
789Sensors and Materials, Vol. 33, No. 2 (2021) 789–804
MYU Tokyo

S & M 2495

*Corresponding author: e-mail: liuhuilin@mail.neu.edu.cn
**Corresponding author: e-mail: hsienwei.tseng@gmail.com
https://doi.org/10.18494/SAM.2021.3047

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Adaptive Method to Locate Seed Points
Based on Information Entropy and Quadtree

Xiaofu Du,1,2 Huilin Liu,1* and Hsien-Wei Tseng3**

1School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2School of Information Science and Technology, Xiamen University Tan Kah Kee College,

Zhangzhou 363105, China
3School of AI, Guangdong & Taiwan, Foshan University, Foshan, Guangdong 528225, China

(Received July 20, 2020; accepted January 21, 2021)

Keywords:	 vector field visualization, streamline, entropy gradient field, quadtree

	 Streamlines in a signal field are analyzed to describe the changes in the signal distribution
of wireless sensors in this study. To generate streamlines effectively and efficiently with seed
points in a vector field, we combine several algorithms to propose an adaptive method. The
method is based on a quadtree data structure and information entropy. First, we improve the
speed of calculating the entropy field in a vector field by an order of magnitude using a fast
entropy field calculation algorithm. In the entropy gradient field, seed points are deployed
along the direction of the gradient at a certain interval from the existing seed points using an
entropy gradient field seeding algorithm. Then, a quadtree grid in the entropy field is obtained
by dividing the field into multiple levels with high entropy using the quadtree entropy field
segmentation algorithm. Upon doing this, all nodes of the grid become seed points. These
algorithms significantly improve the efficiency of seed point deployment, with different
densities in different locations. As a result, a better layout of streamlines in the vector field is
generated.

1.	 Introduction

	 The signal strength of a sensor network influences the use of wireless sensors in the
network. The distribution of signal intensity is considered as a signal field. In particular, the
gradient distribution of a signal constitutes a vector field. The signal gradient field indicates
the vector direction in which the signal strength fades fastest, so the analysis of the signal
gradient field is of great significance in studying the sensor signal distribution. There are many
visualization techniques for vector signal gradient fields. Among them, streamline analysis
is the most common and important method as a method of multivariate data analysis.(1) The
visualization technology of a vector field uses the tangent direction of a point on a streamline,
which is always identical to the vector direction at that point. Therefore, the use of a streamline
provides a full picture of a vector field. The seed point of a streamline is the starting point and
influences the final layout of the streamline. The layout of streamline seed points is important
for analyzing the signal field of wireless sensors, which is discussed in the present article.

790	 Sensors and Materials, Vol. 33, No. 2 (2021)

	 It is important to deploy seed points in streamlines to obtain important information.
However, too many seed points reduce the drawing speed and cause visual confusion. To solve
this problem, many researchers have proposed methods of deploying seeds. In 2010, Xu et al.
proposed the use of information entropy 1) to measure the information content at each point
in a vector field and 2) to design a reasonable layout of seed points in streamlines.(2) Xu et al.
also used the concept of the information entropy of the vector field with the entropy field and
conditional entropy to suggest methods of template-based initial seed selection, importance-
based seed sampling, and redundant streamline pruning. These methods enabled as much
information as possible to be expressed with fewer streamlines, minimized visual interference,
and fewer occlusion problems. Other methods based on information entropy have been proposed
subsequently but had a long calculation time. Even though the seed point layout based on
conditional entropy and redundant streamline pruning improved the final streamline layout, a
long time was required.
	 In recent years, research on algorithms for seed point deployment in streamlines has
focused on technology based on information entropy. Previous studies showed recognizable
results (refer to Sect. 2) but needed improvement. First, algorithms deploying seed points in
streamlines based on information entropy had low time efficiency. In particular, the algorithm
with the conditional entropy for streamline advection required repeated iteration, making it
time-consuming. Secondly, although some of the methods used a different way of locating seed
points with information entropy, the seed points did not reflect the local information entropy.
	 To solve these problems, we propose an adaptive method for deploying seed points based
on information entropy and a quadtree. A quadtree has a tree data structure with four children.
Quadtrees are used to divide a two-dimensional (2D) area into quadrants. The proposed method
consists of three different algorithms: a fast entropy field calculation algorithm, an entropy
gradient field seeding algorithm, and a quadtree entropy field segmentation algorithm. The
combined method generates high-quality streamlines at a high speed. It not only retains all of
the important information of vector fields but also avoids visual interference and occlusion. The
generated streamlines not only guarantee the coverage of a vector field without blank areas but
also extract all feature points. Moreover, iterations are not necessary, which saves calculation
time. We expect the new adaptive method to be applied in various fields of study.
	 The remainder of this paper is arranged as follows. In Sect. 2, we review the relevant works.
In Sect. 3, we introduce the theoretical background and main idea of the method with specific
layouts. In Sect. 4, we discuss test cases to evaluate the method. In Sect. 5, we summarize the
results and discuss the limitations and possible future research.

2.	 Related Works

	 It is well known that the locations of seed points in streamlines have a direct impact on
streamline visualization. Early studies proposed fast seed point deployment methods. Jobard
and Lefer proposed an algorithm to create a 2D steady flow field of equally spaced lines that
had a high time efficiency.(3) Liu et al. used an algorithm that increased the time efficiency
by an order of magnitude while obtaining better quality streamlines.(4) Spencer et al. tested

Sensors and Materials, Vol. 33, No. 2 (2021)	 791

an equal-spacing streamline generation method on a three-dimensional (3D) object surface.
The method could self-adapt and be applied to complex 3D object surfaces at a high speed.(5)
Another fast seed point deployment method was proposed by Mebarki et al.(6) All of these
methods have advantages such as simple processes and high speeds, but they do not carry out
the structural analysis of vector fields and have the important features of the vector field.
	 Then, a feature-based vector field visualization method was proposed. This method extracts
the feature points in the vector field, which include the center point, the saddle point, the source
point, the convergence point, and so forth. The method finds the boundary of the influence of
the streamline from each feature point. Then, the feature points and boundaries constitute the
topological structure of the vector field. Helman and Hesselink first proposed the concept of a
vector field topology (VFT) and a method to classify feature points by eigenvalue–eigenvector
analysis of the Jacobian matrix.(7) This method was developed in a 3D vector field.(8) Later
studies focused on how to extract the critical points. For example, Batra and Hesselink found the
critical points by linear interpolation in a triangular grid,(9) and Li et al. extracted the higher-
order critical points using the local linear vector field on a triangular plane or curved surface
grid.(10) Tricoche et al. used the Poincaré index to extract critical points.(11) Some researchers
used non-numerical methods to extract feature points. Polthier and Preuss proposed a critical
point extraction method in an unstructured triangular mesh vector field using a discrete Hodge
decomposition in 2D space.(12) Tong et al. extended this method to a 3D tetrahedral mesh,(13)
and Guo et al. extended the method to a regular grid.(14)

	 Xu et al. proposed an independent streamline layout optimization method that was based
on the information entropy(2) introduced by Shannon(15) to measure the amount of information.
Chen et al. improved Xu et al.’s method, also using information entropy to find critical points
in the vector field, then grouping all streamlines by a clustering method.(16) Finally, streamlines
were replaced by the Streamtape technology for drawing images that better expressed the
direction and structure information. Wang et al. introduced information entropy into the
process of texture rendering in a vector field, proposing a texture generation algorithm based on
fuzzy feature measurement and information entropy.(17) Zhang et al. made an in-depth analysis
of a streamline generation method using information entropy and proposed algorithms for
feasible streamline generation and streamline quality evaluation.(18) However, the algorithms
were time-consuming. Thus, Yusoff et al. first proposed the use of vector magnitudes to
calculate information entropy and optimize a streamline layout.(19) On the basis of this research,
Guo et al. calculated information entropy by utilizing the vector direction and vector magnitude
comprehensively, which not only extracted feature regions but also visualized regions with
abrupt changes in the vector magnitude such as shock waves.(20)

	 Through these studies, the occlusion of a vector field became an important problem to
solve. Tao et al. introduced the concept of viewpoints based on information entropy and
created viewpoint sets based on global vector data, thus realizing the visualization of flow field
information under different viewpoints.(21) From this, Lu et al. combined information entropy
and the k-means clustering method to select viewpoints more efficiently.(22) Liu et al. suggested
a method based on information entropy and Clifford algebra for the automatic detection of
flow field feature information. The automatic feature-matching operation was carried out by

792	 Sensors and Materials, Vol. 33, No. 2 (2021)

the Clifford convolution method.(23) Huang and Zhang proposed two algorithms for seed point
deployment that used information entropy: an algorithm with a greedy strategy and the Monte
Carlo algorithm. These two methods generated uniformly distributed seed points and used
information entropy for screening the points.(24)

3.	 Basic Ideas and Algorithms

	 A discrete definition of Shannon’s entropy was given by Xu et al. as(2)

	 2() () log ()
i

i i
x X

H X p x p x
∈

= − ∑ ,	 (1)

where X is a random variable for xi and p(xi) is the probability of the possible result xi. xi is
obtained by the following equation:

	
1

()()
()
i

i n
ii

C xp x
C x

=

=
∑

,	 (2)

where C(xi) is the frequency of the possible result xi.
	 The specific process of using these two equations to calculate the entropy field is discussed
as follows.

3.1	 Fast entropy field calculation algorithm

	 This algorithm calculates an entropy field and improves the computing efficiency by an
order of magnitude. To solve the inconvenience of irregular grids, we used mesh unit filling
preprocessing (MUFP) to transform irregular grids into regular grids composed of many
small square pixels.(1) For a 2D vector field, the random variable X in Eq. (1) refers to the
possible directions of all vectors in the neighborhood of a sampling point in the vector field.
In Xu et al.,(2) the range of the angle of the 2D vector (0, 360) was discretized and divided into
60 angle intervals. That is, in Eq. (2), n = 60. Here, x1 is the event in the angle range between 0
and 6°, x2 is the event in the angle range between 6 and 12°, and so on. A reasonable definition
of the neighborhood of the sampling point was also given by Xu et al. In this study, we define
the neighborhood of a sampling point as a square around the sampling point whose side length
is 13 and whose area contains 132 = 169 pixels.
	 That is, in Eq. (2), the value of 1 ()n

ii C x
=∑ is fixed to 169. Therefore, Eq. (2) can be simplified

to

	 ()()
169

i
i

C xp x = .	 (3)

Sensors and Materials, Vol. 33, No. 2 (2021)	 793

	 Equation (1) can be simplified to

	

()

2

60

2
1

60

2
1

60

2 2
1

60 60

2 2
1 1

60 60
2

2
1 1

() () log ()

() log ()

() ()log
169 169

() log () log 169
169

() ()log () log 169
169 169

log 169 1() () log (
169 169

i

i i
x X

i i
i

i i

i

i
i

i

i i
i

i i

i i
i i

H X p x p x

p x p x

C x C x

C x C x

C x C xC x

C x C x C x

∈

=

=

=

= =

= =

= −

= −

= −

= − −

= − +

= −

∑

∑

∑

∑

∑ ∑

∑ ∑
60

1
60

2
1

)

 () 169,

17.4 () log ()
169

i

i
i

i i
i

C x

C x C x

=

=

=

∴ ≈ −

∑

∑



 	 (4)

	 Thus, the simplified version of Eq. (1) for information entropy is

	
60

2
1

1() 7.4 () log ().
169 i i

i
H X C x C x

=

≈ − ∑ 	 (5)

	 Equation (5) applies to the case that the side length of the square surrounding the sampling
point is fixed to 13. When programming the process to obtain information entropy, we define
an integer array CX(60) and initialize all of its elements to 0. We use the array to store the
polar histogram of a sampling point. Then the direction angles and angle intervals of 169
vectors in the neighborhood of the sampling point are calculated. Then, 1 is added to the value
of the element of the corresponding CX array. After all of these 169 neighborhood vectors
are processed, the frequency C(xi) of each xi is stored in the CX array. Finally, the entropy is
obtained with Eq. (5).
	 The direction angle of a vector is calculated as

	
2 2

180arcsin 360 360,%y

x y

v
Angle floor

v v

   
   = × +    π  +    

	 (6)

where vx and vy are the X-axis and Y-axis components of the vector, respectively.

794	 Sensors and Materials, Vol. 33, No. 2 (2021)

	 With repeated calculation, the total frequency C(xi) of the two adjacent sampling points is
obtained as shown in Fig. 1. To calculate the entropy of the sampling point marked by the brown
circle in Fig. 1, we need to analyze the direction angles of 13 × 13 = 169 vectors within the
range of the brown square and enter the 169 angles in the CX array. The entropy of the adjacent
purple sampling point is calculated by the same process. The 169 additions for the calculation of
the entropy of the purple sampling point and the brown sampling point are repeated 11 × 13 =
143 times. We use the histogram of the CX array of the brown sampling points to calculate the
entropy value of the purple sampling point and eliminate 143 repeated calculations. The method
is as follows.
	 The calculation of the entropy of the brown sampling point retains the CX array in the
information of the direction distribution of the 169 vectors in the brown square. We subtract
the 13 vectors at the left edge of the brown square from the CX array and then add the 13
vectors at the right edge of the purple square. Then, we obtain the distribution information of
the directions of the 169 vectors in the neighborhood of the purple sample point. This method
simplifies the 169 operations to 13 subtractions and 13 additions. If the side length of the
sampling point in the neighborhood square is N, the time efficiency changes from O(N)2 to
2O(N) for obtaining the frequency array of the distribution information on the direction of
the neighbor of a sampling point. This result greatly improves efficiency. Similarly, using the
histogram array of the brown sampling point to solve that of the pink sampling point greatly
reduces the number of calculations. Using the above logic, the pseudocode of the algorithm is
described as follows.

	 If (Vector field using irregular grid) {
	 Transform it into a regular square grid using the MUFP method;
}
int x, y;
double angle[width][height];// Saves the vector direction angles of all pixels in the vector field
for(x=0;x< width;x++){
for(y=0;y< height;y++){

Fig. 1.	 (Color online) Example of calculating an entropy field.

Sensors and Materials, Vol. 33, No. 2 (2021)	 795

	 	 angle[x][y]=The direction angles of pixel p(x,y) calculated by Eq. (4);
}
} // This two-layer loop calculates the direction angles of all pixels in the vector field in advance, avoiding
repeated calculation in the later stage and improving the speed.
double oneEntropy;// Save the entropy of pixel p(x,y)
int CX[60]={0};// Save the histogram of direction angles of neighborhood vectors of a sampling point
int pCX[60]={0};// Save the histogram of the direction angle of the neighborhood vector of the previous
sampling point

double EntropyField[width][height];// Save the entropy field of the vector field
int N=13;// The length of the neighborhood square’s side
for(x=0;x<N;x++){
for(y=0;y<N;y++){
	 CX[angle[x][y]/6]++;
	 pCX[angle[x][y]/6]++;
}
} // This two-layer loop calculates the histogram of the bottom left point (N/2, N/2) of the vector field
oneEntropy=The entropy calculated using Eq. (3) and the array CX;
x=N/2, y=N/2;
	 EntropyField[x][y]=oneEntropy;
for(y=N/2;(y+ N/2)< height; y++){
	 pCX=CX;
	 for(x=N/2;(x+ N/2)< width; x++){
if(y==N/2&& x==N/2){
break;
}// Skip the sampling point at the bottom left because it has already been calculated.
if(x==N/2){
for(int i=0;i<N; i++){
	 	 CX[angle[x- N/2+i][y- N/2-1]/6]--;
	 	 	 	 CX[angle[x- N/2+i][y+ N/2]/6]++;
}
	 	 	 oneEntropy=The entropy calculated using Eq. (3) and the array CX;
	 EntropyField[x][y]=oneEntropy;
continue;
}
for(int i=0;i<N; i++){
	 CX[angle[x- N/2-1][y- N/2+i]/6]--;
	 	 	 CX[angle[x+ N/2][y- N/2+i]/6]++;
}
	 	 oneEntropy=The entropy calculated using Eq. (3) and the array CX;
	 	 EntropyField[x][y]=oneEntropy;
}
	 CX= pCX;
}

	 The above algorithm is invalid for the sampling points at the edge of the vector field because
they do not have enough neighbors. In this case, the entropy of these edge sampling points
needs to be calculated using the basic method.

3.2	 Entropy gradient field seeding algorithm

	 An entropy gradient field in an original vector field is first obtained from the information
entropy, and then all important areas in the vector field are found with various feature points.
Seed points are located in the area of a rhombus. The entropy gradient is calculated using the

796	 Sensors and Materials, Vol. 33, No. 2 (2021)

entropy value at each sampling point to obtain the entropy gradient field. A series of seed points
from the rhombus is obtained at appropriate intervals along the gradient direction. The obtained
seed points ensure that no important information is missed. The streamlines generated from
these seed points cover most of the non-critical areas. However, in some cases, the series of
seed points create some blank areas in the original vector field, which need to be supplemented
by the second algorithm. Entropy is mathematically a scalar, and so is the entropy field. All
scalar fields are calculated to obtain the corresponding gradient field. This gradient field is a
vector field, and the direction of the vector in the field contains some information. For example,
in the gradient fields of the scalar fields of height, temperature, and entropy, the gradients
indicate the direction in which the height, temperature, and entropy decrease most rapidly. The
information entropy is the amount of information. Thus, the directions in which the entropy and
the amount of information decrease most rapidly are the same. The fastest transition from more
information to less information is most likely to be achieved by placing a series of seed points at
an appropriate interval in the direction. This means that the streamlines from these seed points
cover as many representative areas as possible according to the amount of information. This is
the basic principle of locating seed points using the entropy gradient field.
	 The determination of the origin of the sequence of seed points helps understand the
algorithm of deploying seed points in the entropy gradient field. It is natural to start with the
feature points of the vector field. In the rhombic layout, there are four sides around a feature
point and each side has four seed points. From the four seed points, calculation of the entropy
gradient field is started and extended to the four series of seed points at a certain interval to
perfectly cover the whole vector field.
	 Then, it is possible to determine the distance between seed points. A larger modulus of the
entropy gradient at a certain point means that the change in the information entropy around the
point is larger. Thus, more streamlines are needed to describe the changes. A smaller modulus
pertains to a smaller change in the information entropy and fewer streamlines. The basic idea is
to calculate an appropriate interval between seed points based on the entropy gradient modulus.
The larger the gradient modulus, the shorter the distance.
	 This is described in the following equation:

	 ()1 (5.907)mL B G A= + × − × ,	 (7)

where A is the shortest distance between two adjacent seed points in the same row, B is a
coefficient used to adjust the distance between two seed points, and Gm is the modulus of
the information entropy gradient at the current sampling point. The constant of 5.907 in the
equation is the maximum information entropy of a sampling point according to Eq. (1).
	 Common methods for calculating the gradient of an entropy field include a central difference
operator, an adjacent gradient factor, and the Sobel operator.(25) We choose the Sobel operator
as it has the advantages of high precision and speed. Figure 2 shows a schematic diagram of the
Sobel operator of a 2D scalar field.
	 The equations for calculating the entropy gradient of point (x, y) are as follows.

Sensors and Materials, Vol. 33, No. 2 (2021)	 797

	
[]
[]

 (1, 1) 2 (1,) (1, 1)

(1, 1) 2 (1,) (1, 1)

Gx f x y f x y f x y

f x y f x y f x y

= + − + ∗ + + + +

− − − + ∗ − + − +
	 (8)

	
[]
[]

 (1, 1) 2 (, 1) (1, 1)

(1, 1) 2 (, 1) (1, 1)

Gy f x y f x y f x y

f x y f x y f x y

= − − + − + + −

− − + + ∗ + + + +
	 (9)

	 Figure 3 shows the entropy field calculated using a typical center vector field. Figure 3(a)
depicts the cloud map generated from the entropy field. The closer to the center, the greater the
change in the vector direction of the local region, resulting in a higher entropy value. The seed
points are shown in Fig. 3(b). The seed point in the center is the feature point with four seed
points around it arranged in a rhombus, as in the traditional entropy method. Then, starting
from the four seed points in the periphery, four series of seed points are generated by the above
entropy gradient field method. Figure 3(c) shows the streamline effect traced from the above
seed points.
	 It is worth noting that the example vector field is the standard central vector field, and the
theoretical result of the calculated entropy field with the standard model has the structure of
strictly concentric circles. However, the calculation error makes the entropy field not strictly
concentric. The trajectories of the four seed points are also straight lines from the center in
the top, bottom, left, and right directions. Figure 4 shows the entropy field, seed points, and
streamlines in a standard saddle point vector field.

3.3	 Quadtree entropy field segmentation algorithm

	 The entropy gradient field seeding algorithm covers the important areas of the vector field
with fewer seed points, producing excellent streamlines. However, as shown in Figs. 3 and 4,
there are large gaps in the vector field. Thus, we use the quadtree method to make sure that
there are no large gaps in the vector field.
	 The quadtree is an idea of analysis and classification for 2D spatial data that is often used
in image segmentation, image compression, geographic information analysis, and so forth.(26)
The basic idea is to judge the 2D space according to a certain attribute, divide it into four equal

Fig. 2.	 Schematic diagram of Sobel operator of a 2D scalar field.

798	 Sensors and Materials, Vol. 33, No. 2 (2021)

(a)

(b)

(c)

Fig. 3.	 (Color online) Entropy field, seed points,
and streamlines in a central vector field. (a) Cloud
map of the entropy field. (b) Seed points obtained
by the entropy gradient field seeding algorithm. (c)
Streamlines traced from the seed points in (b).

(a)

(b)

(c)

Fig. 4.	 (Color online) Entropy field, seed points, and
streamlines in a saddle point vector field. (a) Cloud
map of the entropy field. (b) Seed points obtained
by the entropy gradient field seeding algorithm. (c)
Streamlines traced from the seed points in (b).

Sensors and Materials, Vol. 33, No. 2 (2021)	 799

parts, and then recursively judge and divide each part. The quadtree technology divides a 2D
space into several small squares, where the higher the attribute value, the denser the partition.
	 To ensure that there are basic seed points in each region, the vector field is first divided into
squares of a basic size defined in the algorithm. Then, all vertices become seed points. The sides
of these basic squares have appropriate lengths. If the sides are too long, they have too few seed
points, with important information missed. However, if the sides are too short, the seed points
are too densely located and the speed of calculation is lowered, causing visual confusion. In
the algorithm, we take the longer side of the vector field as a criterion and then divide it into 10
equal parts. After that, we divide each basic square into a quadtree to judge whether the average
entropy value of all pixels inside the current square is higher than a threshold. If so, the square
is divided into four equal parts again. Then, the newly divided square is judged recursively.
After a few recursions, a set of target seed points is obtained.
	 The quadtree should not be divided into too many squares. In theory, each square is divided
three times (in three degrees) and the length of each side becomes one-eighth of the original. In
the worst case, the long side of the entire vector field is divided into 80 segments with 81 seed
points. As a vector field cannot have such high entropy, the degree of the quadtree division by
the algorithm is fixed to be 3.
	 The threshold for a square must be different for different degrees of quadtrees. The lower the
degree, the larger the squares and the smaller the average of their internal entropy. Moreover, as
the degree increases, the squares become smaller, and the possible average value of entropy in
these small squares becomes higher once the feature points are included. Therefore, we design
a threshold of the average value of entropy that increases with the degree. The equation used to
calculate the threshold is

	 42 5.907D
ThresholdE A −= ⋅ ⋅ ,	 (10)

where A is the control coefficient and D is the current degree of the quadtree from 1 to 3. The
value of A decides the density of the seed points. The constant of 5.907 in the equation is the
maximum information entropy of a sampling point according to Eq. (1).
	 We give the flow chart of the quadtree entropy field segmentation algorithm based on the
above explanation in Fig. 5.
	 The function in Fig. 5(a) performs the basic segmentation of the vector field to obtain the
basic square. This step does not use the quadtree idea but basic average division. The function
DivOneQuaTree(thisSquare,1) is then called for each square. This function is recursive, as
parameter 1 is the square to be divided and parameter 2 is the degree.
	 Figure 5(b) shows the result using the DivOneQuaTree function. The recursion ends when
the parameter degree is 4. When the degree is less than 4, the average entropy in the current
square is judged to be higher or lower than the threshold value. If the average entropy is higher,
the recursion continues, but if the average entropy is lower, the recursion ends.
	 Figure 6 shows the set of seed points and streamlines of the central vector field obtained
by the quadtree entropy field segmentation algorithm. In the programming, the quadtree
entropy field segmentation algorithm and the entropy gradient field seeding algorithm are used

800	 Sensors and Materials, Vol. 33, No. 2 (2021)

Fig. 5.	 Program flow chart of the quadtree entropy field segmentation algorithm. (a) Main function of the quadtree
entropy field segmentation algorithm. (b) Recursive function used to divide a square.

(a) (b)

Fig. 6.	 (Color online) Seed points and streamlines of a central vector field obtained by using the quadtree entropy
field segmentation algorithm. (a) Cloud map of the entropy field and the seed points obtained by the quadtree
entropy field segmentation algorithm. (b) Streamlines traced from the seed points in (a).

(a) (b)

in combination. Firstly, the entropy field in the vector field is calculated by the fast entropy
field calculation algorithm to find the feature points. Each feature point is surrounded by four
seed points in a rhombus. In the second step, starting from the four seed points outside of
each feature point, the entropy gradient field seeding algorithm is used to produce multiple
series of seed points. The third step uses the quadtree entropy field segmentation algorithm to
accomplish the complete coverage of the vector field.

Sensors and Materials, Vol. 33, No. 2 (2021)	 801

Fig. 7.	 (Color online) Seed points and streamlines of a wind field. (a) Rhombic seed points around the feature
points and the streamlines traced from them. (b) Seed points obtained by the entropy gradient field seeding
algorithm and the streamlines from them. (c) Cloud map of the entropy field and the seed points obtained by the
quadtree entropy field segmentation algorithm. (d) Streamlines traced from the seed points in (c). (e) Streamlines
traced from the seed points in (a), (b), and (c).

(d) (e)

(c)(a) (b)

4.	 Results and Discussion

	 To verify the effectiveness and applicability of the above algorithms, we use two sets of wind
field data to conduct experiments. The experimental results are as follows.
	 An example of a wind field is shown in Fig. 7. To draw Fig. 7(a), we calculated the
characteristic points using the entropy field and made a rhombic form to arrange the seed
points, and then used the seed points only to trace the streamlines. There are many blanks in
the flow field. Figure 7(b) shows the generated streamlines after expanding the sets of seed
points with the entropy gradient field seeding algorithm. Owing to the calculation error and
other factors, there are still some blank areas. Figure 7(c) shows the entropy in the vector field
and the set of seed points obtained by the quadtree entropy field segmentation algorithm. Figure
7(d) shows the streamlines generated from the seed points of a quadtree. It can be seen that

802	 Sensors and Materials, Vol. 33, No. 2 (2021)

areas with higher entropy have more seed points, while areas with lower entropy have fewer
seed points. Finally, Fig. 7(e) shows the streamlines after mixing the three different sets of seed
points. Figure 8 shows seed points and streamlines of the other wind field data obtained by the
different algorithms.
	 Table 1 shows the times required to calculate the entropy field by the two methods. The
results demonstrate that the fast entropy field calculation algorithm is ten times faster than the
classical entropy field calculation algorithm. Table 2 shows the time required for each step for
the two wind field examples in Figs. 7 and 8. Each step requires a very short time. The three
algorithms are completed in less than 0.2 s in each example. Table 3 compares the method
in this study with other non-entropy methods and indicates that the new method gives better
results with a higher speed.

Fig. 8.	 (Color online) Seed points and streamlines of a wind field. (a) Rhombic seed points around the feature
points and the streamlines traced from them. (b) Seed points obtained by the entropy gradient field seeding
algorithm and the streamlines from them. (c) Cloud map of the entropy field and the seed points obtained by the
quadtree entropy field segmentation algorithm. (d) Streamlines traced from the seed points in (c). (e) Streamlines
traced from the seed points in (a), (b), and (c).

(d) (e)

(c)(a) (b)

Sensors and Materials, Vol. 33, No. 2 (2021)	 803

5.	 Conclusions and Future Work

	 To generate better sets of seed points at a higher speed, three algorithms are proposed in this
paper: 1) the fast entropy field calculation algorithm, which increases the computation speed
of the entropy field by more than ten times, 2) the entropy gradient field seeding algorithm,
which uses the concept of the entropy gradient field to arrange the seed points along the entropy
gradient direction, and 3) the quadtree entropy field segmentation algorithm, which segments
a vector field using quadtree theory and entropy value judgment, where regions with higher
entropy are divided into more areas by quadtrees to obtain a denser grid. The combination of
these three algorithms produces high-quality sets of streamlines with the seed points at a higher
speed and describes as much information as possible with as few streamlines as possible.
	 The algorithms still have some drawbacks. The generated streamlines do not give a fully
developed visual effect as the streamlines are crowded. For a future study, a fast streamline
redundancy clipping algorithm needs to be developed to reduce visual confusion. Moreover, the
application of the above three algorithms to vector fields in 3D space and dynamic vector fields
(which vary with time) should be researched with an appropriate selection of path line seed
points. The results of this study are expected to lead to further analysis of the signal gradient
field of sensor networks for developing improved sensor layouts.

Table 1
Times required to calculate the entropy field by the two methods (in s).
Algorithm Fig. 7 Fig. 8
Classical entropy field calculation algorithm 0.489 0.364
Fast entropy field calculation algorithm 0.042 0.031

Table 2
Times required for each step (in s).
Step Fig. 7 Fig. 8
Mesh unit filling preprocessing 1.026 1.096
Fast entropy field calculation algorithm 0.042 0.031
Determination of feature points and use of rhombic form to locate seed points 0.004 0. 004
Entropy gradient field seeding algorithm 0.137 0.182
Quadtree entropy field segmentation algorithm 0.006 0.005
Tracing of streamlines from set of seed points 2.798 2.350
Total time 4.013 3.668

Table 3
Comparison of characteristics of several streamline layout methods.

Method Use of
information entropy

Adopting
seed point layout

Blanks in streamlines
of vector field

Topology
of vector field

Calculation
speed

Ref. 2 Yes Yes Yes Yes Very slow
Ref. 3 No No Yes No Fast
Ref. 4 No No Yes No Very fast
Ref. 11 No No No Yes Slow
Ref. 19 Yes Yes Yes No Very fast
Ref. 20 Yes Yes Yes No Very fast
This study Yes Yes Yes Yes Fast

804	 Sensors and Materials, Vol. 33, No. 2 (2021)

Acknowledgments

	 This work was supported by the Natural Science Foundation of Zhangzhou, Fujian (Project
No. ZZ2020J30), the TKKC Pre-Research Project (Project No. YY2019L02), and the Natural
Science Foundation of Fujian, China (Project No. 2018J01101).

References

	 1	 X. Du, H. Liu, H.-W. Tseng, and T.-H. Meen: Symmetry 12 (2020) 724. https://doi.org/10.3390/sym12050724
	 2	 L. Xu, T. Lee, and H. Shen: IEEE Trans. Vis. Comput. Graph. 16 (2010) 1216. https://doi.org/10.1109/

TVCG.2010.131
	 3	 B. Jobard and W. Lefer.: Proc. 8th Eurographics Workshop on Visualization in Scientific Computing (Boulogne

sur Mer, France, 1997) 45. https://doi.org/10.1007/978-3-7091-6876-9_5
	 4	 Z. Liu, R.-J. Moorhead, and J. Groner: IEEE Trans. Vis. Comput. Graph. 12 (2006) 965. https://doi.org/10.1109/

TVCG.2006.116
	 5	 B. Spencer, L.-S. Robert S, G. Chen, and E. Zhang: Computer Graphics Forum 28 (2009) 1618. https://doi.

org/10.1111/j.1467-8659.2009.01352.x
	 6	 A. Mebarki, P. Alliez, and O. Devillers: Proc. IEEE Visualization 2005 (Minneapolis, MN, USA, October 23-

28. 2005) 61. https://doi.org/10.1109/visual.2005.1532832
	 7	 J. Helman and L. Hesselink: IEEE Comput. 22 (1989) 27. https://doi.org/10.1109/2.35197
	 8	 J. Helman and L. Hesselink: IEEE Comput. Graphics Appl. 11 (1991) 36. https://doi.org/10.1109/38.79452
	 9	 R. Batra and L. Hesselink: Proc. IEEE Visualization’99 (San Francisco, CA, USA, 24-29 Oct. 1999) 105.

https://doi.org/10.1109/VISUAL.1999.809874
	10	 W. Li, B.Vallet, N. Ray, and B. Levy: IEEE Trans. Vis. Comput. Graph. 12 (2006) 1315. https://doi.org/10.1109/

TVCG.2006.173
	11	 X. Tricoche, C. Garth C, and A. Sanderson: IEEE Trans. Vis. Comput. Graph. 17 (2011) 1765. https://doi.

org/10.1109/TVCG.2011.254
	12	 K. Polthier and E. Preuss: Proc. Visualization and Mathematics III (Berlin, Germany, May 22-25, 2002) 113.

https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&S
		 ID=6EqKKnSDe3Z7sxHkMQu&page=1&doc=1&cacheurlFromRightClick=no
	13	 Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun: ACM Trans. Graphics 22 (2003) 445. https://doi.

org/10.1145/882262.882290
	14	 Q. Guo, M. Mandal, and M. Li: Pattern Recognit Lett. 26(2005) 493. https://doi.org/10.1016/j.patrec.2004.08.008
	15	 C.E. Shannon: ACM SIGMOBILE Mobile Computing and Communications Review 5 (1948) 3. https://doi.

org/10.1145/584091.584093
	16	 C. Chen, S. Yan S, and H. Yu: Computer Graphics Forum 30 (2011) 1941. https://doi.org/10.1111/j.1467-

8659.2011.02064.x
	17	 H.-H. Wang, H.-X. Xu, L. Zeng, and S.-K. Li: Proc. 2011 Int. Conf. Virtual Reality and Visualization (Beijing,

China, 4-5 Nov. 2011) 303. https://doi.org/10.1109/ICVRV.2011.41
	18	 S. Zhang, L. Xie, L. Gui, and Y. Zheng: Comput. Eng. Appl. 51 (2015) 181. https://xueshu.baidu.com/

usercenter/paper/show?paperid=aeb282c0f07d9e8867468cfa3bdbe03c&site=xueshu_se&hitarticle=1
	19	 Y.A. Yusoff, F. Mohamed F, M.K Mokhtar, B. Tomi, C.V Siang, and M.I.M. Isham: Proc. 2017 IEEE Conf. Big

Data and Analytics (Kuching, Malaysia, 16 – 17 Nov. 2017) 81. https://doi.org/10.1109/ICBDAA.2017.8284111
	20	 Y. Guo, W. Wang, and S. Li: Proc. 12th Int. Symp. Visual Information Communication and Interaction (Shanghai,

China, September 20 -22, 2019) 3356442. https://doi.org/10.1145/3356422.3356442
	21	 J. Tao, J. Ma, and C. Wang: IEEE Trans. Vis. Comput. Graph. 19 (2013) 393. https://doi.org/10.1109/

TVCG.2012.143
	22	 D.-Y. Lu, D.-M. Zhu, and Z.-Q. Wang: J. Computer-aided Design Graphics 29 (2017) 2281. https://doi.

org/10.3724/SP.J.1089.2017.16433
	23	 X. Liu, W. Zhang, and N. Zheng.: 2015 Int. Conf. Image and Graphics (Tianjin, China, August 13-16, 2015)

292-30. https://doi.org/10.1007/978-3-319-21963-9_27
	24	 D. M. Huang and L. W. Zhang: Comput. Eng. Sci. 3 (2018) 411. http://en.cnki.com.cn/Article_en/CJFDTotal-

JSJK201803005.htm
	25	 L. Yang and B. Zhang: Contributions to Geology and Mineral Resources Research 33 (2018) 306. http://

en.cnki.com.cn/Article_en/CJFDTotal-DZZK201802020.htm
	26	 H. Liu, K.-K. Huang, C.-X. Ren, Y.-F. Yu, and Z.-R. Lai: Signal Process.: Image Commun. 55 (2017) 1. https://

doi.org/10.1016/j.image.2017.03.011

https://doi.org/10.3390/sym12050724
https://doi.org/10.1109/TVCG.2010.131
https://doi.org/10.1109/TVCG.2010.131
https://doi.org/10.1007/978-3-7091-6876-9_5
https://doi.org/10.1109/TVCG.2006.116
https://doi.org/10.1109/TVCG.2006.116
https://doi.org/10.1111/j.1467-8659.2009.01352.x
https://doi.org/10.1111/j.1467-8659.2009.01352.x
https://doi.org/10.1109/visual.2005.1532832
https://doi.org/10.1109/2.35197
https://doi.org/10.1109/38.79452
https://doi.org/10.1109/VISUAL.1999.809874
https://doi.org/10.1109/TVCG.2006.173
https://doi.org/10.1109/TVCG.2006.173
https://doi.org/10.1109/TVCG.2011.254
https://doi.org/10.1109/TVCG.2011.254
https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=6EqKKnSDe3Z7sxHkMQu&page=1&doc=1&cacheurlFromRightClick=no
https://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=12&SID=6EqKKnSDe3Z7sxHkMQu&page=1&doc=1&cacheurlFromRightClick=no
https://doi.org/10.1145/882262.882290
https://doi.org/10.1145/882262.882290
https://doi.org/10.1016/j.patrec.2004.08.008
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1111/j.1467-8659.2011.02064.x
https://doi.org/10.1111/j.1467-8659.2011.02064.x
https://doi.org/10.1109/ICVRV.2011.41
https://xueshu.baidu.com/usercenter/paper/show?paperid=aeb282c0f07d9e8867468cfa3bdbe03c&site=xueshu_se&hitarticle=1
https://xueshu.baidu.com/usercenter/paper/show?paperid=aeb282c0f07d9e8867468cfa3bdbe03c&site=xueshu_se&hitarticle=1
https://doi.org/10.1109/ICBDAA.2017.8284111
https://doi.org/10.1145/3356422.3356442
https://doi.org/10.1109/TVCG.2012.143
https://doi.org/10.1109/TVCG.2012.143
https://doi.org/10.3724/SP.J.1089.2017.16433
https://doi.org/10.3724/SP.J.1089.2017.16433
https://doi.org/10.1007/978-3-319-21963-9_27
http://en.cnki.com.cn/Article_en/CJFDTotal-JSJK201803005.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-JSJK201803005.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201802020.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-DZZK201802020.htm
https://doi.org/10.1016/j.image.2017.03.011
https://doi.org/10.1016/j.image.2017.03.011

