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	 Streamlines in a signal field are analyzed to describe the changes in the signal distribution 
of wireless sensors in this study. To generate streamlines effectively and efficiently with seed 
points in a vector field, we combine several algorithms to propose an adaptive method. The 
method is based on a quadtree data structure and information entropy. First, we improve the 
speed of calculating the entropy field in a vector field by an order of magnitude using a fast 
entropy field calculation algorithm. In the entropy gradient field, seed points are deployed 
along the direction of the gradient at a certain interval from the existing seed points using an 
entropy gradient field seeding algorithm. Then, a quadtree grid in the entropy field is obtained 
by dividing the field into multiple levels with high entropy using the quadtree entropy field 
segmentation algorithm. Upon doing this, all nodes of the grid become seed points. These 
algorithms significantly improve the efficiency of seed point deployment, with different 
densities in different locations. As a result, a better layout of streamlines in the vector field is 
generated.

1.	 Introduction

	 The signal strength of a sensor network influences the use of wireless sensors in the 
network. The distribution of signal intensity is considered as a signal field. In particular, the 
gradient distribution of a signal constitutes a vector field. The signal gradient field indicates 
the vector direction in which the signal strength fades fastest, so the analysis of the signal 
gradient field is of great significance in studying the sensor signal distribution. There are many 
visualization techniques for vector signal gradient fields. Among them, streamline analysis 
is the most common and important method as a method of multivariate data analysis.(1) The 
visualization technology of a vector field uses the tangent direction of a point on a streamline, 
which is always identical to the vector direction at that point. Therefore, the use of a streamline 
provides a full picture of a vector field. The seed point of a streamline is the starting point and 
influences the final layout of the streamline. The layout of streamline seed points is important 
for analyzing the signal field of wireless sensors, which is discussed in the present article. 
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	 It is important to deploy seed points in streamlines to obtain important information. 
However, too many seed points reduce the drawing speed and cause visual confusion. To solve 
this problem, many researchers have proposed methods of deploying seeds. In 2010, Xu et al. 
proposed the use of information entropy 1) to measure the information content at each point 
in a vector field and 2) to design a reasonable layout of seed points in streamlines.(2) Xu et al. 
also used the concept of the information entropy of the vector field with the entropy field and 
conditional entropy to suggest methods of template-based initial seed selection, importance-
based seed sampling, and redundant streamline pruning. These methods enabled as much 
information as possible to be expressed with fewer streamlines, minimized visual interference, 
and fewer occlusion problems. Other methods based on information entropy have been proposed 
subsequently but had a long calculation time. Even though the seed point layout based on 
conditional entropy and redundant streamline pruning improved the final streamline layout, a 
long time was required. 
	 In recent years, research on algorithms for seed point deployment in streamlines has 
focused on technology based on information entropy. Previous studies showed recognizable 
results (refer to Sect. 2) but needed improvement. First, algorithms deploying seed points in 
streamlines based on information entropy had low time efficiency. In particular, the algorithm 
with the conditional entropy for streamline advection required repeated iteration, making it 
time-consuming. Secondly, although some of the methods used a different way of locating seed 
points with information entropy, the seed points did not reflect the local information entropy.
	 To solve these problems, we propose an adaptive method for deploying seed points based 
on information entropy and a quadtree. A quadtree has a tree data structure with four children. 
Quadtrees are used to divide a two-dimensional (2D) area into quadrants. The proposed method 
consists of three different algorithms: a fast entropy field calculation algorithm, an entropy 
gradient field seeding algorithm, and a quadtree entropy field segmentation algorithm. The 
combined method generates high-quality streamlines at a high speed. It not only retains all of 
the important information of vector fields but also avoids visual interference and occlusion. The 
generated streamlines not only guarantee the coverage of a vector field without blank areas but 
also extract all feature points. Moreover, iterations are not necessary, which saves calculation 
time. We expect the new adaptive method to be applied in various fields of study.
	 The remainder of this paper is arranged as follows. In Sect. 2, we review the relevant works. 
In Sect. 3, we introduce the theoretical background and main idea of the method with specific 
layouts. In Sect. 4, we discuss test cases to evaluate the method. In Sect. 5, we summarize the 
results and discuss the limitations and possible future research.

2.	 Related Works

	 It is well known that the locations of seed points in streamlines have a direct impact on 
streamline visualization. Early studies proposed fast seed point deployment methods. Jobard 
and Lefer proposed an algorithm to create a 2D steady flow field of equally spaced lines that 
had a high time efficiency.(3) Liu et al. used an algorithm that increased the time efficiency 
by an order of magnitude while obtaining better quality streamlines.(4) Spencer et al. tested 
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an equal-spacing streamline generation method on a three-dimensional (3D) object surface. 
The method could self-adapt and be applied to complex 3D object surfaces at a high speed.(5) 
Another fast seed point deployment method was proposed by Mebarki et al.(6) All of these 
methods have advantages such as simple processes and high speeds, but they do not carry out 
the structural analysis of vector fields and have the important features of the vector field.
	 Then, a feature-based vector field visualization method was proposed. This method extracts 
the feature points in the vector field, which include the center point, the saddle point, the source 
point, the convergence point, and so forth. The method finds the boundary of the influence of 
the streamline from each feature point. Then, the feature points and boundaries constitute the 
topological structure of the vector field. Helman and Hesselink first proposed the concept of a 
vector field topology (VFT) and a method to classify feature points by eigenvalue–eigenvector 
analysis of the Jacobian matrix.(7) This method was developed in a 3D vector field.(8) Later 
studies focused on how to extract the critical points. For example, Batra and Hesselink found the 
critical points by linear interpolation in a triangular grid,(9) and Li et al. extracted the higher-
order critical points using the local linear vector field on a triangular plane or curved surface 
grid.(10) Tricoche et al. used the Poincaré index to extract critical points.(11) Some researchers 
used non-numerical methods to extract feature points. Polthier and Preuss proposed a critical 
point extraction method in an unstructured triangular mesh vector field using a discrete Hodge 
decomposition in 2D space.(12) Tong et al. extended this method to a 3D tetrahedral mesh,(13) 
and Guo et al. extended the method to a regular grid.(14)

	 Xu et al. proposed an independent streamline layout optimization method that was based 
on the information entropy(2) introduced by Shannon(15) to measure the amount of information. 
Chen et al. improved Xu et al.’s method, also using information entropy to find critical points 
in the vector field, then grouping all streamlines by a clustering method.(16) Finally, streamlines 
were replaced by the Streamtape technology for drawing images that better expressed the 
direction and structure information. Wang et al. introduced information entropy into the 
process of texture rendering in a vector field, proposing a texture generation algorithm based on 
fuzzy feature measurement and information entropy.(17) Zhang et al. made an in-depth analysis 
of a streamline generation method using information entropy and proposed algorithms for 
feasible streamline generation and streamline quality evaluation.(18) However, the algorithms 
were time-consuming. Thus, Yusoff et al. first proposed the use of vector magnitudes to 
calculate information entropy and optimize a streamline layout.(19) On the basis of this research, 
Guo et al. calculated information entropy by utilizing the vector direction and vector magnitude 
comprehensively, which not only extracted feature regions but also visualized regions with 
abrupt changes in the vector magnitude such as shock waves.(20)

	 Through these studies, the occlusion of a vector field became an important problem to 
solve. Tao et al. introduced the concept of viewpoints based on information entropy and 
created viewpoint sets based on global vector data, thus realizing the visualization of flow field 
information under different viewpoints.(21) From this, Lu et al. combined information entropy 
and the k-means clustering method to select viewpoints more efficiently.(22) Liu et al. suggested 
a method based on information entropy and Clifford algebra for the automatic detection of 
flow field feature information. The automatic feature-matching operation was carried out by 
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the Clifford convolution method.(23) Huang and Zhang proposed two algorithms for seed point 
deployment that used information entropy: an algorithm with a greedy strategy and the Monte 
Carlo algorithm. These two methods generated uniformly distributed seed points and used 
information entropy for screening the points.(24)

3.	 Basic Ideas and Algorithms

	 A discrete definition of Shannon’s entropy was given by Xu et al. as(2)
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where X is a random variable for xi and p(xi) is the probability of the possible result xi. xi is 
obtained by the following equation:
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where C(xi) is the frequency of the possible result xi. 
	 The specific process of using these two equations to calculate the entropy field is discussed 
as follows.

3.1	 Fast entropy field calculation algorithm

	 This algorithm calculates an entropy field and improves the computing efficiency by an 
order of magnitude. To solve the inconvenience of irregular grids, we used mesh unit filling 
preprocessing (MUFP) to transform irregular grids into regular grids composed of many 
small square pixels.(1) For a 2D vector field, the random variable X in Eq. (1) refers to the 
possible directions of all vectors in the neighborhood of a sampling point in the vector field. 
In Xu et al.,(2) the range of the angle of the 2D vector (0, 360) was discretized and divided into 
60 angle intervals. That is, in Eq. (2), n = 60. Here, x1 is the event in the angle range between 0 
and 6°, x2 is the event in the angle range between 6 and 12°, and so on. A reasonable definition 
of the neighborhood of the sampling point was also given by Xu et al. In this study, we define 
the neighborhood of a sampling point as a square around the sampling point whose side length 
is 13 and whose area contains 132 = 169 pixels. 
	 That is, in Eq. (2), the value of 1 ( )n
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=∑  is fixed to 169. Therefore, Eq. (2) can be simplified 
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	 Thus, the simplified version of Eq. (1) for information entropy is 
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	 Equation (5) applies to the case that the side length of the square surrounding the sampling 
point is fixed to 13.  When programming the process to obtain information entropy, we define 
an integer array CX(60) and initialize all of its elements to 0. We use the array to store the 
polar histogram of a sampling point. Then the direction angles and angle intervals of 169 
vectors in the neighborhood of the sampling point are calculated. Then, 1 is added to the value 
of the element of the corresponding CX array. After all of these 169 neighborhood vectors 
are processed, the frequency C(xi) of each xi is stored in the CX array. Finally, the entropy is 
obtained with Eq. (5).
	 The direction angle of a vector is calculated as
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where vx and vy are the X-axis and Y-axis components of the vector, respectively.
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	 With repeated calculation, the total frequency C(xi) of the two adjacent sampling points is 
obtained as shown in Fig. 1.  To calculate the entropy of the sampling point marked by the brown 
circle in Fig. 1, we need to analyze the direction angles of 13 × 13 = 169 vectors within the 
range of the brown square and enter the 169 angles in the CX array. The entropy of the adjacent 
purple sampling point is calculated by the same process. The 169 additions for the calculation of 
the entropy of the purple sampling point and the brown sampling point are repeated 11 × 13 = 
143 times. We use the histogram of the CX array of the brown sampling points to calculate the 
entropy value of the purple sampling point and eliminate 143 repeated calculations. The method 
is as follows.
	 The calculation of the entropy of the brown sampling point retains the CX array in the 
information of the direction distribution of the 169 vectors in the brown square. We subtract 
the 13 vectors at the left edge of the brown square from the CX array and then add the 13 
vectors at the right edge of the purple square. Then, we obtain the distribution information of 
the directions of the 169 vectors in the neighborhood of the purple sample point. This method 
simplifies the 169 operations to 13 subtractions and 13 additions. If the side length of the 
sampling point in the neighborhood square is N, the time efficiency changes from O(N)2 to 
2O(N) for obtaining the frequency array of the distribution information on the direction of 
the neighbor of a sampling point. This result greatly improves efficiency. Similarly, using the 
histogram array of the brown sampling point to solve that of the pink sampling point greatly 
reduces the number of calculations. Using the above logic, the pseudocode of the algorithm is 
described as follows.

	 If (Vector field using irregular grid) {
	 Transform it into a regular square grid using the MUFP method;
} 
int x, y;
double angle[width][height];// Saves the vector direction angles of all pixels in the vector field
for(x=0;x< width;x++){ 
for(y=0;y< height;y++){

Fig. 1.	 (Color online) Example of calculating an entropy field.
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	 	 angle[x][y]=The direction angles of pixel p(x,y) calculated by Eq. (4);
}
} // This two-layer loop calculates the direction angles of all pixels in the vector field in advance, avoiding 
repeated calculation in the later stage and improving the speed.
double oneEntropy;// Save the entropy of pixel p(x,y)
int CX[60]={0};// Save the histogram of direction angles of neighborhood vectors of a sampling point
int pCX[60]={0};// Save the histogram of the direction angle of the neighborhood vector of the previous 
sampling point

double EntropyField[width][height];// Save the entropy field of the vector field
int N=13;// The length of the neighborhood square’s side
for(x=0;x<N;x++){ 
for(y=0;y<N;y++){
	 CX[angle[x][y]/6]++; 
	 pCX[angle[x][y]/6]++;
}
} // This two-layer loop calculates the histogram of the bottom left point (N/2, N/2) of the vector field
oneEntropy=The entropy calculated using Eq. (3) and the array CX; 
x=N/2, y=N/2; 
	 EntropyField[x][y]=oneEntropy;
for(y=N/2;(y+ N/2)< height; y++){
	 pCX=CX; 
	 for(x=N/2;(x+ N/2)< width; x++){
if(y==N/2&& x==N/2){
break;
}// Skip the sampling point at the bottom left because it has already been calculated.
if(x==N/2){
for(int i=0;i<N; i++){
	 	 CX[angle[x- N/2+i][y- N/2-1]/6]--; 
	 	 	 	 CX[angle[x- N/2+i][y+ N/2]/6]++; 
}
	 	 	 oneEntropy=The entropy calculated using Eq. (3) and the array CX;
	 EntropyField[x][y]=oneEntropy;
continue;
}
for(int i=0;i<N; i++){
	 CX[angle[x- N/2-1][y- N/2+i]/6]--; 
	 	 	 CX[angle[x+ N/2][y- N/2+i]/6]++; 
}
	 	 oneEntropy=The entropy calculated using Eq. (3) and the array CX;
	 	 EntropyField[x][y]=oneEntropy;
}
	 CX= pCX; 
} 

	 The above algorithm is invalid for the sampling points at the edge of the vector field because 
they do not have enough neighbors. In this case, the entropy of these edge sampling points 
needs to be calculated using the basic method. 

3.2	 Entropy gradient field seeding algorithm

	 An entropy gradient field in an original vector field is first obtained from the information 
entropy, and then all important areas in the vector field are found with various feature points. 
Seed points are located in the area of a rhombus. The entropy gradient is calculated using the 
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entropy value at each sampling point to obtain the entropy gradient field. A series of seed points 
from the rhombus is obtained at appropriate intervals along the gradient direction. The obtained 
seed points ensure that no important information is missed. The streamlines generated from 
these seed points cover most of the non-critical areas. However, in some cases, the series of 
seed points create some blank areas in the original vector field, which need to be supplemented 
by the second algorithm. Entropy is mathematically a scalar, and so is the entropy field. All 
scalar fields are calculated to obtain the corresponding gradient field. This gradient field is a 
vector field, and the direction of the vector in the field contains some information. For example, 
in the gradient fields of the scalar fields of height, temperature, and entropy, the gradients 
indicate the direction in which the height, temperature, and entropy decrease most rapidly. The 
information entropy is the amount of information. Thus, the directions in which the entropy and 
the amount of information decrease most rapidly are the same. The fastest transition from more 
information to less information is most likely to be achieved by placing a series of seed points at 
an appropriate interval in the direction. This means that the streamlines from these seed points 
cover as many representative areas as possible according to the amount of information. This is 
the basic principle of locating seed points using the entropy gradient field.
	 The determination of the origin of the sequence of seed points helps understand the 
algorithm of deploying seed points in the entropy gradient field. It is natural to start with the 
feature points of the vector field. In the rhombic layout, there are four sides around a feature 
point and each side has four seed points. From the four seed points, calculation of the entropy 
gradient field is started and extended to the four series of seed points at a certain interval to 
perfectly cover the whole vector field.
	 Then, it is possible to determine the distance between seed points. A larger modulus of the 
entropy gradient at a certain point means that the change in the information entropy around the 
point is larger. Thus, more streamlines are needed to describe the changes. A smaller modulus 
pertains to a smaller change in the information entropy and fewer streamlines. The basic idea is 
to calculate an appropriate interval between seed points based on the entropy gradient modulus. 
The larger the gradient modulus, the shorter the distance. 
	 This is described in the following equation:

	 ( )1 (5.907 )mL B G A= + × − × ,	 (7)

where A is the shortest distance between two adjacent seed points in the same row, B is a 
coefficient used to adjust the distance between two seed points, and Gm is the modulus of 
the information entropy gradient at the current sampling point. The constant of 5.907 in the 
equation is the maximum information entropy of a sampling point according to Eq. (1).
	 Common methods for calculating the gradient of an entropy field include a central difference 
operator, an adjacent gradient factor, and the Sobel operator.(25) We choose the Sobel operator 
as it has the advantages of high precision and speed. Figure 2 shows a schematic diagram of the 
Sobel operator of a 2D scalar field.
	 The equations for calculating the entropy gradient of point (x, y) are as follows.
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	 Figure 3 shows the entropy field calculated using a typical center vector field. Figure 3(a) 
depicts the cloud map generated from the entropy field. The closer to the center, the greater the 
change in the vector direction of the local region, resulting in a higher entropy value. The seed 
points are shown in Fig. 3(b). The seed point in the center is the feature point with four seed 
points around it arranged in a rhombus, as in the traditional entropy method. Then, starting 
from the four seed points in the periphery, four series of seed points are generated by the above 
entropy gradient field method. Figure 3(c) shows the streamline effect traced from the above 
seed points.
	 It is worth noting that the example vector field is the standard central vector field, and the 
theoretical result of the calculated entropy field with the standard model has the structure of 
strictly concentric circles. However, the calculation error makes the entropy field not strictly 
concentric. The trajectories of the four seed points are also straight lines from the center in 
the top, bottom, left, and right directions. Figure 4 shows the entropy field, seed points, and 
streamlines in a standard saddle point vector field.

3.3	 Quadtree entropy field segmentation algorithm

	 The entropy gradient field seeding algorithm covers the important areas of the vector field 
with fewer seed points, producing excellent streamlines. However, as shown in Figs. 3 and 4, 
there are large gaps in the vector field. Thus, we use the quadtree method to make sure that 
there are no large gaps in the vector field.
	 The quadtree is an idea of analysis and classification for 2D spatial data that is often used 
in image segmentation, image compression, geographic information analysis, and so forth.(26) 
The basic idea is to judge the 2D space according to a certain attribute, divide it into four equal 

Fig. 2.	 Schematic diagram of Sobel operator of a 2D scalar field.
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(a)

(b)

(c)

Fig. 3.	 (Color online) Entropy field, seed points, 
and streamlines in a central vector field. (a) Cloud 
map of the entropy field. (b) Seed points obtained 
by the entropy gradient field seeding algorithm. (c) 
Streamlines traced from the seed points in (b).

(a)

(b)

(c)

Fig. 4.	 (Color online) Entropy field, seed points, and 
streamlines in a saddle point vector field. (a) Cloud 
map of the entropy field. (b) Seed points obtained 
by the entropy gradient field seeding algorithm. (c) 
Streamlines traced from the seed points in (b).
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parts, and then recursively judge and divide each part. The quadtree technology divides a 2D 
space into several small squares, where the higher the attribute value, the denser the partition.
	 To ensure that there are basic seed points in each region, the vector field is first divided into 
squares of a basic size defined in the algorithm. Then, all vertices become seed points. The sides 
of these basic squares have appropriate lengths. If the sides are too long, they have too few seed 
points, with important information missed. However, if the sides are too short, the seed points 
are too densely located and the speed of calculation is lowered, causing visual confusion. In 
the algorithm, we take the longer side of the vector field as a criterion and then divide it into 10 
equal parts. After that, we divide each basic square into a quadtree to judge whether the average 
entropy value of all pixels inside the current square is higher than a threshold. If so, the square 
is divided into four equal parts again. Then, the newly divided square is judged recursively. 
After a few recursions, a set of target seed points is obtained.
	 The quadtree should not be divided into too many squares. In theory, each square is divided 
three times (in three degrees) and the length of each side becomes one-eighth of the original. In 
the worst case, the long side of the entire vector field is divided into 80 segments with 81 seed 
points. As a vector field cannot have such high entropy, the degree of the quadtree division by 
the algorithm is fixed to be 3. 
	 The threshold for a square must be different for different degrees of quadtrees. The lower the 
degree, the larger the squares and the smaller the average of their internal entropy. Moreover, as 
the degree increases, the squares become smaller, and the possible average value of entropy in 
these small squares becomes higher once the feature points are included. Therefore, we design 
a threshold of the average value of entropy that increases with the degree. The equation used to 
calculate the threshold is

	 42 5.907D
ThresholdE A −= ⋅ ⋅ ,	 (10)

where A is the control coefficient and D is the current degree of the quadtree from 1 to 3. The 
value of A decides the density of the seed points. The constant of 5.907 in the equation is the 
maximum information entropy of a sampling point according to Eq. (1). 
	 We give the flow chart of the quadtree entropy field segmentation algorithm based on the 
above explanation in Fig. 5.
	 The function in Fig. 5(a) performs the basic segmentation of the vector field to obtain the 
basic square. This step does not use the quadtree idea but basic average division. The function 
DivOneQuaTree(thisSquare,1) is then called for each square. This function is recursive, as 
parameter 1 is the square to be divided and parameter 2 is the degree.
	 Figure 5(b) shows the result using the DivOneQuaTree function. The recursion ends when 
the parameter degree is 4. When the degree is less than 4, the average entropy in the current 
square is judged to be higher or lower than the threshold value. If the average entropy is higher, 
the recursion continues, but if the average entropy is lower, the recursion ends.
	 Figure 6 shows the set of seed points and streamlines of the central vector field obtained 
by the quadtree entropy field segmentation algorithm. In the programming, the quadtree 
entropy field segmentation algorithm and the entropy gradient field seeding algorithm are used 
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Fig. 5.	 Program flow chart of the quadtree entropy field segmentation algorithm. (a) Main function of the quadtree 
entropy field segmentation algorithm. (b) Recursive function used to divide a square.

(a) (b)

Fig. 6.	 (Color online) Seed points and streamlines of a central vector field obtained by using the quadtree entropy 
field segmentation algorithm. (a) Cloud map of the entropy field and the seed points obtained by the quadtree 
entropy field segmentation algorithm. (b) Streamlines traced from the seed points in (a).

(a) (b)

in combination. Firstly, the entropy field in the vector field is calculated by the fast entropy 
field calculation algorithm to find the feature points. Each feature point is surrounded by four 
seed points in a rhombus. In the second step, starting from the four seed points outside of 
each feature point, the entropy gradient field seeding algorithm is used to produce multiple 
series of seed points. The third step uses the quadtree entropy field segmentation algorithm to 
accomplish the complete coverage of the vector field.
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Fig. 7.	 (Color online) Seed points and streamlines of a wind field. (a) Rhombic seed points around the feature 
points and the streamlines traced from them. (b) Seed points obtained by the entropy gradient field seeding 
algorithm and the streamlines from them. (c) Cloud map of the entropy field and the seed points obtained by the 
quadtree entropy field segmentation algorithm. (d) Streamlines traced from the seed points in (c). (e) Streamlines 
traced from the seed points in (a), (b), and (c).

(d) (e)

(c)(a) (b)

4.	 Results and Discussion

	 To verify the effectiveness and applicability of the above algorithms, we use two sets of wind 
field data to conduct experiments. The experimental results are as follows.
	 An example of a wind field is shown in Fig. 7. To draw Fig. 7(a), we calculated the 
characteristic points using the entropy field and made a rhombic form to arrange the seed 
points, and then used the seed points only to trace the streamlines. There are many blanks in 
the flow field. Figure 7(b) shows the generated streamlines after expanding the sets of seed 
points with the entropy gradient field seeding algorithm. Owing to the calculation error and 
other factors, there are still some blank areas. Figure 7(c) shows the entropy in the vector field 
and the set of seed points obtained by the quadtree entropy field segmentation algorithm. Figure 
7(d) shows the streamlines generated from the seed points of a quadtree. It can be seen that 
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areas with higher entropy have more seed points, while areas with lower entropy have fewer 
seed points. Finally, Fig. 7(e) shows the streamlines after mixing the three different sets of seed 
points. Figure 8 shows seed points and streamlines of the other wind field data obtained by the 
different algorithms.
	 Table 1 shows the times required to calculate the entropy field by the two methods. The 
results demonstrate that the fast entropy field calculation algorithm is ten times faster than the 
classical entropy field calculation algorithm. Table 2 shows the time required for each step for 
the two wind field examples in Figs. 7 and 8. Each step requires a very short time. The three 
algorithms are completed in less than 0.2 s in each example. Table 3 compares the method 
in this study with other non-entropy methods and indicates that the new method gives better 
results with a higher speed. 

Fig. 8.	 (Color online) Seed points and streamlines of a wind field. (a) Rhombic seed points around the feature 
points and the streamlines traced from them. (b) Seed points obtained by the entropy gradient field seeding 
algorithm and the streamlines from them. (c) Cloud map of the entropy field and the seed points obtained by the 
quadtree entropy field segmentation algorithm. (d) Streamlines traced from the seed points in (c). (e) Streamlines 
traced from the seed points in (a), (b), and (c).

(d) (e)

(c)(a) (b)
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5.	 Conclusions and Future Work

	 To generate better sets of seed points at a higher speed, three algorithms are proposed in this 
paper: 1) the fast entropy field calculation algorithm, which increases the computation speed 
of the entropy field by more than ten times, 2) the entropy gradient field seeding algorithm, 
which uses the concept of the entropy gradient field to arrange the seed points along the entropy 
gradient direction, and 3) the quadtree entropy field segmentation algorithm, which segments 
a vector field using quadtree theory and entropy value judgment, where regions with higher 
entropy are divided into more areas by quadtrees to obtain a denser grid. The combination of 
these three algorithms produces high-quality sets of streamlines with the seed points at a higher 
speed and describes as much information as possible with as few streamlines as possible. 
	 The algorithms still have some drawbacks. The generated streamlines do not give a fully 
developed visual effect as the streamlines are crowded. For a future study, a fast streamline 
redundancy clipping algorithm needs to be developed to reduce visual confusion. Moreover, the 
application of the above three algorithms to vector fields in 3D space and dynamic vector fields 
(which vary with time) should be researched with an appropriate selection of path line seed 
points. The results of this study are expected to lead to further analysis of the signal gradient 
field of sensor networks for developing improved sensor layouts.

Table 1
Times required to calculate the entropy field by the two methods (in s).
Algorithm Fig. 7 Fig. 8
Classical entropy field calculation algorithm 0.489 0.364
Fast entropy field calculation algorithm 0.042 0.031

Table 2
Times required for each step (in s).
Step Fig. 7 Fig. 8
Mesh unit filling preprocessing 1.026 1.096
Fast entropy field calculation algorithm 0.042 0.031
Determination of feature points and use of rhombic form to locate seed points 0.004 0. 004
Entropy gradient field seeding algorithm 0.137 0.182
Quadtree entropy field segmentation algorithm 0.006 0.005
Tracing of streamlines from set of seed points 2.798 2.350
Total time 4.013 3.668

Table 3
Comparison of characteristics of several streamline layout methods.

Method Use of 
information entropy

Adopting
seed point layout 

Blanks in streamlines
of vector field

Topology
of vector field

Calculation 
speed

Ref. 2 Yes Yes Yes Yes Very slow
Ref. 3 No No Yes No Fast
Ref. 4 No No Yes No Very fast
Ref. 11 No No No Yes Slow
Ref. 19 Yes Yes Yes No Very fast
Ref. 20 Yes Yes Yes No Very fast
This study Yes Yes Yes Yes Fast
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