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	 Construction activity recognition can be improved using data fusion from multiple 
inertial sensors such as accelerometers and gyroscopes, yet the number of accelerometers and 
gyroscopes and their optimal placement for combination need empirical determination. We 
considered the optimal combination of these two types of sensors placed on different parts of a 
construction worker for identifying construction activities through machine learning. The waist, 
arm, and wrist were equipped with data acquisition units to simultaneously acquire acceleration 
and angular velocity data for multiple sensor locations. A system for recognizing complex 
construction activities was developed on the basis of an accelerometer and gyroscope (A+G) 
synergy at multiple sensor locations. Results show that the A+G combination dataset at the wrist 
had the best activity recognition among the sensor configurations when the raw data came from 
a single sensor location. The results of comparing a single sensor location, two sensor locations, 
and three sensor locations indicate that combination with three sensor locations produced the 
best accuracy. 

1.	 Introduction

	 Traditional activity recognition technologies use computer vision approaches to collect 
human patterns through image acquisition devices and use image processing techniques to 
analyze information.(1) Accelerometers and gyroscopes have been widely used for human 
activity recognition including the recognition of common daily activities such as lying 
down, sitting, standing, and walking.(2) Low productivity and high costs have undermined 
the development of the construction industry. The average annual growth rate of labor 
productivity in construction has been lower than the national average for labor productivity 
across all industries in China over the past ten years.(3) An effective way to manage and to 
improve worker performance is to recognize and monitor their activities, to analyze operations 
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in real time, and to dynamically optimize workflows on site.(4) The implementation of each 
construction task activity depends on the collaboration of various body parts of construction 
workers. All worker activities on a construction site can be decomposed into collective 
movements of multiple limbs over time, revealing the complexity of construction activities.(4) 
An inertial sensor used for human activity recognition works on the principle of inertia, but 
the signal data generated by the two types of inertial sensors, accelerometers and gyroscopes, 
are different.(5) Accelerometers measure acceleration caused by motion or gravity, and 
gyroscopes measure the rate of rotation of a device by detecting the roll, pitch, and yaw of 
the X, Y, and Z axes of the device in motion.(6) Human activity recognition techniques can be 
used to measure actual human activity through data differences between accelerometers and 
gyroscopes, and are thus beneficial for the recognition of complex construction activities, and 
the motions and locations of different body parts can be recognized by inertial sensors.(7) The 
aim of this study is to recognize complex construction activities based on accelerometer and 
gyroscope combination through a series of experiments on construction tasks. Considering the 
difference and commonality between activities incorporating body parts and inertial sensors, 
the waist, arm, and wrist were equipped with data acquisition units to simultaneously acquire 
acceleration and angular velocity data for multiple sensor locations. We propose the use of a 
combination of acceleration and angular velocity data at multiple sensor locations to increase 
the performance of complex activity recognition to provide technical support for the automated 
management of worker performance. We constructed a classifier based on the characteristics 
of the input feature vectors and mapped an unknown activity sample to a class in a given 
activity category using classification algorithms. Four machine learning algorithms, namely, 
k nearest neighbor (KNN), support vector machine (SVM), neural network (NN), and random 
forest (RF) algorithms, were used in this study to train the classifier model, where the raw data 
came from inertial sensor data acquired using a 50 Hz sampling frequency. We experimentally 
investigated which machine learning algorithms provided the most accurate classification of 
activities for complex construction activities through consistent validation methods. All model 
training and predictions were performed in R language. The ultimate goal of applying a variety 
of classification algorithms was to explore the best performance of the classifier model and the 
best configuration of sensor types and locations in practice.

2.	 Latest Developments in Machine Learning for Human Activity Monitoring

	 Gong et al.(8) developed a video interpretation model based on computer vision technology 
to automatically recognize worker activities. Gong et al.(9) combined the bag-of-video-feature-
words model with the Bayesian learning method to automatically classify the construction 
workers and equipment from a video. Han and Lee(10) developed a framework for extracting 
three-dimensional human skeletons to detect unsafe predefined motion templates from captured 
video. Khosrowpour et al.(4) proposed the use of inexpensive RGB-D sensors to evaluate the 
activity of indoor construction workers using visual images. Park and Brilakis(11) combined 
cameras and computer-vision-based tracking and detection methods for on-site tracking of 
construction workers. Yang et al.(12) used machine learning and computer vision techniques 
to propose vision-based motion recognition for construction workers using dense trajectories, 
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although the use of the camera in this method was limited by factors such as lighting conditions 
and installation locations. In addition, owing to the complexity and dynamic characteristics 
of the construction site, problems included a decrease in accuracy due to a high noise level, a 
failure to record moving objects over long distances, and occlusion in a cluttered environment.(12) 
The most obvious deficiencies of image processing are relatively high computational and storage 
costs.(8) With the advent of inertial sensors and their advantages, different research directions 
have been explored for human activity recognition, leading to a large number of applications 
and innovative developments in the field of human activity recognition.(13) The detection and 
classification of human activities have attracted the attention of researchers in various fields 
such as healthcare,(14–16) education,(17) and sports.(18) Parkka et al.(19) automatically classified 
daily activities such as lying down, boating, walking, sitting or standing, cycling, running, and 
Nordic walking to promote healthy activities and a healthier lifestyle. 
	 Chiang et al.(20) developed a portable activity pattern recognition system to automatically 
identify the user’s daily activities, where medical professionals could use the data to help 
patients solve health problems caused by obesity or metabolic syndrome and delay the 
development of diabetes, cardiovascular disease, and other complications. Attal et al.(21) 
discussed human activity recognition using wearable sensors to remotely monitor the status of 
older people to help healthcare providers monitor their movements in daily activities to detect 
unpredictable events and assist in a timely manner. Data collection is the foundation of the 
human activity recognition process, and the signal quality is the most important factor that 
directly affects the ability of feature values extracted from features to characterize the activity.(22) 
The most commonly used sensors for human activity recognition technology are inertial sensors 
such as accelerometers and gyroscopes. Many researchers have used accelerometers for daily 
activity recognition.(23–26)

	 Gyroscopes are often used with accelerometers for data acquisition.(27,28) Shoaib et al.(1) used 
a smartphone as a data collection device to investigate the activity recognition performance of 
different motion sensors including accelerometers, a linear acceleration sensor (derived from 
an accelerometer by removing the gravity component), gyroscopes, and magnetometers under 
different conditions, and these inertial sensors were able to recognize activities independently 
in addition to a magnetometer. The recognition also depends on the type of activity identified, 
the data feature used, and the classification technique employed. Some researchers used a 
single accelerometer(29–31) while other researchers used multiple accelerometers to collect 
data, noting that using only a single accelerometer always resulted in lower quality of activity 
identification.(32–34) Sensors in different locations may have different sensitivities for activity 
recognition. In view of this, Cleland et al.(35) conducted a survey to determine the optimal 
position of an accelerometer to facilitate detection. Human activity recognition can be improved 
by data fusion from multiple inertial sensors comprising accelerometers and gyroscopes.(36–40) 

3.	 Experimental Design and Methods

	 In our experiment, the subject used a cart to load and unload sand. This task involved four 
basic activities: shoveling, pulling, pouring, and pushing. Shoveling refers to a shovel being 
used to load sand into an empty cart. Pulling involves pulling the cart containing sand to the 
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designated location. Pouring refers to manually pouring the cart filled with sand. Finally, 
pushing involves pushing the empty cart back to the starting point. The data acquisition 
experiments were conducted in an outdoor environment, and the research flowchart is presented 
in Fig. 1. Straps and common sport armbands were used to bind accelerometers and gyroscopes 
to the participants’ body. Considering the ease of movement when performing the four types of 
activities, three locations on the human body, the waist, wrist, and upper arm, were equipped 
with device units as shown in Fig. 2. 

Fig. 1.	 (Color online) Research flowchart.
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	 The device unit placed at the waist recorded the amplitude of acceleration of the torso. Figure 
3 shows the shoveling, pulling, pouring, and pushing activities performed by the participants 
wearing the device units. We employed Witt Smart BWT901BCL equipment units. Three 
Bluetooth-enabled device units were used for data acquisition experiments, where each device 
unit (36 × 51.3 × 15 mm3) was built in a three-axis accelerometer and a three-axis gyroscope to 
capture motion data in the x, y, and z directions with a maximum sampling rate of 200 Hz. The 
range of the accelerometers was ±16 g and the angular velocity range of the gyroscopes was 
±2000 °/s. In the outdoor experimental environment, the inertial sensor data were collected from 
six male participants aged 25 ± 2 who wore the same sets of device units and performed the 
same sets of construction activities at the same location. Each participant performed activities 
for a period of time during the experiment to ensure the collection of sufficient data, and all 
participants performed the construction tasks in their own way without guidance. A sampling 
rate of 50 Hz was set while participants performed the construction activities to ensure the 
validity of the data, in accordance with Shoaib et al.(1) and Kwapisz et al.(41) Data generated by 
all device units were transmitted to a laptop via Bluetooth.
	 The data generated by the three equipment units were collected simultaneously throughout 
the experimental process, and thus 3 × 237250 pieces of data were collected. An active category 
annotation process was performed after feature extraction. Figure 4 is a plot of the acceleration 

Fig. 2.	 (Color online) Subject performs activities wearing device units on the waist, wrist and upper arm.

Fig. 3.	 (Color online) Four construction activities performed wearing device units.
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data collected from the device unit at the wrist. The raw signal data of the inertial sensor cannot 
be applied to the classifier, but extracting the feature from the signal segment is an effective 
method to maintain class separability.

3.1	 Signal segmentation

	 The feature vector extracted from the original inertial sensor data was used as the classifier 
inputs after adding another dimension to the inertial sensor data to minimize the influence 

of the sensor orientation.(42) The feature vector was calculated as 2 2 2m x y z= + +  so that 

each inertial sensor had four dimensions: x, y, z, and t. Signal segmentation was conducted on 
the stream of sensory data using a fixed-size sliding window before the feature calculation. 
For the window size, each window should be guaranteed to contain enough samples (at least 
one cycle of an activity) of different similar movements. Considering that the data sampling 
frequency is 50 Hz and the accelerations of pulling and pushing shown in Fig. 3 are small and 
frequently repeating, the window size was set as 1 s (including 50 samples) with a 50% overlap 

Fig. 4.	 (Color online) Four active accelerations for shoveling, pulling, pouring, and pushing collected from the 
wrist.
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rate between adjacent windows. We selected the most commonly used features that maximize 
the activity of construction workers. The feature vector of each segment contained 66 features 
scaled into the interval [0, 1] using max-min normalization to be used for classification. Table 1 
lists the parts of the source code compiled for feature extraction, signal segmentation, and 
model training and recognition in this study.
	 Time-domain features were used in the inertial sensor data classification owing to their low 
cost and high discernibility. Features 1–16 in Appendix, which belonged to the time-domain 
class, included standard statistical metrics such as mean, standard deviation, and maximum. 
In order to better characterize the construction activities, the correlation among the x, y, and 
z axes was taken into consideration for the activity recognition. Specifically, the correlations 
between each axis and the pitch and roll tilt angles were calculated using Eqs. (1) and (2). 
Features 17 and 18 were the frequency-domain features extracted by the inertial sensors after a 
fast Fourier transform (FFT). Power spectral density (PSD), which is an important frequency-
domain feature for human activity recognition, was computed as the square of the sum of the 
spectral coefficients of PSD normalized by the length of the sliding window using Eq. (3). 
Here, ai = xi cos[(2πfi)/N] and bi = xi sin[(2πfi)/N] are the real and imaginary parts of the FFT, 
respectively, x is the data signal of the discrete inertial sensor, f is the fth Fourier coefficient in 
the frequency domain, and N is the length of the sliding window. The entropy matrix was used 

Table 1
Parts of source code for feature extraction, signal segmentation, and model training.
Function Code of Part

Feature extraction and 
signal segmentation

####The calculation window contains 50 data and overlaps 
50%####
library(zoo);brush <- read.csv(“s1-chan-Acc-1.csv”);###Feature-
mean###;b _ mean <- rollapply(brush[1:4], width = 50, by = 25, 
FUN = mean, na.rm = TRUE)
b _ mean _ window <- data.frame(b _ mean);names(b _ mean _
window) <- c(“Acc.mean.X”, “Acc.mean.Y”, “Acc.mean.Z”, “Acc.
mean.T”);str(b _ mean _ window)

Model training and 
recognition

GAA _ train _ nor <- read.csv(“s1 _ Gro+s2 _ Acc+s3 _ Acc _ train _
nor.csv”)
GAA _ test _ nor <- read.csv(“s1 _ Gro+s2 _ Acc+s3 _ Acc _ test _
nor.csv”)
####Using caret for machine learning automatic parameter 
adjustment and ten-fold cross-validation model####
library(lattice);library(ggplot2);library(caret)
##Neural network parameter adjustment##
library(nlme);library(mgcv);library(nnet)
ctrl <- trainControl(method = “cv”, number = 10, 
selectionFunction = “best”);grid <- expand.grid(.size 
= c,(3) .decay = c(0.01));set.seed;(123) nnet _ model <- 
train(Act ~ ., data = GAA _ train _ nor, method = “nnet”, 
metric = “Accuracy”, trControl  = ctrl, tuneGrid = grid, 
maxit = 1000, rang = 0.5);nnet _ model$results; har _ nnet _
pred <- predict(nnet _ model, GAA _ test _ nor[, !names(GAA _
test _ nor) %in% c(“Act”)]);library(gmodels);result <- 
confusionMatrix(har _ nnet _ pred, GAA _ test _ nor$Act, positive 
= “chan”);result;result$byClass
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as the other frequency-domain feature, which was calculated using the normalized information 
entropy of the discrete FFT coefficient magnitudes excluding the DC components. Entropy was 
used to differentiate between signals with similar energy values but different activity patterns. 
Information entropy definitions in the field of activity recognition were calculated using Eq. (4), 
where р stands for the probability mass function. The feature computation process was carried 
out using the R language interface (version 3.4.2) with forecasting visualization functions.
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3.2	 Training classifier through machine learning 

	 The classification algorithms commonly used in activity recognition include the KNN, 
SVM, RF, decision tree (DT), NN, and naive Bayes (NB) algorithms.(1,30,43) We constructed 
a classifier based on the characteristics of the input feature vectors and mapped the unknown 
activity sample to a class in a given activity category using classification algorithms. Four 
machine learning algorithms, KNN, SVM, NN, and RF, were used in this study to train the 
classifier model, where the raw data came from the inertial sensor data acquired using a 50 Hz 
sampling frequency. The feature extracted by segmenting the original data using a sliding 
window with a fixed size (window size 1 s, overlap 50%) constituted a feature vector, which 
was used as an input to the classifier. Our experiment investigated which machine learning 
algorithms provided the most accurate classification of complex construction activities through 
consistent validation methods. The parameters for each classification method were configured 
by a set of parameters corresponding to the maximum accuracy in 10-fold cross-validation. In 
k-fold cross-validation, each fold contains all categories of the same scale to ensure balance. All 
model training and predictions were performed in R language. The ultimate goal of applying a 
variety of classification algorithms was to explore the best performance of the classifier model 
and the optimal configuration of sensor types and locations in practice. Accuracy metrics and 
F-measure (F-score) metrics were used to fairly measure the performance of each classifier 
model using four key terms: a) true positive (TP): correctly classified as the class of interest; 
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b) true negative (TN): correctly classified as not the class of interest; c) false positive (FP): 
incorrectly classified as the class of interest; and d) false negative (FN): incorrectly classified 
as not the class of interest. The parameters in each classification model were determined by 10-
fold cross-validation and the selected parameters were the combination giving the maximum 
accuracy. Accuracy was used as the standard measure of the overall classification performance 
of a human activity recognition method, as defined in Eq. (5). The recognition ability of all 
activity categories was measured to identify the construction worker’s activities. To test the 
actual application performance of each classifier model, a comprehensive metric (F-measure) 
was needed to evaluate the activity recognition performance. The F-measure was used as 
an evaluation indicator of precision and recall to comprehensively reflect the indicators of 
the overall model. The precision, sensitivity or recall, and specificity of the F-measure were 
calculated using Eqs. (6)–(8), respectively. The F-measure was calculated using Eq. (9) as 
a model performance metric combining precision and recall into a single number, and the 
magnitude of the F-measure represented the actual performance of the classifier model. To 
facilitate the subsequent representation of the inertial sensor data, the original data obtained 
using only the information acquired by the accelerometer as the classifier model and that 
obtained using only the gyroscope were denoted by A and G, respectively; A+G denotes the 
scenario where the two were used together. The performance improvement rate (PIR) was 
defined as the percentage activity recognition accuracy (ARA) of the A+G data at the same 
sensor location minus max (ARA of A data, ARA of G data). The average PIR results obtained 
from the PIR of the four classification algorithms for each sensor location excluded the 
maximum and minimum averaging results.
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4.	 Data Interpretation and Experimental Results 

	 The construction task using carts to transport materials was broken down into four activities: 
shoveling, pulling, pouring, and pushing. Understanding the effect of the interaction between 
the position and category of the inertial sensors on the activity mode could help optimize the 
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activity recognition performance. Figure 5 presents the acceleration data of the four activities 
collected by the device units worn on the subject’s wrist, waist, and lower arm, where the 
activities of shoveling and pouring were completely different from those of pulling and pushing. 
	 The fluctuation of data of each axis of the former class was large and the fluctuation of the 
latter was small. As shown by the actual execution of the wrist movements, the data fluctuations 
of shoveling and pouring were significant for pulling and pushing. Shoveling and pouring 
exhibited a high probability of recognition, but the similarity of the acceleration of these 

Fig. 5.	 (Color online) Acceleration data of pulling and pushing on the waist, wrist, and lower arm.
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two activities at the wrist interfered with their activity recognition. The angular velocity and 
acceleration of the two activities of pulling and pushing on the waist and lower arm are plotted 
in Figs. 5 and 6.
	 Pulling and pushing in the space were quasi-static processes where the acceleration data 
of the upper arm fluctuated similarly without large undulations. The states of the inertial 
sensors at the two locations on the upper arm were different owing to the different directions 
of the force (the pulling is tension while the pushing is thrust), and the required forces were 

Fig. 6.	 (Color online) Angular velocity data of pulling and pushing for the waist, wrist, and lower arm.
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different in the actual operations of the two types of activities. Owing to the similarity of the 
two construction activities, the fluctuation of the acceleration data of the two types of activities 
was small, which made the recognition of the two activities involving the cart using the data 
from the accelerometer more complicated and difficult. Therefore, the differentiation of 
pulling and pushing based on accelerometer data needed improvement. The similarities among 
construction activities made them prone to classification difficulties. Figure 5 also plots 20 s 
of angular velocity data for pulling and pushing at the waist sensor location, where the angular 
velocity patterns of these two construction activities at the same sensor location showed a large 
difference. The angular velocity data improved the difference and classifiability of the activity 
to a certain extent when the similarity of the acceleration patterns was high. Comparing the 
acceleration of the upper arm and the angular velocity graphs of the waist, we found that the 
angular velocity patterns of these two construction activities at the waist sensor location were 
less similar in their acceleration. However, this can only explain that the angular velocity 
was conducive to the recognition of pulling and pushing. The overall recognition of the four 
construction activities required the realization and control of overall activity recognition. It was 
necessary to balance the performances of the overall activity recognition and the partial activity 
recognition for the classification of the four construction activities. At the data level, it was 
necessary to optimize the combination of inertial sensors. The acceleration and angular velocity 
patterns of different sensor locations were greatly different for the same activity; thus, the 
combination of inertial sensors was not limited to the same sensor location, and the combined 
configuration of multiple sensor locations was more favorable for construction activity 
recognition. Differences in the location and category of inertial sensors affected the recognition 
of construction activities. The next section examines and discusses in detail how to optimize 
the position and category of inertial sensors to improve the performance of construction activity 
recognition.

4.1	 Different classification methods for improving recognition performance with single 
sensor location

	 The training and test data for the classifier model were derived from 70 and 30% of the total 
number of feature vector sets, respectively. The training data set used a 10-fold cross-validation 
method to generate a classifier model for various classification algorithms. The number of 
feature vectors or activities of various construction activities in the study are shown in Table 2. 
The inertial sensor data of each construction activity were collected through the outdoor 
control experiment for the recognition of complex construction activities, and the feature vector 

Table 2
Number of feature vectors of various construction activities.

Feature Activity
Pouring Pushing Pulling Shoveling

Test set 765 696 714 672
Train set 1785 1624 1666 1568
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generated by feature extraction was used as the classifier inputs. In order to determine whether 
the differences in the inertial sensor categories at the same location affected the recognition of 
complex activities, the performances of accelerometers and gyroscopes at the same location 
were analyzed. Figure 7 plots the accuracy values of the classifier model for each location and 
the inertial sensor configuration values for the four machine learning methods.

Fig. 7.	 Different classification methods for improving recognition performance with single sensor location.
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	 The activity recognition performance of the A+G data of the waist, wrist, and upper 
arm was superior to those of the A data and G data. When the classifier model only used 
A+G data, the three locations of the waist, wrist, and upper arm had the highest accuracy in 
activity recognition using the NN classification method with values of 0.896, 0.971, and 0.923, 
respectively. The recognition accuracy of the wrist was much higher than that of the waist and 
upper arm. When the classifier model only used A data, the best classification methods for the 
waist, wrist, and upper arm were RF, KNN, and NN and the accuracy values were 0.849, 0.964, 
and 0.885, respectively, i.e., the activity recognition of the wrist was still better than that of the 
waist and upper arm. However, the upper-arm RF classifier model had the best performance 
with a value of 0.867 when only G data were used, but the RF classification recognition 
performances of the waist and wrist had accuracies as high as 0.829 and 0.862, respectively. 
Comparing the construction activity recognition performance of the inertial sensor category 
configuration among the waist, wrist, and upper arm, we found that the activity recognition 
performance of the wrist was highest. In order to maximize the construction activity 
recognition performance, we suggest the combination of acceleration and angular velocity data 
in the classifier model and the use of the NN classification method. Comparing the activity 
recognition performance of the wrist for A+G data and A data, we found that the A+G data gave 
only slightly better performance than the A data.
	 Table 3 shows the classification recognition PIR and average PIR for the inertial sensor 
category configuration of the waist, upper arm, and wrist. The activity recognition performance 
of the A+G data for the waist was much higher than that for the wrist and upper arm, indicating 
that the performance is maximized by applying the combination of the accelerometer and 
the gyroscope when using a device worn on the waist. Although the PIR of the wrist was the 
smallest, combined with the overall recognition performance of the wrist in Fig. 7, the wrist data 
achieved the best recognition performance using only the acceleration data. Table 3 shows that 
the SVM classification method had the highest PIR for all three sensor locations, indicating that 
the single inertial sensor data were not applicable to the SVM classifier model for construction 
activity recognition. Table 4 shows that the classification model performance of A, G, and 
A+G data in a single sensor location and the data collected by the accelerometer and gyroscope 
placed on the wrist maximized the recognition performance of the complex construction 
activities when the device was placed in a single sensor location for data acquisition. However, 
the ability of the classification model generated by the inertial sensor category configuration to 
detect each activity remained to be analyzed. To this end, the F-measure was used to quantify 
the classification capability for each activity. Figure 6 shows that the NN classification method 
using A+G data produced the highest recognition accuracy.

Table 3
Activity recognition PIR of waist, wrist, and upper arm.

Placement Improvement rate (%) Mean PIR
(%)SVM RF KNN NN

Upper arm 5.80 26.40 4.30 6.20 6
Waist 28.40 4.80 12 16.80 14.40
Wrist 12.40 0.70 0.40 3.00 1.85



Sensors and Materials, Vol. 33, No. 2 (2021)	 707

4.2	 Activity recognition performance of various combinations of sensors

	 There were 20 single inertial sensor configurations for multiple sensor locations, with 12 
single inertial sensor configurations for two sensor locations and eight single inertial sensor 
configurations for three sensor locations. The activity recognition performance of each 
combination of sensor locations was measured using the NN classification method. Table 4 
shows the activity recognition performance results for different combinations of single 
inertial sensor data at two sensor locations and three locations. The device units contained 
accelerometers and gyroscopes at the waist, wrist, and upper arm to obtain data for loading and 
unloading tasks. The maximum ARA in Table 4 was 0.979, for which the data combination was 
the angular velocity at the waist and the acceleration at the wrist, and the inertial sensor data 
categories in the waist, wrist, and upper arm were G, A, and A, respectively. The best results 
for the inertial sensor configuration with two locations indicated that the angular velocity data 
of the waist helped improve the activity recognition performance of the acceleration data at the 
upper arm. The addition of the upper arm acceleration data further enhanced the performance 
of activity recognition when using inertial sensors in three sensor locations. Including the 
acceleration data for the wrist maximized the recognition of the complex activities when a single 
inertial sensor was deployed in multiple sensor locations. Table 5 shows the activity recognition 
results for the combination of single inertial sensor data at the waist and upper arm and the 

Table 4 
Activity recognition performance of different combinations of single inertial sensor data.

Waist Wrist Upper arm AccuracyA G A G A G
Two sensor locations

Y Y 0.975 
Y Y 0.904 
Y Y 0.904 
Y Y 0.908 

Y Y 0.979 
Y Y 0.898 
Y Y 0.945 
Y Y 0.876 

Y Y 0.975 
Y Y 0.972 

Y Y 0.965 
Y Y 0.854 

Three sensor locations
Y   Y   Y    0.972 
Y   Y    Y 0.973 
Y     Y Y    0.956 
Y     Y   Y 0.935 

  Y Y   Y    0.984 
  Y Y    Y 0.979 
  Y   Y Y    0.964 
  Y   Y   Y 0.858 
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A+G data for the wrist. The minimum accuracy value in Table 5 was 0.854, indicating that the 
angular velocity values of the wrist and upper arm were highly detrimental to the recognition 
of construction activities. According to Fig. 6, the ARA in the case of the combination of the 
acceleration and angular velocity data collected by the wrist was 0.971, which was higher than 
that of 0.942 obtained by considering the acceleration of the wrist. The A+G data of the wrist 
were set as the basic data to determine the effectiveness of construction activity recognition of 
combinations of data obtained from multiple sensor locations.
	 The maximum recognition accuracy in Table 5 was 0.983 when the data consisted of A+G at 
the wrist, G at the waist, and A at the upper arm. The recognition accuracy for the combination 
of wrist A+G and the waist G was 0.980 when using the data of two sensor locations, and 
the accuracy for the combination of wrist A+G and the upper-arm A data reached 0.981. The 
addition of the angular velocity of the waist and the acceleration of the wrist improved the 
recognition performance when the wrist A+G data were used as the activity recognition data. 
Combined with the results in Table 5, the maximum recognition accuracy of 0.984 for the waist G, 
wrist A, and upper-arm A further verified the best combination of the position and the inertial 
sensor category. The results of the combinations of two sensor locations in Table 5 were further 
compared with the results of the activity recognition of the wrist using the acceleration data in 
Table 4, and it was found that the activity recognition results in Table 5 were slightly superior 
to those in Table 4. Comparing the data of the three sensor locations in Tables 4 and 5 with the 
activity recognition results, we found that the A+G accuracy at the wrist was slightly lower than 
the A accuracy.
	 Our results indicated that more data fusion of inertial sensors did not necessarily lead to an 
increase in activity recognition performance and that the fusion of useless data only interfered 
with the learning of the classifier model. In summary, a suitable combination of the inertial 
sensor position and the category contributed to activity recognition. The A+G data for all three 
sensor locations were superior to single inertial sensor data; thus, the A+G data can be used to 
analyze the construction activity classification performance of different combinations of data 
obtained from the waist, wrist, and upper arm.
	 Table 6 shows the ARA of different A+G data combinations at the three sensor locations, 
where the A+G combination of the waist and wrist contributed to the performance improvement 

Table 5
Activity recognition performance of wrist A+G data combined with single inertial sensor data at waist and upper 
arm.

Waist Wrist/A+G Upper arm AccuracyA G A G
Y Y 0.976 

Y Y  0.980 
Y Y 0.981 
Y Y 0.972 

Y Y Y 0.972
Y Y Y 0.966

Y Y Y 0.983
Y Y Y 0.974
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when including A+G combination data for the wrist. The classification accuracy of all A+G 
combination data using the three sensor locations reached 0.971 but the classification result of 
the A+G data using wrists decreased slightly. The maximum accuracy values in Tables 4–6 
were 0.979, 0.984, and 0.983, respectively, indicating that it is necessary to determine the best 
sensor location to optimize the arrangement of different types of sensors. The performance 
results of all sensor location combination models revealed that for the actual construction 
activity recognition under the cooperation of multiple types of inertial sensors, the model 
generated by the fusion of the angular velocity of the waist and the acceleration data of the wrist 
and upper arm is most beneficial for the recognition of the construction activities.
	 Table 7 shows the detailed recognition results of the Waist-G + Wrist-A + Upper arm-A 
model for various construction activities. The highest recognition accuracy was obtained for 
shoveling among the construction activities, with the lowest recognition accuracy obtained for 
pulling. The results show that there is a distinction between construction activities, which is 
determined by their nature. Therefore, the construction activity recognition model should be 
improved.
	 A system for recognizing complex construction activities based on the combination of 
accelerometer and gyroscope data obtained at sensor locations through machine learning was 
developed and its interface is shown in Fig. 8.

4.3	 Novelty and discussion

	 The novelty of this study is that we considered the optimal combination of multiple types 
of sensors for the recognition of construction task activities and investigated the optimal 
combination of positions to maximize recognition performance under the cooperation of inertial 
sensors, thus addressing the shortcomings of previous research. For instance, Joshua and 
Varghese(39) studied the application of accelerometers on the waists of workers on construction 
sites for collecting data to investigate accelerometer-based activity classification for automating 
the work-sampling process. Nonetheless, they only used inertial sensors such as accelerometers 
as the source of construction activity data. Note that only the performance of accelerometers 
on workers’ waists has been studied. Most studies did not consider a construction task as 
a complex activity. Akhavian and Behzadan(40) simulated various types of construction 
activities (loading a wheelbarrow, pushing the loaded wheelbarrow, dumping material from 
the wheelbarrow, and returning the empty wheelbarrow) using accelerometers and gyroscopes 
integrated with a smartphone worn on the upper right arm to collect data for worker activity 

Table 6
Activity recognition performance of A+G data combinations at three sensor locations.

Waist/A+G Wrist/A+G Upper arm/A+G Accuracy
Y Y 0.979
Y Y 0.962

Y Y 0.979
Y Y Y 0.971
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recognition. Their research combined accelerometers and gyroscopes for activity recognition, 
but only considered the combined data of two inertial sensors at one body location and failed to 
take advantage of the gyroscope as the dominant sensor for activity recognition. Lee et al.(44) 

examined the reliability and usability of wearable sensors for monitoring roofing workers 
during on-duty and off-duty activities. The results demonstrated the usability of these sensors, 
and they recommended a data collection period of three consecutive days for obtaining an intra-
class correlation coefficient for heart rate, energy expenditure, metabolic equivalents, and sleep 
efficiency. The participants exhibited significant variations in their physical responses, health 
statuses, and safety behaviors. However, the study of Lee et al.(44) had two limitations. First, it 
did not provide occupation-related physical activity data based on the placement of the sensor 
on the wrist rather than the hip or waist. Second, the performance of the model developed by 
Lee et al.(44) was not validated using experimental data, thus limiting the reliability and validity 
of the results. Yan et al.(45) developed warning personal protective equipment (PPE) based on 
wearable inertial measurement units (WIMUs) that enabled workers’ self-awareness and self-

Fig. 8.	 (Color online) Interface of system for recognizing complex construction activities based on combination 
of accelerometer and gyroscope data obtained at multiple sensor locations through machine learning.

Table 7
Detailed recognition results for Waist-G + Wrist-A + Upper arm-A model.
Class of Activity Specificity Sensitivity F-measure
Pouring 0.999 0.972 0.984
Shoveling 0.997 1 0.996
Pulling 0.993 0.967 0.973
Pushing 0.99 1 0.985
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management of ergonomically hazardous operational patterns. They proposed data processing 
and real-time warning algorithms for the automatic assessment and warning of hazardous 
postures through a connected smartphone application as soon as dangerous operational 
patterns were detected. However, they did not study multiple types of inertial sensors in 
different locations on the human body because sensors in different locations may have different 
sensitivities for activity recognition. Chen et al.(46) proposed a tensor decomposition approach 
to compress and reorganize motion data; however, it could only examine two sample activities 
composed of sequencing postures. A comparison of the present study with the above studies is 
given in Table 8. Akhavian and Behzadan(40) studied the use of inertial sensor data using only 
one sensor location for the recognition of similar construction activities in their study. Although 
our study applied to the construction field, the activity recognition performance reached 0.98 
accuracy. However, the pursuit of more reliable and efficient activity recognition performance is 
a basic requirement for future automation and the real-time recognition of worker activities.

5.	 Conclusions

	 Different types of inertial sensor data and sensor locations can have a significant influence 
on activity recognition performance. The experiments on sensor locations and categories in 
this study helped improve the performance of construction activity recognition for practical 
applications. We developed a system for recognizing complex construction activities based on 
the combination of accelerometer and gyroscope data obtained from multiple sensor locations 
through experiments. All activity data were derived from the acceleration and angular velocity 
data simultaneously recorded at three body locations (waist, wrist, and upper arm). Results 
show that the A+G combination dataset obtained from the wrist had the best activity recognition 
among the sensor category configurations when the raw data came from a single sensor 

Table 8
Comparison of current study with other related studies.
Related studies Limitations

Ref. 39 1. only studied accelerometer
2. only studied device on waist

Ref. 40 1. accuracy lower than that in our study
2. failed to take advantage of gyroscope as dominant sensor for activity recognition

Ref. 44

1. did not provide occupation-related physical activity data based on placement on wrist 
rather than hip or waist
2. performance of developed model not validated using experimental data, thus limiting 
reliability and validity

Ref. 45 did not study multiple types of inertial sensors in different locations on human body because 
sensors in different locations may have different sensitivities for activity recognition

Ref. 46 could only examine two sample activities composed of sequencing postures

Our study

1. studied both accelerometer and gyroscope
2. studied multiple locations such as wrist, waist, and upper arm
3. had the highest accuracy
4. used gyroscope as dominant sensor
5. validated using experimental data 
6. studied multiple types of inertial sensors in different locations on human body
7. studied four sample activities composed of sequences of postures
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location. The NN algorithm exhibited the highest classification accuracy among the machine 
learning algorithms. The effect of a single inertial sensor configuration at multiple locations on 
activity recognition indicated that the wrist was the most suitable location for sensor placement. 
The best results for activity recognition with the combination of two and three sensor locations 
were obtained with Waist-G + Wrist-A and Waist-G + Wrist-A + Upper arm-A, respectively. 
By comparing the results for a single sensor location, two sensor locations, and three sensor 
locations, we found that the use of three sensor locations produced the best accuracy. The use 
of a gyroscope and an accelerometer at the waist and upper arm, respectively, improved the 
activity recognition performance using the wrist A+G data. Since placing sensors at three 
sensor locations on the human body could lead to some inconvenience, further studies are 
recommended to search for ways of improving the accuracy of construction activity recognition 
with two sensor locations. 
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Appendix

Table A.1
Feature descriptions extracted from inertial sensor data.
No. Features Definition 
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