different CMs.
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engine. In this study, we considered the diesel engine vibration system as a whole. Although 
the location of the vibration isolator has been studied, the impact of the CM of the diesel engine 
and the vibration isolator on vibration is also an innovative feature of this study. The results of 
this study suggest that even though the original CM is considered in general, different locations 
of the CM must be simulated to find the best locations of isolators for diesel engines. Thus, to 
design the most appropriate vibration isolation system of a diesel engine, different locations 
of the CM must be considered. With the importance of the CM in vibration dynamics, it is 
necessary to study the multidirectional effect of the CM for the vibration isolation system 
and the causes of the unbalanced force induced by vibration. The results will improve the 
engineering model used to construct the vibration isolation systems of diesel engines and be 
beneficial for the operation of sensors in vehicles with diesel engines.
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