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	 In this paper, we propose a new method to improve the autonomous navigation of mobile 
robots. The new method combines a multistep update method with a double deep Q-network 
(MS-DDQN) to realize reinforcement learning (RL) to enhance the navigation ability of mobile 
robots. The proposed MS-DDQN gives two types of rewards for taking actions: terminal and 
non-terminal rewards. These rewards are subdivided into several different ones including 
rewards for arrival and collision (terminal rewards) and rewards for distance, orientation, 
and danger (non-terminal rewards). With the subdivided reward system, the new method 
trains mobile robots more effectively to increase their autonomous navigation ability. In the 
experimental process of this study, a laser range finder was used as the sensor for the mobile 
robot to perceive the distance information of the obstacle. Experiment results validated the new 
method’s enhanced ability, showing higher success rates (97% on average) than those of other 
methods such as the double deep Q-network (DDQN), prioritized deep Q-network (DQN), and 
prioritized DDQN. The higher success rates originated from the sophisticated reward system 
as the total reward of the proposed method was 7–94% higher than those of the other methods 
in simulations in five different environments. The learning speed was also improved, reducing 
the learning time, as the new method completed the learning in fewer episodes. The results of 
the new model suggest that MS-DDQN enables mobile robots to have higher learning efficiency 
and generalization ability than conventional deep reinforcement (DRL)-based methods and 
allows them to navigate autonomously even in unknown complex environments. 

1. 	 Introduction 

	 Autonomous navigation ability is essential for mobile robots. To improve the navigation 
ability, many navigation planning methods have been proposed for mobile robots that work 
effectively in different environments.(1,2) A representative method is the potential field method 
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(PFM),(3) which has been widely used owing to its simplicity, high safety, and fast computation 
time. However, PFM has the following disadvantages: a robot is likely to fall into local minima, 
oscillate in narrow passages, and wander in the presence of obstacles and between closely 
spaced obstacles.(4) To overcome these disadvantages, Borenstein and Koren proposed a vector 
field histogram (VFH) algorithm that finds the best path of a robot in a locally established 
polar histogram. (5) VFH* and VFH+ have also been developed as modifications of VFH.(6,7) 
Simultaneous localization and mapping (SLAM) is another navigation algorithm. SLAM needs 
a map with complete information,(8) which enables autonomous navigation with continuous 
constructions and updates of the map. The algorithm of SLAM mainly uses an extended 
Kalman filter(9) and a particle filter(10) to collect information in a working environment for 
mobile robots. The information of a working environment can be added using cameras in a 
SLAM algorithm.(11,12) Although SLAM performs well in various navigation tasks, it still needs 
a huge amount of memory and computation. Therefore, most SLAM algorithms are applied in 
static environments. 
	 In many cases, mobile robots are required to work in environments without previous 
information. Thus, traditional navigation algorithms have limited applicability to mobile 
robots. Recently, the development of artificial intelligence (AI) has allowed supervised and 
self-supervised learning methods to be applied to mobile robots even for navigation planning. 
For example, Chen et al. used a deep neural network to train mobile robots for autonomous 
navigation in crowded environments,(13) and Pfeiffer et al. proposed an end-to-end autonomous 
navigation model based on a deep convolutional neural network (CNN).(14) The model with 
CNN used two-dimensional (2D) laser scanner data and the relative positions of targets to 
execute steering commands. Tai and Liu also used CNN to train an obstacle avoidance model in 
corridors for the end-to-end control of mobile robots. In this case, CNN inputs raw depth image 
data, and output discrete commands were used to control the robots.(15) These deep-learning 
navigation algorithms learn strategies using raw information in multiple dimensions. However, 
they also have shortcomings for real applications. For example, the performance of a robot with 
such an algorithm depends on training data sets that are collected manually. 
	 Thus, reinforcement learning (RL) algorithms are widely used. RL enables mobile robots to 
directly learn about the interactive environment. However, it is challenging for mobile robots to 
learn a good strategy in a large space. In addition, although RL guides and trains mobile robots 
to learn navigation strategies in unknown environments, the strategy is effective only in a fixed 
time period in the environments. This limits the application of RL in a complex environment 
with multiple dimensions. Thus, many new technologies and architectures of RL have been 
developed to improve the efficiency and performance in various tasks, examples of which are 
hierarchical RL (HRL) and deep RL (DRL).(16–19) 
	 HRL decomposes a complex main task into several subtasks. Then, through the strategy 
of ‘divide and conquer’, the subtasks are completed one by one to fulfill the main task. 
DRL combines the advantages of deep learning and RL, achieving remarkable successes in 
many challenging tasks. DRL uses CNN to process multidimensional raw information and 
approximate the value function of RL. DRL is divided into temporal-difference (TD) learning 
and Monte Carlo (MC) learning. In TD, a mobile robot updates the Q table of states every 
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time it interacts with the environment. TD includes the deep Q-network (DQN),(20) double 
deep Q-network (DDQN),(21) and prioritized DQN.(22) DQN uses CNN to directly process 
the multidimensional information of raw images and approximate the best value function.(23) 
Although TD has a high convergence speed and high learning efficiency, it is less stable than 
other learning algorithms and sometimes converges to an incorrect solution. In MC, a mobile 
robot creates the Q learning table of states after it has completed one episode of interaction 
with the environment. The policy gradient algorithm is an example of MC.(24) As MC needs to 
first complete an episode of interaction with the environment and then update the Q table, its 
convergence speed and learning efficiency are relatively low. 
	 Most DRL algorithms use TD to perform the navigation planning of mobile robots. For 
example, Tai et al. proposed a DRL network trained by an asynchronous DRL algorithm that 
was based on input and output control commands for 10-dimensional distances measured by a 
laser.(25) Vinyals et al. designed an A3C network for rescue missions of a mobile robot.(26) Al-
Nima et al. used human driving data as the input to a DRL network to train the autopilot ability 
of a vehicle.(27)

 TD learns rapidly in general, but it only calculates the reward from the next 
state, which restricts the ability of the mobile robot to perceive obstacles. MC improves a mobile 
robot’s ability to perceive obstacles but the learning is still slow. 
	 Therefore, we use a DRL algorithm to solve the autonomous navigation task of a mobile 
robot in an unknown environment. This method is a machine learning algorithm that combines 
the advantages of RL and deep learning algorithms. A mobile robot based on this method can 
directly process the original high-dimensional input information, and can also learn by directly 
interacting with the environment. In order to overcome the shortcomings of traditional DRL 
directly applied to autonomous tasks of a mobile robot and improve the ability of the mobile 
robot to quickly perceive obstacles, we propose a DRL algorithm using a multistep update 
method and a continuously combined reward function. On the basis of the method and the 
reward function, we use hierarchical DRL, where each layer of a neural network has a clear 
learning goal. The multistep method is different from TD and MC. Without reducing the 
training efficiency, the multistep method predicts the impact of multiple states in the future to 
obtain the reward in the current state. DRL with the multistep method is expected to enhance 
the navigation ability of mobile robots by improving their ability to sense and avoid obstacles in 
advance. The multistep method also ensures that mobile robots have high training and learning 
efficiencies. 
	 In this study, we simulated obstacle environment information and a laser range finder (LRF), 
and the mobile robot measured the distance information of obstacles through the simulated 
LRF. Only 36-dimensional distance information in the forward direction of the mobile robot 
was used as the input information of the deep neural network, and then the deep neural network 
outputs control instructions for controlling the mobile robot. To validate the proposed method 
in this study, we carried out simulations and compared the results with those of other methods. 
It is expected that an autonomous navigation algorithm based on the results of this study 
will improve the autonomous navigation ability of mobile robots in unknown and complex 
environments. 
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2. 	 Methods

2. 1	 RL

	 The navigation problem of a mobile robot in an unknown environment can be expressed as 
an RL problem in which the mobile robot interacts with the environment E in a fixed time step. 
At each time step t, the mobile robot obtains the state information st 1te D∈ S of the environment 
through sensors, where S is the state space. The mobile robot selects an action at from all 
possible action sets A according to the acquired state information. After the action is completed, 
the mobile robot transitions to the next environment state st+1 and gets a reward rt. In this 
process, the state is altered according to the state transition probability P(st+1/st, at). This defines 
the possibility with which the robot takes action at in state st and then transfers to state st+1. In 
the traditional RL algorithm, the return function Gt is defined as the sum of discounts obtained 
in state st and all rewards in the future states as follows:

	 1
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∞

+ +
=

= = +∑ ,	 (1)

where γ 1te D∈ (0, 1) is a discount factor defining the impact of future rewards on the current state. 
The goal of the mobile robot is to find the best strategy to maximize the future rewards by 
training actions to take in the current state st that is a mapping function from the state sets S 
to the action sets A. Under a given strategy π, the state-action value function Qπ(s, a) is the 
expected reward of the robot when it takes an action at a state with the expectation function 
Eπ(∙). 

	 [ ]( , ) ,t t tQ s a E G s s a aπ
π= = = 	  (2)

	 Depending on the update method of the state-action value table, the RL algorithm is divided 
into the MC and TD methods. The MC method updates the state-action value table as

	 2
1 2( , ) ( , ) ( , )t t t t t t t t tQ s a Q s a r r r Q s aα γ γ+ + ← + + + + −  ,	 (3)

where α 1te D∈ (0, 1) is the learning rate and the polynomial (rt + γrt+1 + γ2rt+1 + ...) is equal to the 
return function Gt. Thus, rt + γrt+1 + γ2rt+1 + ... is replaced by the return function Gt, and Eq. (3) 
is simplified as

	 [ ]( , ) ( , ) ( , )t t t t t t tQ s a Q s a G Q s aα← + − . 	 (4)

	 The MC method requires the mobile robot to complete an episode of interaction with the 
environment before updating the state-action value table. If the mobile robot takes a long time to 
finish an episode of training, the update of the state-action value table becomes slow. Therefore, 
the training and learning efficiencies of the MC method are relatively low. 
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	 Unlike the MC method, the TD method only considers the impact of the reward obtained 
by the next state based on the current state’s reward. The standard Q learning algorithm is an 
example of a TD method.(29,30) The TD method updates the state-action value table as

	 1( , ) ( , ) max ( , ) ( , )t t t t t t t t
a

Q s a Q s a r Q s a Q s aα γ +← + + − 
 

,	 (5)

where α 1te D∈ (0, 1) is the learning rate. 
	 When (1)

1max ( , )t t ta
G r Q s aγ += +  and (1)

tG  is defined as the return function of the TD method, 
Eq. (5) is transformed as

	 (1)( , ) ( , ) ( , )t t t t t t tQ s a Q s a G Q s aα  ← + −  . 	 (6)

	 The return function of the TD method is approximated as the return function Gt. The rest 
of the return function Gt is γrt+1 + γ2rt+1 + ..., which is replaced by 1max ( , )ta

Q s aγ +  after time 
step t. The TD method does not need to update the state-action value table after one episode 
of interaction with the environment, but it updates the state-action value table at every step of 
training the robot. Therefore, the TD method has higher efficiencies in training and learning. 
However, as the TD method only considers the return of the next state, it does not predict the 
future returns, so it is relatively short-sighted. 
	 The multistep method is different from the TD and MC methods and is one of the RL 
algorithms.(1,28) In some tasks, RL algorithms improve the performance of the TD algorithm 
and the learning efficiency of the MC algorithm by considering the reward of the next states. 
The multistep method is very similar to the TD method, and the only difference is the return 
function. The return function of the multistep method is defined as
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	 The return function of the multistep method truncates the traditional return function Gt 
after n steps, and the remaining items are replaced by 1max (s , )n

ta
Q aγ + . The multistep method 

enables the mobile robot to overcome the limitation of a single time step and focus on the 
reward of a longer time interval. Therefore, the multistep method updates the state-action value 
table as 

	 ( )( , ) ( , ) ( , )n
t t t t t t tQ s a Q s a G Q s aα  ← + −  . 	 (8)

2. 2	 DRL

	 When a mobile robot works in a very complex environment with a large number of states 
and actions, the traditional RL algorithm encounters a dimension problem. A good solution to 
this problem is to use a neural network to approximate the state-action value function in the 
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algorithm. Therefore, the state-action value function at this time is related not only to state s 
and action a, but also to the weight parameter θ in a neural network. A method combining deep 
neural networks and RL is called a DRL method. By optimizing the parameter θ in the network 
to approximate the state-action value function, the loss function of the neural network is defined 
as

	 ( )2( ) ( , , , ) ( , ; )QL E s a r s y Q s aθ θ ′= −  ,	 (9)

where yQ = r + γ max Q(s', a; θ). 
	 In practical applications, owing to the strong correlation between the collected state data, 
the RL algorithm does not converge or even diverge as it directly uses the approximate Q value 
function of the neural network.(29) To solve this problem, the DQN algorithm was proposed.(17) 
This algorithm uses a double neural network structure with an evaluation network and a target 
network. The parameter θ in the evaluation network is assigned randomly at the beginning, 
and the parameter θ' in the target network is copied periodically. Therefore, yQ of the DQN 
algorithm is changed into

	 max ( , ; )DQN
a

y r Q s aγ θ′ ′= + . 	 (10)

	 To break the strong correlation between the training data, the DQN algorithm replays its 
experience. By storing the experience data et = (st, at, rt, st+1) in the replay memory D, the 
mobile robot remembers and reuses the experience from the past. In the process of training, 
two tuples, 1te D∈  and 2te D∈ , are weakly correlated due to random sampling. The random 
extraction of training data in small batches from D helps to break the strong correlation between 
training sample data and ensures the stability of the DRL system. Thus, the loss function of the 
DQN algorithm is defined as

	 ( )2( , , , )~ ( )( ) ( , ; )DQN
s a r s U DL E y Q s aθ θ′

 = −  . 	 (11)

	 In the DQN algorithm, the target network uses the MAX method to estimate the state-action 
value, which leads to an overestimation problem. The DDQN method solves this problem. The 
MAX operator in the target is broken down into two parts, and the parameter θ is used to select 
the action while θ' is used for the estimation of the state-action value function. Therefore, yDQN 
of the DQN algorithm becomes yDDQN, where

	 ( ),arg max ( , , );DDQNy r Q s Q s aγ θ θ′ ′ ′= + . 	 (12)

2. 3	 Proposed algorithm

	 We applied the multistep update method to DDQN to train a mobile robot for navigation 
planning. We named this method the multistep deep Q-network (MS-DDQN). By combining 
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Eqs. (7) and (12), yDDQN is transformed into yMS-DDQN as follows. 

	 ( )
1

0
,arg max ( , , );

i n
MS DDQN i n

t i t n t n
i

y r Q s Q s aγ γ θ θ
= −

−
+ + +

=
= +∑  	 (13)

	 The loss function of the MS-DDQN method is defined as

	 ( )2( , , , )~ ( )( ) (s, ; )
t n

MS DDQN
s a r s U DL E y Q aθ θ

+

− = −  ,	 （14)

where U(D) represents a function that randomly extracts the experience data from memory D, 
and the experience data stored in the replay memory becomes et(st, at, rt, st+n). The algorithm of 
the MS-DDQN training method is as follows. 

Algorithm 1: MS-DDQN
Initialize experience replay memory D
Initialize parameters θ randomly
Initialize state-action value function Q'
Initialize parameters of target network θ' = θ 
Initialize hyperparameter n
For episode = 1 to M do
Set/reset simulated environment
Observe st
T ← ∞
Reset four empty arrays St, At, Rt, St+1
For t = 1, 2, ... do
If t < T, then
 With probability ε select a random action at, otherwise select
at = arg max Q'(st, a; θ)
 Execute action at in emulator and observe reward rt and st+1
 Store st in St, store rt in Rt, store at in At, store st+1 in St+1
 If st+1 is terminal, then
 T ← t + 1
 τ ← t − n + 1
 If τ ≥ 0, then
If τ + n < T, then
 1i n

i
i i t

i
r r r R

τ
τ

τ
τ

γ
= + −

−

=
= ∈∑

Else
 i T

i
i i t

i
r r r Rτ
τ

τ
γ

=
−

=
= ∈∑

 Store transition (sτ, aτ, rτ, sτ+n) in D, 1, ,t t n ts S a A s Sτ τ + +∈ ∈ ∈
 Sample random mini-batch of transition (sτ, aτ, rτ, sτ+n) from D
 Set yi = ri + γnQ(si+n, arg max Q(si+n, a; θ); θ)
 Perform a gradient descent step on (yi − Q'(st, at; θ))2 with respect to
 network parameter θ 
 Until τ = T −1
End
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2. 4	 Hierarchical DRL framework

	 To find the best navigation planning in a complex environment, we adopted a ‘divide and 
conquer’ strategy. In this study, we adopted a hierarchical DRL framework, and we divided 
a navigation task into two submodules: an avoidance module and navigation module. The 
avoidance module guides a mobile robot to avoid obstacles. With the input of distance data by a 
laser scan and the relative positions of the mobile robot, the module outputs a discrete command 
to control the robot. The navigation module guides the mobile robot to reach the target position 
faster. It also outputs a discrete command with the input information of the relative positions of 
the mobile robot. Either of the two modules finds the nearest distance between the mobile robot 
and the obstacles. The hierarchical DRL framework we proposed is shown in Fig. 1. The deep 
neural network architecture of the avoidance module and the global navigation module is shown 
in Fig. 2. 

Fig. 1.	 (Color online) DRL framework in this study. (Blue boxes are for internal components and green boxes are 
the external environment).

Fig. 2.	 (Color online) Deep neural network structure of obstacle avoidance module and global navigation module. 
The deep neural network of the obstacle avoidance module consists of three hidden layers containing 256, 128, 
and 32 neurons. The global navigation module contains only one hidden layer containing 30 neurons. These two 
modules both output the commands to control the mobile robot.
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2. 5	 Reward function 

	 The reward function gives the reward value of the mobile robot moving from the current 
state to the next state and indicates how well the action is taken in the current state. Generally, 
the reward function of the RL method gives 0 for a failed action and 1 for a completed 
action. This simple reward function provides sparse rewards, which are not conducive to the 
convergence of the algorithm. To solve this problem and accelerate the convergence of the 
algorithm, a new combined reward function is needed. 
	 We divide the rewards into two types, depending on the end of the current training episode. 
The first reward is a ‘terminal reward’, which is given when the mobile robot reaches a target 
position or collides with an obstacle. The second reward is a ‘non-terminal reward’, which is 
given when the mobile robot is moving towards a target position. The terminal reward is divided 
into an arrival reward and a collision reward. 
	 When the mobile robot reaches the target position, the reward given is

	 rarr = 100; if dr-t ≤ dwin,	 (15)

where dr-t is the Euclidean distance from the mobile robot to the target position and dwin is the 
threshold of the mobile robot’s collision with the obstacle. 
	 When a mobile robot collides with an obstacle, the reward becomes

	 rcol = −100; if dr-o ≤ dcol,	 (16)

where dr-o is the Euclidean distance between the mobile robot and the nearest obstacle and dcol 
is the threshold of the mobile robot’s collision with the obstacle. Thus, the terminal reward is 
rarr + rcol. 
	 Non-terminal rewards consist of three types: a positive reward, a danger reward, and an 
orientation reward. 
	 When the mobile robot moves towards the target position, it gets a positive reward of 

	 rt_goal = cr[dr-t(t) − dr-t(t − 1)] ,	 (17)

where Cr 1te D∈ (0, 1) is a coefficient. This reward guides the mobile robot toward the target position. 
	 As the distance of the mobile robot from obstacles becomes shorter, the danger reward 
decreases and is defined as

	 *2 , 0 1mind
dang dangr rβ= ≤ ≤ ,	 (18)

where dmin is the distance of the mobile robot from the obstacle. 
	 In addition, we designed an ‘orientation reward’. The orientation reward is given according 
to the angle between the vector of the mobile robot’s forward direction and the vector from 
the current coordinate of the mobile robot to the coordinate of the target position. When the 
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angle is greater than 18° and less than 72°, the reward is 0.3. In other cases, the reward is 0. The 
orientation reward is defined as

	

1 if 18
0.3 if 18 72
0.3 if 72 18
0 otherwise

ori

ori
ori

ori

a
a

r
a

≤ ± °
 ° ≤ ≤ °=  − ° ≤ ≤ − °


,	 (19)

where aori is the angle between the vector of the mobile robot’s forward direction and the vector 
from the current coordinate of the mobile robot to the coordinate of the target position. The 
final non-terminal reward is defined as rt-goal + rdang + rori. 
	 This combination of the rewards solves the problem of sparsity so that the mobile robot gets 
corresponding rewards at each step of the training process. The combination also enables the 
mobile robot to learn a strategy allowing it to reach the target position faster along a shorter 
path. 

3. 	 Results and Discussion

3.1	 Simulated environment

	 To demonstrate and evaluate the proposed method in this study, a 2D environment for 
simulations was designed as shown in Fig. 3. In Fig. 3, gray ellipses, circles, and polygons 
represent various types of obstacles. The red circle represents the mobile robot and blue lines 
represent laser beams. When the mobile robot starts a new episode of training, its starting 
position is randomly distributed in the light yellow rectangular area at the bottom of Fig. 3, 
marked with an orange circle. The target positions are randomly distributed in the light cyan 
rectangle at the top of Fig. 3, marked with a black circle. This layout ensures that the mobile 
robot must pass through a large number of obstacles and safely avoid them before reaching the 

Fig. 3.	 (Color online) Training environment (Env-1) of size 500 × 500.



Sensors and Materials, Vol. 33, No. 2 (2021)	 835

target position, and avoid invalid training due to a too short distance. The size of the training 
environment (Env-1) is 500 × 500. 
	 The mobile robot senses its surroundings through a simulated LRF with a field of view (FOV) 
of 180°. Distance is measured by the mobile robot with an angular resolution of 5°. The output 
of the simulated LRF is a 36-dimensional vector oi, which is normalized by the maximum 
effective range omax. The first element of ot always indicates a measurement in the horizontal 
left direction, followed by a measurement in the clockwise direction. In addition, the mobile 
robot also obtains the relative 2D coordinate information pt of the robot’s current position 
relative to the target position, as well as the Euclidean distance information Ωt of the current 
position relative to the target position, and the relative angle information At of the target point 
relative to the robot’s forward direction. The robot moves at a constant speed. The command 
set for controlling the mobile robot is composed of five discrete commands: turn left, turn left 
30°, forward, turn right 15°, and turn right 30°. In the 2D environment, the mobile robot needs 
to continuously sense the surrounding environment to avoid obstacles on the way to the target 
position. 

3.2	 Training results

	 MS-DDQN trained the autonomous navigation capabilities of the mobile robot in the 
environment Env-1. During the training process, the starting position of the mobile robot and 
the target position were randomly initialized at the beginning of each training episode. When 
the mobile robot collided with an obstacle or reached the target position, a new episode of 
training started. The network models were built with TensorFlow and implemented on a single 
GIGABYTE 2070 GPU. The simulated environment was run on an Intel i7-6800k CPU. The 
training parameters are given in Table 1. 
	 To verify the effectiveness of the multistep DRL method, we compared the MS-DDQN 
algorithm with the DDQN, prioritized DQN, and prioritized DDQN algorithms in terms of 
training the navigation ability of the mobile robot in Env-1. We used the same network structure 
and the same software and hardware platforms for the training. The success rate indicates 
the probability of the mobile robot successfully reaching the target position. Reward curves 
represent the sum of the rewards obtained by the mobile robot in each episode of the training. 
We used a sliding average method to process the curves with a sliding window size of 300. The 
average reward is the mean of the rewards for the mobile robot in 3000 episodes. 

Table 1
Training parameters. 
Parameter Value
Learning rate 0.001
Discount factor 0.9
Replay buffer size 15000
Mini-batch size 32
Number of steps n 5
Replacement 300
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	 Figures 4(a) and 4(b) show that the success rate curve of MS-DDQN rises faster than those 
of the other three methods, indicating that MS-DDQN has the highest learning efficiency. After 
3000 episodes of training, MS-DDQN has a much higher success rate than the other algorithms. 
The success rate with MS-DDQN is 80.133%, while those with DDQN, prioritized DQN, and 
prioritized DDQN are 61.7, 63.633, and 53.366%, respectively. This indicates that the mobile 
robot trained by MS-DDQN avoided obstacles far better owing to its improved navigation 
capabilities. The average reward value of MS-DDQN is 185.072, while those of DDQN, 
prioritized DQN, and prioritized DDQN are 130.064, 132.067, and 101.650, respectively. This 
also proves that the mobile robot with MS-DDQN had stronger navigation capabilities. A lower 
reward value means many negative rewards, implying that the mobile robot had more collisions. 
Figure 4(b) shows that the reward with MS-DDQN remained above 200 after 500 episodes of 
training, while that with the other methods showed greater fluctuation. The navigation model 
learned by MD-DDQN has higher stability than the other methods. 

Fig. 4.	 (Color online) (a) Success rate of the mobile robot reaching the target position during the training process, (b) 
total reward obtained by the mobile robot per episode of training, and (c) average reward obtained after the mobile 
robot has performed 3000 episodes of training.

(a) (b)

(c)
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3.3	 Test results

	 The navigation model was tested 200 times in Env-1. In each test, the starting position 
and target position of the mobile robot were randomly assigned. The performance of each 
algorithm was measured on the basis of the success rate and the average reward of the mobile 
robot reaching the target position in the 200 episodes. A higher success rate and average reward 
indicate that the navigation model provides a better strategy. The results are shown in Table 2. 
After 3000 episodes of training, the mobile robot trained by the four algorithms in the table had 
learned how to avoid obstacles and reach the target position in Env-1. MS-DDQN had a success 
rate of 100% and the highest average reward. The navigation trajectory of the MS-DDQN-
trained mobile robot is shown in Fig. 5. 
	 To evaluate the performance of the proposed method in this study, we designed four 
test environments that differed from the training environment. The sizes of the four test 
environments were 500 × 500 (Env-2), 600 × 600 (Env-3), 700 × 700 (Env-4), and 800 × 800 
(Env-5). In these environments, the starting and target positions of the mobile robot were 
randomly initialized (light yellow and light cyan shaded areas in Fig. 6, respectively). The 
navigation models based on MS-DDQN, DDQN, prioritized DQN, and prioritized DDQN 
were tested 200 times in each of the four test environments. The navigation trajectories of the 
mobile robot with MS-DDQN in the different environments (Fig. 6) show that the navigation 
model trained by MS-DDQN had high generalization ability, adapting well to the new unknown 
environments. 

Table 2
Results of MS-DDQN, DDQN, prioritized DQN, and prioritized DDQN on unseen test environment Env-1.
Environment Approach Success rate (%) Average reward

Env-1

MS-DDQN 100 243.996
DDQN 88 203.829

prioritized DQN 94 228.829
prioritized DDQN 91 215.293

Fig. 5.	 (Color online) Navigation trajectory of the mobile robot in Env-1.
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Fig. 6.	 (Color online) Navigation trajectories of MS-DDQN-based mobile robot in four different test environments. (a) 
Env-2, (b) Env-3, (c) Env-4, and (d) Env-5.

(a) (b)

(c) (d)

	 According to Table 3, the success rates of the navigation model trained by MS-DDQN 
were 97% (Env-2), 91% (Env-3), 94% (Env-4), and 96% (Env-5). However, the navigation 
models trained by the other three algorithms did not reach a success rate of 90% in the test 
environments. The success rate of DDQN in Env-3 was only 46%. This demonstrates that the 
MS-DDQN-based navigation model successfully solved the navigation problem of the mobile 
robot in a new environment. The test results also confirm that the navigation strategy with 
MS-DDQN is more stable than the other methods. The generalization ability of prioritized 
DDQN and prioritized DQN was better than that of DDQN because the two methods performed 
targeted training and learning on collision training samples during the training process. 
	 The above experiments revealed that the performance of the navigation model trained 
by MS-DDQN was better than that of the navigation models trained by DDQN, prioritized 
DQN, and prioritized DDQN. The reason is that MS-DDQN integrated the multistep update 
method in the RL into DDQN. When training and learning, MS-DDQN calculates the impact 
of the rewards obtained in the next few steps on the current state. Therefore, the mobile robot 
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navigation model trained by this method has greater ability to sense obstacles, and the mobile 
robot can devise avoidance strategies in advance. 
	 In MS-DDQN, the number of steps n is a sensitive hyperparameter. We examined how 
different values of n affected the performance with MS-DDQN. The larger the value of n, the 
greater the impact of future rewards. We conducted 3000 episodes of training for n 1te D∈ (1, 8) in 
Env-1. The training results are shown in Fig. 7. The experimental results show that a larger n has 
a higher learning efficiency with MS-DDQN. When n = 1, MS-DDQN is degraded to DDQN, 
and the learning efficiency is the lowest. However, the success rates of n = 3, 4, and 5 are 

Table 3
Results of MS-DDQN, DDQN, prioritized DQN, and prioritized DDQN on unseen test environments Env-2, Env-3, 
Env-4, and Env-5.
Environment Method Success rate (%) Average reward

Env-2

MS-DDQN 97 223.306
DDQN 58.5 126.012

prioritized DQN 61.5 140.081
prioritized DDQN 86.5 189.762

Env-3

MS-DDQN 91 239.777
DDQN 46 123.682

prioritized DQN 64.5 173.851
prioritized DDQN 82 209.123

Env-4

MS-DDQN 94 281.952
DDQN 51 167.767

prioritized DQN 63 211.320
prioritized DDQN 78.5 232.045

Env-5

MS-DDQN 96 333.441
DDQN 69.5 243.474

prioritized DQN 76.5 280.121
prioritized DDQN 76.5 260.025

Fig. 7.	 (Color online) Success rate of the model reaching the target position for different n values.
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similar, which indicates that the model with MS-DDQN already has the best strategy to avoid 
obstacles in advance with n = 3. Thus, even though increasing n further increases the success 
rate, the degree of improvement is not high. For example, when n = 6, 7, and 8, the difference 
in the success rate is less than 3% from that when n = 5. Moreover, as n further increases, MS-
DDQN gradually degenerates into the MC method. Therefore, we set n as 5 in this study with 
MS-DDQN. 

3.4	 Discussion

	 There are three novelties in this study as follows:
1.	 We propose the MS-DDQN algorithm, which combines the multistep update method in RL 

with the DDQN algorithm. This method was applied for the first time to solve the problem 
of the autonomous navigation of mobile robots in unknown environments. This method can 
enable a mobile robot to perceive obstacles in advance, thereby improving its autonomous 
obstacle avoidance and navigation capabilities. 

2.	 We construct two neural network structures, the local obstacle avoidance neural network 
structure and the global navigation neural network structure. The advantage of the DRL 
architecture is that each deep neural network has a clear training/learning goal. Local 
obstacle avoidance is mainly used by the mobile robot to avoid obstacles at a static distance, 
and global navigation is mainly used to quickly reach the target position. 

3.	 We propose a new combined reward function that is divided into terminal rewards and non-
terminal rewards. Terminal rewards include rewards for reaching the target position and 
rewards for collisions; non-terminal rewards include a positive reward, a danger reward, and 
an orientation reward. Through the combined reward function, not only can the convergence 
speed of the DRL algorithm be increased, but also the mobile robot can be guided to learn 
the strategy of reaching the target position with a shorter path. In Sect. 3.2, we compared 
the proposed MS-DDQN algorithm with the DDQN,(17) prioritized DQN,(20) and prioritized 
DDQN algorithms. It was found that MS-DDQS has higher learning efficiency as well as 
greater ability to avoid obstacles. 

4. 	 Conclusions 

	 To solve the navigation problem of a mobile robot in an unknown environment, we proposed 
a multistep DRL method (MS-DDQN) that applies a multistep method of RL to the DDQN 
network. In the process of training and learning, we tested the subdivided reward system 
comprising terminal rewards (arrival, collision) and non-terminal rewards (distance, orientation, 
danger). With these rewards, the mobile robot was able to learn and improve its navigation 
ability. The learning efficiency of MS-DDQN in this study was higher than that of other 
methods with a success rate in the training of 100%, while the success rates of DQN, prioritized 
DDQN, and prioritized DQN were 88, 94, and 91%, respectively. In four test environments that 
were completely different from the training environment, the success rate of MS-DDQN was 
91–97%, compared with 46–70% for DDQN, 62–77% for prioritized DQN, and 77–87% for 
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prioritized DDQN. The well-established reward system enabled such results as the total reward 
of MS-DDQN was 7–94% higher than those of the other methods. The learning speed was 
also higher, as MS-DDQN achieved the highest reward with the fewest episodes and just five 
steps. This proves that MS-DDQN has high generalization ability, stability, and efficiency, and 
a mobile robot using the method can perform real-time autonomous navigation in an unknown 
environment with only 36-dimensional laser detection distance information. In future work, 
we will consider using a deterministic policy gradient algorithm to improve the algorithm in 
this study and solve more general and realistic navigation problems such as navigation in a 
continuous motion space and multi-mobile robot navigation control. 
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