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 The edge of the contour of a stamping part is burred because of the shearing phenomenon 
when punching or blanking. To detect burrs, manual visual inspection is often used, which is 
time-consuming and inefficient, making a systematic detection method necessary. In this study, 
we developed a palletizing robot with a three-axis vibration sensor, vision sensor, gripper, 
electric deburring tool, and machine vision software that can detect the burring of punching holes for 
stamping parts. The vibration sensor is used to monitor the vibrations during workpiece 
clamping, grinding, and placing. If the vibration signal exceeds the threshold value, the system 
immediately stops. Integrating image and vibration sensors into the proposed palletizing robot 
enabled effective and intelligent detection, deburring, and monitoring processes.

1. Introduction

 Burr defects often occur during manufacturing processes such as machining, stamping, and 
casting, which need to be removed before precision assembly. Rejc et al.(1) measured gray-iron 
grates by combining laser triangular displacement sensors and industrial Selective Compliance 
Assembly Robot Arms and adopting a noncontact size measurement method. They developed 
a novel polynomial contour approximation method for repairing scan data and calculating the 
coordinates of metal burrs. Their results indicated that this method can measure 88 points on 
a gray-iron grate with a precision of 0.3 mm within 45 s, and thus this method is sufficient for 
robots to deburr gray-iron grates.
 In mass production, operators program deburring robots by using “teach” or “offline” 
programming to deburr metals. To solve the problems encountered by these two programming 
methods, Princely and Selvaraj(2) introduced a vision-guided robotic system to deburr 
workpieces. The system obtains the two-dimensional shapes of all workpieces and automatically 
generates a robotic arm program according to the workpiece shape data and processing 
conditions that are collected. Their experimental results indicated that this method is effective 
in deburring operations. 
 Kuss et al.(3) proposed a deburring process that uses adaptive and automated robotic arms. 
This process uses manufacturing tolerance to obtain the changes in the geometry of workpieces. 
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Subsequently, the geometric shapes of the workpieces are generally matched using the iterative 
closest point method to compare the point clouds created from the manufactured workpieces and 
those generated under various levels of tolerance. Then, the most similar models are selected for 
subsequent deburring path planning and positioning. Their experimental results revealed that 
this method can be effectively applied in industry to enhance deburring quality.
 After chip processing, the raised edge or small piece of material attached to the workpiece 
is called a burr.(4) Shahid et al. proposed a hybrid method for vision-based surface coverage 
measurement in 2019.(5) This method is based on morphological operations and Boykov 
graph cut segmentation. Their results indicated that images have better image segmentation 
results with nonuniform illumination. Image acquisition devices can be used to capture 
the contours of objects and divide the edges of the deburring portions through image 
segmentation, and thus the processing path for deburring is automatically generated.(6)

 Many researchers have proposed methods to improve the deburring quality or make the 
entire deburring process more intelligent and flexible.(7–11) However, a systematic approach 
combining the design of a four-axis robot, machine vision architecture, deburring method, and 
vibration monitoring is still needed. Taking the stamping process as an example, the edge of 
the contour of the billet is burred because of shearing when punching or blanking. To detect 
burrs, manual visual inspection is often used but this method is time-consuming and inefficient, 
making it necessary to develop a systematic detection method. In this study, we developed a 
palletizing robot with a three-axis vibration sensor, image sensor, gripper, electric deburring 
tool, and machine vision software that can detect the burring of punching holes and deburr 
automatically for stamping parts under vibration safety monitoring.

2. Research Methods

2.1 Performance assessment and test method

 This study uses ISO 9283 (i.e., Manipulating industrial robots—Performance criteria and 
related test methods)(12) as the pose repeatability standard for assessing robot performance. The 
developed palletizing robot is taught to move its robotic arm to several path points. Repeated 
movements are made to assess the performance of the robotic arm by using performance 
indicators.

2.2 Mechanism design principles of palletizing robot

 In essence, the palletizing robotic arm is designed using two parallelograms. The terminal 
axis is always perpendicular to the ground, that is, θ1 + θ2 + θ3 = 180°. The basic structure of 
the robotic arm is shown in Fig. 1. The palletizing robotic arm is an upright and four-axis joint-
like robotic arm. Each joint is driven by a motor combined with a reducer to move and turn the 
robotic arm. For the connecting rod design, each connecting rod contains points BCD. Points 
OABC make up a parallelogram. The mechanism magnification coefficient is CD/BC > 1, 
where an overly small magnification coefficient exposes the robotic arm to an excessive amount 
of interference, whereas an overly large magnification coefficient creates an excessive amount 
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of inertia when the robotic arm is turned. Connecting rods OA and OC primarily control the 
movements of terminal point E. The direction of the movement of each joint is shown in Fig. 2. 
This type of robotic arm features a simple structure and a high loading capacity.
 The robotic arm introduced in this study has an effective load of 3–5 kgf and shortest and 
longest travel distances of 250 and 700 mm, respectively, where the travel distance of the arm 
is defined as the distance between the center of the original axis and the center of the final 
axis. To prevent the components from interfering in the distance-measuring process, a three-
dimensional assembly diagram is used.(13) Each component is named (Fig. 3) to enable users to 
conveniently modify and assemble components.
 According to the standard performance defined in the design, the shortest and longest 
working distances are set as 250 and 700 mm, respectively. To prevent the robotic arm from 
overextending itself and thus become unable to retract to its original location, the smallest and 
largest angles between the lower arm and the base are set as 30° and 80°, respectively. The 
lengths of the remaining connecting rods are set as variables. The shortest and longest working 
distances are measured using a graphic design software program, and the measurements are 
made under the condition that the components do not collide or interfere with one another when 
the angle between the lower arm and base is 30° or 80°.
 The robotic arm design was changed four times after factors such as the center of gravity 
of the overall structure, the assembly of the components, material costs, and component 
interferences were considered. Diagrams of the overall robotic arm design at each stage (i.e., 
Types 1–5) are presented in Fig. 4.
 In Type 1, the center of gravity of the robotic arm was shifted to one side because most of 
the components were lined up on that side. To ensure that the center of gravity of the robotic 
arm was at the center of the robotic arm platform, the design was changed to Type 2. To match 
the components provided by the manufacturer, such as the reducer, motor, and gripper, Type 2 
was changed into Type 3. Because the material cost for Type 3 was excessively high, to lower 
the cost, the rod components exposed to less force were replaced to produce Type 4. Because 
the upper and lower arms in Type 4 had an embedded design that led to components interfering 
with one another when the shortest and longest working distances were set, the upper arm was 
made arc-like and the lower arm groove was extended. Type 5 was the final robotic arm design, 
which eliminates the interference problem encountered in Type 4 (Figs. 5 and 6). Type 6 was 
the final configuration of Type 5 installed into the base frame.

Fig. 1. Basic structure of the palletizing robotic 
arm.

Fig. 2. (Color online) Movement direction of each 
joint.
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Fig. 3. (Color online) Components of the palletizing robotic arm and their working distances.

Fig. 4. (Color online) Overall robotic arm design at various stages.              

Fig. 5. (Color online) Changes in shortest distance 
before and after design change. (a) Shortest distance 
in Type 4. (b) Shortest distance in Type 5.

Fig. 6. (Color online) Changes in longest distance 
before and after design change. (a) Longest distance 
in Type 4. (b) Longest distance in Type 5.

(a) (b) (a) (b)

2.3 Architecture for burr detection

 In this study, an automobile component is used as the research object (Fig. 7). This part is 
made through stamping, and the part has 40 punching features to be tested.
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 An industrial camera with 300000 pixels and backlighting are used as the image-capturing 
device and light source of the proposed system, respectively, and the images are exported into a 
computer for preprocessing and to detect burrs after they are captured.
 If the value of the grayscale is greater than a threshold value, the grayscale becomes the 
maximum value of 255 (all white). If the value of the grayscale is less than or equal to the 
threshold value, the grayscale becomes the minimum value of 0 (all black).
 By using an opening function, the image is first eroded and then dilated to remove small 
and bright details, whereas the remainder of the intensity levels and the high-brightness area are 
not disturbed. This function is commonly used to remove image noise. A closing function first 
dilates and then erodes the image, then typically fills small holes or broken lines in the image.
 The image coordinates of the first black and white changes within the measurement region 
are determined, and the relative coordinates of each measurement region are calculated 
according to their reference number. For example, if the reference number is 1, the first 
measurement frame is used as the reference (0, 0), and the image coordinates (x2, y2) in the 
second measurement frame are subtracted from those in the first measurement frame. For 
example, with image coordinates (x1, y1), the relative coordinates obtained are (x2−x1, y2−y1). 
The image coordinates are in pixels. This method can measure whether inspection objects are at 
the same height or whether they are the same distance from each other. When the height of an 
object is different, the height can be used to calculate whether the height is within the allowable 
error.
 Subtracting the image of the measurement object from that of the standard object for each 
pixel results in a difference image, which can be used to remove image noise and identify burrs. 
To investigate whether the vibrations are normal during the grinding process, we use an SVI-
1000 vibration sensor, manufactured by LNC. This sensor possesses a detection range of ±16 G 
and can simultaneously detect the vibration values along three axes.

3. Results and Discussion

3.1 Selecting main connecting rod and whole architecture

 The results of our study show that when the magnification coefficient is 1.8 and the lengths 
of the lower arm, upper arm, and Link2 (see Fig. 3) are 400, 700, and 250 mm, the shortest and 
longest working distances are 233.06 and 747.58 mm, respectively. The main axis can provide 

Fig. 7. Inspected object.
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360 degree rotation. These working distances meet the standard performance requirements. 
Therefore, the magnification coefficient and lower arm, upper arm, and Link2 distances 
presented in Fig. 8 are used. The specifications of the proposed palletizing robot are a cyclic 
cylinder space with inner radius of 235 mm, outer radius of 745 mm, and height of 300 mm. 
Figure 9 depicts the proposed whole architecture design, which includes a palletizing robot arm, 
vision sensor and backlighting source, vibration sensor, and deburring tool. Figure 10 depicts a 
snapshot of the automatic deburring stage.

Fig. 8. (Color online) Measurement results for the shortest and longest working distances.

Fig. 9. (Color online) Proposed whole architecture design.
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3.2 Results of repeatable accuracy test

 For the repeatable accuracy test, the robotic arm moves at a location 20 mm away from the 
edge of the table and along the X- and Y-axes. The results are measured, and the coordinates are 
recorded using Delta Robot Automation Studio. The robotic arm is instructed to automatically 
return to its initial location after performing the programmed actions. The movements are 
performed 10 times, and the movement data are measured each time. The results are presented 
in Fig. 11.

3.3 Automatic rib height measurement

 The image sensor is an IDS 2MP industry camera with image size of 1920 × 1080 pixels. 
Figure 12 depicts a sheet metal forming part mounted on an end bearing for smooth rotation. 

Fig. 10. (Color online) Snapshot of automatic deburring stage.

Fig. 11. (Color online) Repeatable accuracy curve for 
the X- and Y-axes.

Fig. 12. (Color online) Sheet metal forming parts 
being measured using three types of rib feature—
Types (a), (b), and (c)—captured under backlighting 
illumination.
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Three types of rib feature—Types (a), (b), and (c)—captured under backlighting illumination 
are used to obtain a clear image to facilitate measurement. A distinctive hole feature can be 
detected on each image, which can be treated as a positioning object to improve measurement 
accuracy.
 To obtain accurate height values for comparison, a coordinate measurement machine (CMM) 
is adopted. Table 1 and Fig. 13 show all 36 portions of the sheet metal forming part measured by 
the CMM, which can be classified into the three types of rib feature: Types (a), (b), and (c).
 To investigate the reliability of the results of the proposed automated optical inspection (AOI) 
system, we compare the measurement results of the CMM (Table 1) with those of the proposed 
AOI system (Table 2). Note that the CMM measurement is an absolute measurement method, 

Table 1
CMM measurement results for heights of all features in unit of mm.
Portion No. Left Left high Middle Right high Right Concave

1 28.452 30.432 30.451 35.955 36.022 32.687
2 28.307 30.447 30.447 30.445 28.452 —
3 36.013 35.937 30.467 30.467 28.307 32.701
4 28.463 30.422 30.420 35.937 36.013 32.701
5 28.426 30.326 30.390 30.368 28.463 —
6 36.014 35.928 30.417 30.326 28.426 32.576
7 28.456 30.356 30.443 35.927 36.014 32.576
8 28.469 30.369 30.399 30.366 28.456 —
9 35.999 35.868 30.370 30.369 28.469 35.570

10 28.447 30.347 30.244 35.868 35.999 32.570
11 28.357 30.257 30.254 30.347 28.447 —
12 36.056 35.910 30.277 30.289 28.357 32.496
13 28.464 30.364 30.358 35.910 36.056 32.496
14 28.496 30.396 30.399 30.389 28.464 —
15 36.117 36.016 30.515 30.396 28.496 32.628
16 28.591 30.491 30.448 36.016 36.117 32.628
17 28.528 30.528 30.563 30.491 28.591 —
18 36.147 36.074 30.544 30.528 28.528 32.611
19 28.562 30.452 30.445 36.074 36.147 32.611
20 28.564 30.474 30.530 30.452 28.562 —
21 36.147 36.075 30.499 30.475 28.564 32.658
22 28.558 30.458 30.459 36.075 36.147 32.658
23 28.560 30.460 30.518 30.459 28.558 —
24 36.119 36.046 30.506 30.460 28.560 32.656
25 28.556 30.456 30.432 36.039 36.118 32.656
26 28.520 30.420 30.480 30.431 28.555 —
27 36.081 36.007 30.428 30.439 28.520 32.568
28 28.470 30.370 30.426 30.125 36.081 32.568
29 28.505 30.405 30.418 30.372 28.470 —
30 36.000 35.907 30.462 30.391 28.505 32.706
31 28.420 30.320 30.341 35.922 36.000 32.706
32 28.478 30.378 30.428 30.346 28.420 —
33 36.006 35.899 30.426 30.359 28.478 32.716
34 28.505 30.405 30.424 35.937 36.006 32.716
35 28.511 30.411 30.486 30.418 28.505 —
36 36.017 35.927 30.467 30.407 28.511 32.687
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Fig. 13. (Color online) Three types of rib feature measured by CMM for 36 portions of a whole part. Type (a) Nos. 1, 4, 
7, 10, 13, 16, 19, 22, 25, 28, 31, 34. (b) Nos. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35. (c) Nos. 3, 6, 9, 12, 15, 18, 21, 24, 
27, 30, 33, 36.

(a) (b) (c)

Table 2 
Rib heights measured by the proposed AOI system in unit of pixel.
Portion No. X1 X2 X3 X4 X5 X6 X7

1 382.729 415.500 423.734 516.016 512.637 414.426 —
2 383.043 417.087 422.936 417.189 382.056 — —
3 418.985 514.040 517.492 423.938 416.987 382.690 415.846
4 382.887 417.500 424.216 517.784 513.633 418.512 —
5 381.489 416.409 422.094 417.932 381.970 — —
6 417.598 513.694 516.667 423.764 417.500 381.035 415.227
7 380.890 416.500 423.029 516.627 512.636 416.765 —
8 380.224 415.547 421.049 416.153 380.000 — —
9 413.500 512.737 515.653 421.169 415.038 379.187 412.211

10 379.846 417.500 419.120 515.238 511.583 412.122 —
11 379.742 417.000 417.227 413.888 378.896 — —
12 413.500 512.277 514.681 418.927 412.564 379.012 411.992
13 379.768 417.500 421.048 514.932 511.687 412.500 —
14 379.866 414.484 419.512 414.858 378.774 — —
15 415.500 512.048 514.983 421.996 414.139 378.869 411.847
16 379.945 418.500 421.519 515.112 511.350 412.520 —
17 379.829 414.535 420.269 415.605 378.944 — —
18 413.500 511.973 514.918 420.799 414.098 378.353 412.628
19 379.090 418.500 420.286 514.405 511.275 412.406 —
20 379.803 414.093 419.480 414.132 378.331 — —
21 413.841 512.602 515.692 420.982 413.565 379.180 412.715
22 380.090 419.500 421.076 515.972 512.556 413.393 —
23 380.170 414.949 420.106 415.193 379.081 — —
24 414.500 512.541 515.913 421.628 418.500 379.889 413.941
25 380.188 413.500 420.910 515.604 512.001 413.012 —
26 380.278 415.141 420.865 414.879 379.876 — —
27 414.500 512.647 515.592 421.105 414.126 379.783 413.080
28 379.899 414.068 421.000 514.688 511.154 412.690 —
29 379.922 414.424 419.856 414.742 378.913 — —
30 413.500 511.589 513.996 420.352 416.500 378.982 413.234
31 380.073 415.500 420.680 513.805 510.578 411.986 —
32 380.568 414.619 419.209 413.830 378.946 — —
33 416.820 512.176 515.544 421.567 414.671 380.784 412.909
34 383.201 417.500 423.069 515.975 512.021 416.406 —
35 383.316 418.000 422.495 417.727 382.499 — —
36 418.967 513.993 517.649 424.149 418.500 383.147 416.049
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Table 3 
Relative height based on concave portion in unit of mm (CMM).
Feature Left Left high Middle Right high Right
Relative value −4.236 −2.256 −2.236 3.268 3.335

Table 4 
Relative height based on concave characteristics in unit of mm (AOI system).
Feature X1–X6 X2–X6 X3–X6 X4–X6 X5–X6
Relative value −1.807 0.061 0.531 5.791 5.598

Fig. 14. (Color online) Relative height curves based on concave feature. 

whereas the AOI system is a relative measurement method. To ensure a fair comparison, we 
convert each rib feature from an absolute height value to a height value relative to the concave 
portion. Taking the first image in Type (a) as an example, the relative heights obtained with the 
CMM and AOI systems based on the concave feature are shown in Tables 3 and 4, respectively.
 Figure 14 shows the relative height based on the concave portion obtained from the two 
systems. It can be observed that the two curves have a difference of about 2 mm for each 
feature. The main reason is that the research object is a circular stamping object; because the 
system only captures images with a single camera and measures them, the measurement values 
will be distorted because the feature is not in the same image plane. However, the measurement 
trends of the two systems are similar, indicating that the measurement results of the proposed 
system are reasonable.

3.4 Burr detection and deburring

 As mentioned in Sect. 3.3, three types of rib feature—Types (a), (b), and (c)—are captured 
under backlighting illumination to obtain a clear image to facilitate measurement. Distinctive 
holes can be detected in each image, which can be treated as objects for positioning to improve 
measurement accuracy. Burr detection algorithms measure the center of each hole, center the 
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position alignment, subtract images, filter the noise, apply binary thresholding, and conduct 
blob analysis. Table 5 lists eight detected burrs among 36 holes. Among them, one Type (a) burr, 
four Type (b) burrs, and three Type (c) burrs are detected. The two largest burrs are both Type (c).

3.5 Vibration sensor signals

 The LNC SVI-1000 vibration sensor is used in this study, which has 16-bit resolution and 
a measurement range of ±16 G. During the machining process, the vibration sensor control 
interface detects the vibrations in the X-, Y-, and Z-directions. When the workpieces are 
clamped, the highest positive-direction vibration is within 2500 mG (gravitational acceleration 
of 10−3) and the highest negative-direction vibration is within −3500 mG. In this study, we 
preset the maximum positive- and negative-direction vibrations as 4000 and −4000 mG, 
respectively. For vibration signals during the deburring process, the highest positive-direction 
vibration is within 800 mG and the highest negative-direction vibration is within −800 mG. 
These vibrations (obtained when the workpieces are clamped) are within the allowable range. 
For the vibration signals when the palletizing robotic arm drops the workpieces, the highest 
positive-direction vibration is between 800 and 2400 mG, whereas the highest negative-
direction vibration is between −800 and −2400 mG, which are within the safety range (as 
indicated by safety warning signals) and do not affect system operations. Safety warnings are 
issued when the vibrations exceed the safety range. When this occurs, the system immediately 
stops operating, which indicates that a malfunction has occurred.

Table 5
(Color online) Burrs among 36 holes detected with the proposed AOI system.
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4. Conclusions

 We have developed a palletizing robotic arm that combines an image acquisition device and 
backlighting to detect and deburr stamped products. The study results are as follows.
1. The palletizing robotic arm features a repeatable accuracy of approximately 0.05 mm.
2. The image processing program developed in this study identifies burrs in workpieces and 

measures the control sizes of relevant measurement locations.
3. Image subtraction and blob analysis algorithms are used to detect burrs in punching holes. 

Once the image of the standard component is created, quality assurance for each testing 
component can be conducted. For burr detection, the results are accurate and fast.

4. In rib height measurement, the AOI results are offset from those of a CMM by approximately 
2 mm but the trend of the results is similar. Therefore, AOI is more suitable for relative 
measurement.

5. The vibration sensors demonstrate that all the vibrations are within the 4000 mG 
requirement during workpiece clamping, grinding, and placing. Accordingly, ±4000 mG is 
set as the value beyond which malfunctioning signals are issued.
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