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The microservice architecture is widely adopted in cloud computing and the applications
of software as a service (SaaS), and it can solve problems that the traditional monolithic
application development cannot handle. However, new problems, for example, an unbalanced
load, appear as many microservice modules coexist in one platform. These modules have
complex relationships with each other, causing unavoidable performance bottlenecks. As
reported in this paper, we proposed and investigated a load prediction strategy based on
long short-term memory (LSTM), which is a revised neural network method, to solve these
problems. We used the management system of a university’s public service as basic data in the
microservice architecture and the Spring Cloud package as the experimental platform. The
predicted load trend was compared with the actual load trend to prove that the proposed method
can act as a reliable forecasting model. We compared the prediction results of our proposed
strategy with those of other classical algorithms, including the autoregressive integrated moving
average model (ARIMA), support vector regression (SVR), and LSTM, and we showed that our
prediction strategy had higher efficiency than the other methods.

1. Introduction

With the rapid development of cloud computing and Internet of Things (IoT) technologies,
more hardware and software resources are being provided by Internet service providers
as software as a service (SaaS) schemes. IoT devices represent the sensor layer in an IoT
infrastructure, which is responsible for obtaining different types of static/dynamic information
about the real world through sensors with different functions. IoT devices can be embedded
with software, electronics, and sensors, and it can also be used for feature connectivity with
constrained resources. The IoT is a paradigm that allows many smart devices to be connected to
the Internet in the cloud, and these devices can be sensors, which can operate and transmit data
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from a system to other systems. These loT devices require high extensibility and agility and
low fault tolerance in the performance of software systems. Thus, it is important to investigate
or develop a system having a backend service architecture that can also have a monolithic
architecture in the early stage, for example, a service-oriented architecture (SoA)(l’z) and a
microservice-based architecture.>* A microservice-based architecture has a system of real-
time environmental sensors, and it is highly scalable for applications in a cloud environment.

The microservice architecture is connected to computational workflows for data analysis
because this architecture provides complete, ready-to-run, reproducible data analysis solutions
that can be easily deployed in private and public clouds as well as on desktop computers.
Moreover, using the bounded context method of the microservice decomposition architecture,
design ideas and implementation schemes for resource monitoring and scheduling and
for obtaining data synchronization in the cloud have been proposed to provide combat
capabilities with high efficiency and fast collaboration.’s) A microservice-based architecture
also has many advantages in large-scale software development, which can be divided into
many solo applications as small independent services according to business logic.®” Even
though the microservice architecture is very popular, it also introduces problems in service
communications and resource allocation efficiency when the number of users rapidly increases
or large-scale heterogeneous resources are needed. Because there are many microservice
modules existing in one platform, which have complex relationships with each other, they can
cause fatal performance bottlenecks in the resource allocation of the system, making load
prediction an urgent necessity.®

There have been many studies focused on the load prediction of the human flowrate of public
services, including algorithms based on traditional probability statistics, data mining, neural
networks, and deep learning. Load prediction based on traditional probability statistics includes
the exponential smoothing model, autoregressive model, and autoregressive moving average
model. Monfared et al. proposed a new adaptive exponential smoothing method, which can
automatically adjust parameters according to reality and the model can be updated immediately
over time.”) Calheiros e al. provided an autoregressive moving average model, which is
applied in SaaS for cloud computing to predict the physical machine load.!9 However, these
methods are all based on predefined formulas, which limit their generalization ability to deal
with ongoing load data, making it difficult to accurately depict actual situations with complex
conditions. Shahin proposed an adjustable algorithm based on a dynamic threshold, which was
constructed with the use of long short-term memory (LSTM) [a variant of the recurrent neural
network (RNN)] to predict the size of resources and automatically allocate virtual machines
according to predicted values.'V Qiu et al. also developed a deep learning method but with a
different bottom model, which was a combination of a multilayer restricted Boltzmann machine
and a deep belief network (DBN).!?) These load models based on the above prediction methods
were only concerned with hardware execution efficiency because the central process unit (CPU)
and memory were the main factors. However, it is possible to neglect the load of elements
including the CPU, memory, hard disk 1/O, and network 1/O. Moreover, a DBN is not good at
dealing with time series data, in contrast to the RNN. A gate recurrent unit (GRU) is a variant
of LSTM. However, to our knowledge, no research has focused on the load prediction strategy
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for the management system of a university public service by forecasting potential problems.
In this study, we proposed a new load model, which considered the efficiencies of the CPU,
memory, network 1/O, and hard disk I/O. We also modified the LSTM model, which was a
GRU model, for conducting the network training and used it in our load prediction strategy.
We also simplified the gate compared with that in other studies with the aim of resource
optimization. Also, to improve the accuracy, especially the processing accuracy of the predicted
time series data, we improved the calculation efficiency. We compared the prediction results of
our proposed strategy with other classical algorithms, including the autoregressive integrated
moving average model (ARIMA), support vector regression (SVR), and LSTM. We found that
our prediction method had higher efficiency than the other methods.

2. University Utility Architecture

A university utility is a cloud computing platform based on the microservice architecture,
which is a renewed architecture and can be investigated as a common monolithic application.
We adopted this scheme because the microservice architecture is relatively suitable for
situations where the number of users is rapidly increasing and system maintenance becomes
more burdensome without sufficient IT expertise. The services of management systems often
need to run for the whole day without interruptions. When services are developed and deployed
by different teams using different technologies, it is preferable to choose the microservice
architecture for better development & operations (DevOps) practice.m)

The utility architecture of our university (Longyan University) is shown in Fig. 1. Users can
visit the university utility from a cell phone or PC, and the log-in information is intercepted
by a common public user interface that is responsible for unified authentication, security,
and verification. This utility provides many services in the front end, including score query,
school news, financial information, library access, and curriculum information. Users can tap
any module that they want, and these requests are sent to the back-end destination. The Zuul
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Fig. 1. University utility architecture.
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gateway, which is designed for service information routing and location, is a necessary part
of the system as a large number of microservice modules exist, resulting in frequent changes
in the service IP address. When there are disturbances in microservice modules, which are
not uncommon in a large-scale system, Hystrix can act as a fuse and quickly diagnose the
locations of disturbances, cut off the related paths, and redirect the requests to alternative
service modules. Ribbon is a load balancer, which is a critical component in the architecture. Its
main function is to distribute client requests to different targets for microservice modules using
its internal self-learning algorithm. With the help of Ribbon, the system load burden can be
distributed more equally to each service module by considering its physical host burden. Users
can upload related developed service module information into Config using the Git tool, and
Config saves all the configuration information and downloads it to each module that requires
it whenever necessary. The microservice modules discussed in this paper were developed by
Spring Boot, which is a fast and convenient integrated development package, and Jenkins was

responsible for microservice module testing and integration testing.(l4’15)

3. Improved Load Prediction Strategy

3.1 Load model

So far, load models having functional limitations have often been considered, which are only
concerned with the functions of CPU and memory. Actually, the hardware for the load models is
more complicated in practice, so the load model in this study considers the parameters of CPU,
memory, disk I/0, and network I/O. The load computing formula is described below, in which
parameters with the prefix W refer to coefficients and they dominate the use of resources in the
load model. Loadcpy, Loadyem, Loadpisk, and Loadye; respectively refer to the load values of
the CPU, memory, disk, and network in one physical host at a given moment after normalization
procedures. Loadp,s is the predicted load of a physical host at a given moment and is calculated
as follows.

t t t
Loady,,, = chu -Loadcpu +Wigem - Load y,,,

D

t t
+ WDisk ’ LoadDisk + WNet ’ LoadNet

3.2 LSTM

Neural networks originated in the 1950s, and they have gradually been improved with the
development of the perceptron network structure, which is a model consisting of three layers:
an input layer, an output layer, and a hidden layer. Data can be incorporated in the input layer
and output from the output layer after transformation in the hidden layer. With the improvement
of models, many kinds of neural networks with multiple hidden layers have been invented, in
which different optimization functions have been used. However, these neural network models
are not good at dealing with time series data, and the RNN was developed to overcome this
problem.(l6) The output of neurons in the RNN can be applied as input data for the next time
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stamp, in which the connections of the structure established by the neurons of the RNN can
remember input data strings of any length. The RNN can be seen as a kind of deep neural
network (DNN) with the depth of its structure equivalent to the time length, which means
that the condition of fading away is inevitable. To solve this problem, LSTM, an upgrade of
the RNN, was designed, an example of which is the GRU.!'”) The critical part of the RNN is
the transfer function, which can be described by Eq. (2), where X;, the input of time stamp ¢,
and Hidden,, the output of the hidden layer of the prior time stamp ¢ — 1, can be combined to
update the output Hidden, of the hidden layer at time stamp .

Hidden, = F(Xt, Hiddent_l) 2

To characterize the properties of the RNN, F is a nonlinear differentiable transfer function
and different values of F correspond to different RNN models. In this paper, we choose the
vanilla RNN model, which is a simple transformation type of RNN and can be seen below. In

Eq. 3), T; € R™N and T, e R™Mare transformation matrixes, b € RM is a partial vector, and
F is a nonlinear activation function that is suitable for the nonlinear character of the data with
common activation functions such as sigmoid and tanh.

Hidden, = F (T,X, +T,. Hidden, +b) )

Because the vanishing gradient problem is a classical problem, i.e., RNN models cannot
capture data with long-term reliability, the transfer function will forget early training
information when the time series data is long. LSTM is chosen for this situation because it can
introduce the gate function in the design of the transfer function. The GRU is a minor revision
of LSTM with simplified gates, and in the GRU model, two gates are introduced in neurons.
The first one is reset  gate, used for adjusting the combination of the current input data and the
prior output hidden memory, and the other is update gate, used for controlling and saving the
training memory of the prior time stamp. The transfer function in the hidden layer of the GRU
can be expressed as Eqs. (4)—(7), with T, T, and b co-shared among all time stamps during
model training, in which the operator O is the dot product. The structures of the RNN and the
variations of the GRU neurons are shown in Fig. 2.

update _ gate, = F(TlXt + T, Hidden,_; + b) 4
reset _gate, = F(TlXt +TyHidden,_, +b) 5)
Hidden; = Sigmoid (TIX . + T, (reset _gate, © Hidden,_, )) ©6)

Hidden, = (1—update _ gate,) © Hidden,_| + update g, © Hidden; ) (7



810 Sensors and Materials, Vol. 33, No. 2 (2021)

Hidden, ~
Hidden,.; Hidden:  hidden,, .
F X +

b

update] gate;

Reset\ gate,
LF] [F] [tann]
X
RNN NEURON X GRU NEURON

Fig. 2. Structures of RNN and the variations of the GRU neurons.

3.3 Neural network training

Neural network model training focuses on the hidden layer. First, in the input layer, we
collect the four kinds of load time-series data mentioned above, which are normalized as
follows:

Load, = (Loadcpul, Loadcpuz, -,Load,," )
Load,,,, = (Loaa’Me,,l , Load,,,*, ...,Load,,," )

)
Load g = (Loale-Skl, Load,,?, ..., Load " )

Loady,, =(Loady,, Loady,?, ..., Load y,," )

Then we incorporate the one-dimensional vector data of the CPU, memory, disk, and
network into Eq. (1) to form the following time series matrix:

Load = (Loadl,Loadz, ...,Loadn) . )

The training set and testing set in the model training can be expressed as below, with the
constraint condition m < n.

Load,,yiping et = (Load,,Load,, ...,Load,,)
Load = (Loadm+1,L0adm+2, ...,Loadn)

testing _set —

(10)

Then we incorporate the input data into the classical slide window method, assuming a data
length of length. The divided model input is expressed as

X =( X5, X1 oor Xiong ) » 1 €[ 0, length]. (11)

1
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For this input, the initial prediction output in the output layer can be expressed as
Y = (Y. Yis1s oo Viongns ) o1 € [0, length]. (12)

Then the initial input data is incorporated into the hidden layer for the training calculation
with the Adam optimization algorithm used to continuously update the related parameters in
the model until the predefined prediction accuracy is satisfied. The output data processed by the
hidden layer can be expressed as Eq. (13), in which S; | and Neuron, | are the state and output
of the prior GRU neuron, respectively, and GRU refers to the combination of Egs. (4)—(7).

Hidden = (Hiddenl,Hiddenz, ...,Hidden,ength)

(13)
Hidden, = GRU(X,,S,_,, Neuron,_,)

As the input data is incorporated into the input layer, the output data will be “hidden” in the
hidden layer calculation, and the initial prediction data in the output layer will be an array of
length defined as length. We adopt the mean square error (MSE) as the error evaluation method,
which is a method to calculate the loss, where the loss can be described as follows:

1 length( m—length) ,
Loss= Hidden; -, 14
oSS length ( m—length ) ; ( laden; — 1; ) (14)

Our load prediction strategy can be generalized as below in a pseudo-format, in which we
need to initialize a few parameters, including the load data /oad, error accuracy o, possible
steps, the GRU neuron state S, and the Adam optimization parameter seed, before model
training. With the help of prediction data, we can predict the trend from the recent payload, i.e.,
whether it will exceed the threshold or is expected to increase in the future, providing useful
information for the future scheduling strategy.!®)

3.4 Load prediction strategy

The processes of the load prediction strategy are listed below:
Input Data: <Load, set length, o, length, S, seed, steps, wait for prediction datajengm™>
Output Data: <prediction data>

(@) Fetch Loadtraining and Loadyesting data from Load by set-length

(b) Fetch X and Y from Fraining by length

(¢©)  GRUpeyuron creation by S

(d) GRUpetwork connection by GRUpeyron

() GRUpetwork 1nitialization by seed

(f) foreach step in steps

(g) Hidden — GRU(X)
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1 length(mflength)

) L Hidden' ~Y')
0SS — -
length (m - length) ; ( waaen )

(1)  GRUpetwork update by Adam optimization with Loss and o

(j) end for

(k) Achieve GRUnetwork—completion

(I) Prediction-data «<— GRUpetwork-completion (Wait for predictionengn)
(m) return Prediction-data

4. [Experimental Results and Discussion

We carried out an experiment to demonstrate the effectiveness of the improved load
prediction strategy. In the experiment, we first normalized the initial data from four different
sources, the CPU, memory, disk I/O, and network I/O, using Eq. (1). These data were collected
in physical hosts by the script program Python. To verify the prediction accuracy of our model,
several control experiments were set up with MSE and the mean absolute percentage error (MAPE)
chosen as the evaluation indexes, where

vapp - L Z |Hidden; - Y,
n Y.

1

(15)

i=1

Python 3.5, TensorFlow2.0, and Linux CentOS 7.2 were used in our experiment. We chose
the length of the load data to be 30, the number of hidden layers in the GRU to be 4, with
50 neurons in each layer, and the number of iterations to be less than 300 to avoid spending
too much time on training. The required prediction error was set to 107°. The trained model,
instructed in accordance with the above method, was used for load prediction and compared
with the actual load curve, as shown in Fig. 3. Although the curves do not perfectly match, they
both show the same trend and have similar data values, which means that the proposed load
prediction strategy has good accuracy.

LOAD BURDEN
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S ‘ M

v
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0.3
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1 51 101 151 201 251

—— Prediction Curve —— Load Curve

Fig. 3. (Color online) Comparison between predicted load and actual load.
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Fig. 4.  (Color online) Comparison of results of different strategies.

Then we compared our strategy based on GRUs with some popular prediction strategies for
load prediction: DBN, ES, ARIMA, and K-modes. The results are shown in Fig. 41920) 54
reveal that our GRU model has the smallest prediction loss. This is because ES and ARIMA are
based on traditional probability statistics, and it is difficult to fit the complex and changing load
data with predefined formulas. DBN has a better performance than ES and ARIMA owing to its
strong generalization ability, but it is ineffective for time series data. K-modes requires a large
amount of fundamental data for early training but it cannot effectively use preliminary data.
This is because the effectiveness of using history data decreases over time, making it difficult
to manipulate the data of time series in practice.

5. Conclusions

We proposed an improved load prediction strategy based on the neural network LSTM
method and its revised GRU model. We investigated the performance of this method using our
university utility platform, which was based on a microservice architecture and Spring Cloud
package, and the results showed that it had higher efficiency than the DBN, ES, ARIMA, and
K-modes methods. Furthermore, we consider that although the load elements and GRU model
achieved the expected improvements, there is still a lot of space for further improvement.
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