
995Sensors and Materials, Vol. 33, No. 3 (2021) 995–1008
MYU Tokyo

S & M 2511

*Corresponding author: e-mail: ian.cih82@gmail.com
https://doi.org/10.18494/SAM.2021.3011

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Optical Crackmeter for Retaining Wall in a Landslide Area 
Using Computer Vision Technology

 Yu-Chin Chen,1 I-Hui Chen,2* Jun-Yang Chen,3 and Miau-Bin Su3

1Department of Soil and Water Conservation, National Chung Hsing University, 
No. 145 Xingda Rd., South Dist., Taichung City 402, Taiwan

2Department of Civil Engineering, Chienkuo Technology University,
No. 1 Chiehshou North Rd., Changhua City 500, Taiwan

3Department of Civil Engineering of National Chung Hsing University,
No. 145 Xingda Rd., South Dist., Taichung City 402, Taiwan

(Received August 4, 2020; accepted January 25, 2021)

Keywords: computer vision, crackmeter, landslide monitoring, IoT instrument

 An innovative 3D optical crackmeter employing computer vision technology is used for 
displacement monitoring in a crack of a retaining wall automatically and remotely. The 3D 
optical crackmeter is composed of a Raspberry Pi device and a digital camera in a box, and a 
fixed chessboard on the two sides of a crack. A network with LoRa wireless communication 
can be connected as an IoT system to provide automatic remote functions. The OpenCV library 
is employed to analyze changes in chessboard imaging so that relative displacements of the 
crack in the retaining wall can be measured in a landslide area. Through laboratory and field 
testing, the resolution and accuracy of the 3D optical crackmeter were determined as 0.04 and 
0.1 mm, respectively. Using the crackmeter, we observed significant displacements in the x- 
and z-directions of the crack in a retaining wall of 0.067 and 0.060 cm, respectively, in the 
Jhongsinlun landslide area of Taiwan over three months. Overall, the 3D optical crackmeter 
with computer vision technology can accurately measure the 3D displacement of cracks in 
a retaining wall. Moreover, the IoT-based 3D optical crackmeter is more cost-effective than 
traditional crackmeters used in landslide areas.

1. Introduction

 Measuring the relative displacement on two sides of a crack in a structure is a common 
monitoring method. Conventionally, crack displacement has been detected using devices 
with a manual reading such as a mechanical crackmeter, which measures crack movement in 
bricks and cement or an electrical crackmeter, which is used for the continuous measurement 
of structural cracks.(1,2) Nevertheless, these conventional crackmeters are manually employed 
and only installed in the main direction of a crack. Manually employed crackmeters are 
not suitable for alpine landslide monitoring because manual operations are costly and time-
consuming in landslide areas. The more recent electronic 3D crackmeters with three vibrating-
wire transducers can automatically monitor three-way displacement across cracks in concrete, 
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rock, soil, and structures; however, they are still costly and their operation is complicated.(3–5)  
Thus, the aim of the study is to explore a new type of sensor for the measurement of crack 
displacement using computer vision technology and an Internet of Things (IoT) system in order 
to automatically and economically detect the magnitude of 3D displacement of a crack in a 
retaining wall. Vision metrology of digital cameras has been used for accurately measuring 
tunnel deformation.(6) Digital image processing techniques are feasible for measuring the 
dynamic displacement of bridges with cameras.(7,8) 

 In this study, we employed computer vision technology and the OpenCV library to calculate 
changes in image pixels of a chessboard relative to a camera embedded on a Raspberry Pi 
device. The Raspberry Pi can be easily applied for computer vision technology to analyze 
changes in images with the OpenCV library. The camera connected to the Raspberry Pi 
can take photos of a 3 × 3 chessboard target in which there are nine coordinate points using 
computer vision technology.(9) Thus, we employed these devices to analyze changes in the 
image pixels of a chessboard. The OpenCV library, such as ‘cvCalibateCamera’, ‘cvtColor’, 
‘Threshold’, and ‘Corner Detection’, is used for camera calibration, referring to the chessboard 
corner point, and the image pixels of a chessboard target are tracked.(10–13) Computer vision 
technology has been applied to the detection of construction deformation and movement using 
data from site images and videos as an alternative to time-consuming and manual traditional 
practices.(14–18) Thus, the relative displacements between the camera and the chessboard in 
the x-, y-, and z-directions can be measured using computer vision technology. This computer-
vision-based crackmeter, called the 3D optical crackmeter in this study, can be employed for 
measuring 3D displacements of cracks. Furthermore, a wireless sensor network was applied 
to landslide prevention using the Long Range (LoRa) radio transmission technology, which is 
a radio frequency (RF) platform for long-range communication with low consumption.(19,20) 
As a result, the 3D optical crackmeter, the LoRa wireless communication, and a solar energy 
harvester are combined as an IoT system for crack monitoring in a landslide area.
 Two steps of this research were performed to determine the feasibility and practical use 
of the 3D optical crackmeter. The first step was laboratory testing to evaluate the accuracy of 
measuring a chessboard target using the computer-vision-based device; the second was field 
testing of the 3D optical crackmeter installed on a retaining wall in a landslide area.

2. Materials and Methods

2.1 Laboratory testing

 Laboratory tests were undertaken to measure displacement using the 3D optical crackmeter 
using a STAGE manual fine adjustment platform with a chessboard of 3 × 3 squares and 
a recording device composed of a Raspberry Pi microcomputer and a digital camera [see 
Fig. 1(a)]. Nine internal corner points within the 3 × 3 chessboard were interpreted as the 
reference coordinates.(21) The 3D optical crackmeter consists of the Raspberry Pi 3 Model B 
with 32G microSD [Fig. 1(b)] and a digital camera with 640 × 480 resolution [Fig. 1(c)]. Self-
programming was performed with Python to calculate the image pixel values of the corner 
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points in the chessboard, which was recognized as an image with a green rectangle for the 
perimeter and a red circle for the center point, as shown in Fig. 1(d).
 For example, the x- and y-coordinates of the center point in Fig. 1(d) were 342.05 and 
274.51 pixels, respectively. Then, the distance between the chessboard and the camera in the 
laboratory was calculated to be 0.1 m (10 cm) through self-programming that converted pixel 
units to meters. The images at the four corners of the chessboard in Fig. 1(d) had a side of 
154.13 pixels when one side of the physical perimeter of the 2 × 2-cm chessboard was 2 cm, so 
one pixel equaled 0.01 cm for the 10-cm-distance test in the laboratory. In other words, if the 
image of the chessboard is detected to move by one pixel in the x- or y-direction in the 10-cm-
distance test, it means that the chessboard is detected to have moved by 0.01 cm using the 
method of computer vision technology.
 To explain the principle of the 3D optical crackmeter using computer vision technology, 
Fig. 2 shows the chessboard and camera installed on two sides of a crack. Image changes in the 
chessboard can be automatically recognized to calculate the displacements of the chessboard 
relative to the camera. For the x- and y-axis displacements of the center point on the chessboard 
in Fig. 2, changes in the x- and y-axes of the chessboard mean x- and y-direction displacements 
relative to the camera, respectively. The initial image of the chessboard was detected using the 
OpenCV library so that a chessboard image could be moved from x0 to x1 or from y0 to y2 in the 
x- or y-direction, respectively.
 For the z-axis distance between the chessboard and the camera in Fig. 2, a change in the 
chessboard image means a displacement in the z-direction. This principle was used to calculate 

Fig. 1. (Color online) Apparatus of the 3D optical crackmeter in the laboratory: (a) configuration of laboratory 
optical crackmeter, (b) Raspberry Pi, (c) digital camera, and (d) self-programming of computer vision technology.



998 Sensors and Materials, Vol. 33, No. 3 (2021)

the distance between the camera and the chessboard using a pinhole camera model.(9,22,23) The 
focal-length function of the digital image in the pinhole camera is −x = f × X / Z, where Z is the 
distance from the camera to the chessboard, f is the focal length of the camera, X is the physical 
length of the chessboard, and x is the pixel value of the chessboard corner points on the imaging 
plane.(9,24–26) Thus, changes in the chessboard image can be detected and calculated as physical 
changes in the distance between the chessboard and the camera, namely, the z-axis displacement 
in Fig. 2.
 Two kinds of laboratory tests were performed using the STAGE manual fine adjustment 
platform in Fig. 1. The first was distance testing in the z-direction; the other was simulation of 
the x- and y-axis displacements of the chessboard. For the former, two distances between the 
camera and the chessboard of 10 and 20 cm were set to measure the accuracy of the 3D optical 
crackmeter in the laboratory. Accuracy histograms of the center point of the chessboard are 
shown in Fig. 3. For instance, the x-coordinate of the center point was 332.16 pixels about 420 
out of 1000 times in the repeated testing in Fig. 3(a). The coordinate and the standard deviation 
of the center point in the x- and y-directions were 332.16 and 0.02 pixels, and 196.06 and 
0.03 pixels, respectively, for the 10 cm distance [Figs. 3(a) and 3(b)]. The standard deviations 
of the center points in the x- and y-directions for the 20 cm distance were 0.06 and 0.07 pixels, 
respectively [Figs. 3(c) and 3(d)].
 The physical displacement was calculated by converting the pixel unit to centimeters using 
the focal-length equation for the z-axis displacement in Fig. 2, for example, the equation of 
−x = f × X / Z, where Z is 10 cm for the distance between the camera and the chessboard, X is 
8 cm for the physical perimeter of the chessboard, and x is 490.37 pixels for the perimeter of 
the chessboard with the corner points on the imaging plane. Thus, the value of f, which is the 
fixed focal length of the camera for the distance of 10 cm, was found to be 612.96 pixels by 
substituting the values of x, X, and Z into the equation. However, x is a change value on the 
imaging plane because of the system error in the camera resolution, which is similar to the 
changes in the x- and y-coordinates (see Fig. 3). Thus, the Z value changed with x, as shown by 

Fig. 2. Principle of calculating image changes.
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the accuracy histograms for the 10-cm-distance tests in Fig. 4(a), where the total number of cells 
was 1000 in the calculation of the distances using the perimeter pixels of the chessboard corner 
points. As can been seen, the distance of 10 cm appeared 771 out of 1000 times in the repeated 
testing. Meanwhile, the range of the distance in the testing was between 9.992 and 10.023 cm. 
Then, the standard deviation of the distance testing was calculated as 0.003 cm. Also, the results 
of the distance test were analyzed to determine the standard deviation of the crackmeter for 
the 20 cm distance [Fig. 4(b)]. The distance of 20 cm appeared 801 out of 1000 times and the 
standard deviation was calculated as 0.006 cm.
 In further laboratory testing, we set different displacements of the x- and y-axes of the 
chessboard of 1 to 10 mm. Figure 5 shows the measurement errors for displacements from 1 to 
10 mm in the x- and y-directions for the center point of the chessboard in the 10-cm-distance 
testing. As can be seen, the average errors of the x- and y-displacements in five repeated tests 
were between 0.007 and −0.006 cm for the testing of the ten different displacements. The 
average absolute measurement errors for the displacement testing were 0.002 and 0.001 cm in 
the x- and y-directions, respectively.
 Finally, an instrument similar to that used in the laboratory testing was installed at a 
retaining wall in a landslide area in order to monitor the displacement of an existing crack in 
the structure to evaluate the potential of the instrument for long-term monitoring. Through 
laboratory and field tests, the resolution and accuracy of the 3D optical crackmeter were 
determined, as discussed later.

Fig. 3. (Color online) Accuracy histograms of the center point of a chessboard for two distances between the 
camera and the chessboard.
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2.2 Field testing

 Our field test was performed in the Jhongsinlun landslide area in central Taiwan, as shown in 
Fig. 6, where the area is 32.62 ha and there are two smaller sliding blocks M1 and M2 within a 
larger sliding block L. The altitude of the area is approximately 468 m. The geological structure 
of the slope mass in M1 and M2 is mainly composed of mudstone and sandstone; however, the 
geological structure of the upper slope in L1 mainly consists of mudstone and sandstone with 
gravel.
 The instrument was installed at a retaining wall in Jhongsinlun landslide area to monitor a 
crack in the wall as shown in Fig. 7, which shows the devices of the instrument, comprising a 
black box with the 3D optical crackmeter and wireless communication, a solar power system, 
and a power storage device. The retaining wall was located in a landslide area and previous 
landslides led to the formation of a crack in the retaining wall [Figs. 7(a)]. To measure the 

Fig. 4. (Color online) Accuracy histograms for two distance tests.

Fig. 5. Errors of actual displacement of center point in the chessboard for the 10-cm-distance testing.
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Fig. 6. (Color online) Location of 3D optical crackmeter installed in Jhongsinlun landslide area.

Fig. 7. (Color online) Configuration of the 3D optical crackmeter in the field: (a) field configuration of the 3D 
optical crackmeter, (b) location of the 3D optical crackmeter and linear crackmeter, (c) inside of the 3D optical 
crackmeter, (d) chessboard and camera fixed at the two sides of the crack in the retaining wall, (e) relative location 
of the chessboard and crack, and (f) self-programming of computer vision technology for the chessboard.
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potential displacement of the crack, the 3D optical crackmeter was installed at the top of the 
wall, as shown in Fig. 7(b), along with a linear crackmeter as a manual monitoring device for 
comparison.
 Figure 7(c) shows the inside of the box comprising the Raspberry Pi with a digital camera 
and an LED light, the chessboard, and a wireless communication module. We used IL-LoRa 
1272 wireless communication. The LoRa communication device, composed of an RFIC SX1272 
chip and a microcontroller unit, has the advantages of long-distance transmission, low cost, and 
low power consumption.(27,28) The distance between the chessboard and the camera in the field 
was 12 cm because of the limited box size. The chessboard was attached on the side of the crack 
in the retaining wall, and the camera embedded in the Raspberry Pi was fixed on the other side 
of the crack, as shown in Fig. 7(d), so that the amount of crack displacement could be detected 
using the computer-vision-based crackmeter. In contrast to the laboratory testing, the direction 
of the camera shot was from top to bottom rather than in the horizontal direction. This was to 
both detect the displacement of the chessboard and take an image of the chessboard in the crack, 
as shown in Fig. 7(e). Finally, self-programming with Python was used to calculate image pixel 
values of the chessboard, which was recognized as the image in the green rectangle in Fig. 7(f) 
with a red circle for the center point.
 The image values of the center point in the chessboard were 310.44 and 156.55 pixels in the 
x- and y-directions, respectively, as shown in Fig. 7(f). Furthermore, the image value of the 
perimeter in the chessboard was 139.75 pixels, which corresponds to the initial physical distance 
between the chessboard and the camera of 0.12 cm when the chessboard was installed on 
13/12/2019. If the chessboard is moved or the wall undergoes subsidence, changes in the image 
pixel value will be automatically detected using the OpenCV library with Python programming 
in the 3D optical crackmeter.
 All field monitoring data from the optical crackmeter were obtained using an image 
resolution of 640 × 480 pixels captured at a rate of one frame per hour. The Python 
programming was designed to automatically interpret pixel changes, record data, and transmit 
data to an FTP cloud system through the LoRa communication as an IoT monitoring system in 
real time. Graphs of the monitoring data from the optical crackmeter over three months showed 
pixel changes in the x-, y-, and z-directions every hour (Fig. 8). The relative displacement in 
the x-direction between the chessboard and the camera in the optical crackmeter is shown in 
Fig. 8(a), where the left vertical axis indicates image value changes of the center point in the 
x-direction (unit: pixel).
 For example, the initial image value of the x-coordinate of the center point of the chessboard 
was 310.44 pixels on 13/12/2019 in Fig. 8(a). Then, the image value of the x-coordinate changed 
to 315.75 pixels on 08/03/2020 so the change in the image value was 5.31 pixels in the period. 
Because one pixel equals 0.01 cm, as clarified in the laboratory test, the corresponding physical 
change in the x-direction was 0.0531 cm in the period. Also, the image value of the y-coordinate 
of the center point of the chessboard changed from 156.55 pixels on 13/12/2019 to 153.41 pixels 
on 08/03/2020, as shown in Fig. 8(b), so the corresponding physical change in the y-direction 
was 0.0314 cm. For the change in the z-axis in Fig. 8(c), the initial image value of the perimeter 
on the chessboard was 559.52 pixels on 13/12/2019, corresponding to the initial distance of 
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12 cm between the camera and the chessboard in the field. Thus, the x value of 559.52 was 
substituted into the focal-length function of −x = f × X / Z, where Z was 12 cm and X was 8 cm 
(the physical perimeter of the chessboard), from which the fixed focal length f was found to 

Fig. 8. (Color online) Graph of monitoring data from the 3D optical crackmeter in the field.
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be 839.28 pixels. Then, the perimeter image value of the z-axis changed to 560.00 pixels on 
08/03/2020, from which the Z value for the distance was calculated as 11.99 cm using the above 
function, where x was 560.00 pixels, f was 839.28 pixels, and X was 8 cm. Finally, the change in 
the distance for the z-direction was 0.01 cm, corresponding to the change in the perimeter image 
value from 559.52 to 560.00 pixels in the period.
 According to the monitoring data in Fig. 8, there were regular fluctuations in the coordinates 
every day. Generally, optical devices are affected by the environmental temperature.(29,30) 
Thus, other environmental monitoring data in the area such as rainfall and temperature are 
shown in Fig. 8(d) for comparison with the results of crack displacement monitoring. There 
was a clear relation between the temperature and the pixel changes as shown in Fig. 9, which 
presents the monitoring data over a week. Figure 9 illustrates that the pixel changes are greatest 
when the temperature is highest at noon. By contrast, the pixel changes become small when 
the temperature drops near sunset, especially at night, as well as on rainy days. To observe the 
pixel changes more clearly, the one-day moving average of the field monitoring data was used 
to smooth the time series(31,32) and show the trend of pixel changes without the influence of the 
temperature on the optical device. The optical crackmeter was originally recorded every hour so 
the 24-point moving average corresponds to one point of monitoring data per day, as shown in 
Figs. 8(a)–8(c). The analysis of the moving average of the pixel changes is discussed later.

3. Results and Discussion

 In the laboratory tests, several displacements of the STAGE platform of 0.01, 0.015, 0.02, 
0.025, 0.03, 0.05, 0.1, 0.3, 0.5, and 1.0 cm were manually set, and the z-axis distance and the x- 
and y-axis displacements of the 3D optical crackmeter were recorded with a distance of 10 cm 
between the chessboard and the camera. As mentioned above, the relation between an image 
pixel and the physical length was that one pixel was equal to 0.01 cm for the 10-cm-distance 
test in the laboratory. Table 1 shows the measurement errors and actual values for the z-axis 
distance and the x- and y-axis displacements. In the laboratory testing, the standard deviations 
were approximately 0.0031, 0.0069, and 0.0020 cm for the z-, x-, and y-axes of the 3D optical 

Fig. 9. (Color online) Graph showing relation between x-direction pixel changes, temperature, and rainfall in a 
week.
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crackmeter, respectively. Thus, the resolution of the 3D optical crackmeter was determined as 
0.004 cm from the average standard deviation in the laboratory. The maximum errors of the 
laboratory testing were from 0.0001 to 0.0091 cm, so we considered the accuracy of the 3D 
optical crackmeter to be 0.01 cm. Furthermore, errors of the field testing must be considered 
and compared with the laboratory testing as follows.
 In the field testing, the monitoring data from the 3D optical crackmeter were recorded in 
real-time by the IoT technology, where the data recorded were the changes in the image pixels 
of the x-, y- and z-axis coordinates between 12/2019 and 03/2020. As shown in Fig. 8(a), there 
was a slight increase in the x-axis coordinate of the chessboard from approximately 310 to 
319 pixels. As shown in Fig. 8(b), the y-axis coordinate fluctuated between 155 and 160 pixels 
during the period. Also, there was a fluctuation from 556 to 564 pixels for the z-axis coordinate 
up to 15/02/2020 as shown in Fig. 8(c). As mentioned above, the relative displacement in 
the optical crackmeter was measured using the moving-average method to eliminate the 
temperature effects in Fig. 9. There was a slight increase in the moving-average x-coordinate 
of the chessboard from approximately 310.68 to 317.41 pixels. This means that the chessboard 
on the retaining wall was moved by 6.73 pixels in the x-direction relative to the camera in 
the optical crackmeter in the period. The corresponding physical x-axis displacement was 
0.067 cm from the fact that one pixel equals 0.01 cm in the laboratory test. The moving-average 
y-coordinate fluctuated between 156.42 and 157.38 pixels in the same period corresponding to a 
change of 0.94 pixels. The moving-average z-coordinate fluctuated from 558.86 to 559.28 pixels 
up to 15/02/2020. After that, it significantly changed, dropping by 3.07 pixels from 559.28 to 
556.21 pixels from 02/2020 to 03/2020, corresponding to a change of 0.060 cm using the focal-
length function.
 Consequently, cumulative changes in the displacement of the optical crackmeter and their 
errors were determined from the monitoring data, as shown in Table 2. The errors of the field 
testing ranged from 0.57 to 1.09 pixels and the average error of the changes was 0.008 cm. 
Thus, the average error of the displacement amount was determined as 0.01 cm, which can be 
regarded as the accuracy of the optical crackmeter in the field.

Table 1 
Results of z-axis distance and x- and y-axis displacements for the 10-cm-distance test.

z-axis distance (cm) x- and y-axis displacements (cm)

Actual value Measured 
value Error Actual value Measured value 

of x-axis
Error of 
x-axis

Measured value 
of y-axis

Error of 
y-axis

10 9.9967 0.0033 — — — — —
10.01 10.0121 0.0021 0.01 0.0112 0.0012 0.0098 0.0002
10.015 10.0165 0.0015 0.015 0.01589 0.00089 0.0152 0.0002
10.02 10.0224 0.0024 0.02 0.01984 0.00016 0.024 0.004
10.025 10.0219 0.0031 0.025 0.02484 0.00016 0.0249 0.0001
10.03 10.0313 0.0013 0.03 0.02999 0.00001 0.0301 0.0001
10.05 10.0522 0.0022 0.05 0.04998 0.00002 0.0512 0.0012
10.1 10.1091 0.0091 0.1 0.09816 0.00184 0.1058 0.0058
10.3 10.3082 0.0082 0.3 0.30404 0.00404 0.3004 0.0004
10.5 10.4961 0.0039 0.5 0.50652 0.00652 0.5005 0.0005
11 11.0030 0.0030 1 1.00149 0.00149 1.0007 0.0007
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 Then, the one-day moving average of field monitoring data was used to show the trend of 
displacement changes in the optical crackmeter. Cumulative changes in the x-, y-, and z-axis 
displacements for the optical crackmeter are presented in Fig. 10, which showed the amount 
of relative crack displacement in three months obtained using the moving-average method. As 
can be seen, the maximum amounts of relative crack displacement in the x- and z-directions 
increased by 0.08 and 0.12 cm, respectively, in the period. However, the relative crack 
displacement in the y-direction was only approximately 0.03 cm in the three months.
 There was a linear crackmeter installed at the side of the optical crackmeter to measure 
the crack deformations as shown in Fig. 7(b). The linear crackmeter detected a displacement 
of approximately 0.1 cm in the three months, while its resolution was only 0.1 cm. It showed 
the same deforming trend as the 3D optical crackmeter. Table 3 shows that the cost of 3D 

Fig. 10. (Color online) Results of one-day moving average of x-, y-, and z-axis cumulative displacements for the 
optical crackmeter in the field from 12/2019 to 03/2020.

Table 3 
Comparison of the 3D optical crackmeter and traditional monitoring devices.

3D optical crackmeter Mechanical crackmeter Electrical crackmeter
Resolution 0.04 mm 0.01–1 mm 0.025% F.S.
Price $150 USD $150–300 USD $400–600 USD
IoT application Yes No Yes, if connected to other devices

Table 2 
Cumulative values of crack displacement for field testing in three months using moving-average method.

Sum of displacement 
change (pixel)

Sum of displacement 
magnitude (cm)

Error of displacement 
changes (pixel)

Error of displacement 
amount (cm)

x-axis 6.73 0.067 0.57 0.006
y-axis 0.94 0.009 1.09 0.011
z-axis 3.07 0.060 0.75 0.007
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optical crackmeter is about half that of traditional monitoring devices and that its resolution is 
better than that of some mechanical crackmeters, such as linear crackmeters. In addition, the 
optical crackmeter is part of an IoT system with computer vision technology and LoRa wireless 
communication.
 However, there are some limitations of the optical crackmeter. (a) It needs light, so we used 
an LED light within the black box in the field. (b) The optical crackmeter is often affected by 
the environmental temperature. (c) The optical crackmeter in the field is a sensitive sensor for 
any external forces, such as retaining wall movement or man-made touch. That is why we used 
a black box to cover the optical device and to protect it from changing ambient conditions as 
much as possible. Overall, the optical crackmeter using computer vision technology can be 
effectively and automatically employed for crack monitoring in a retaining wall.

4. Conclusions

 Our proposed 3D optical crackmeter was composed of a Raspberry Pi device, a digital 
camera, and a chessboard target. Computer vision technology was applied to recognize 
the chessboard in an image that is made of pixels. The image was used to calculate the 
relative movement between the camera and the chessboard. A network with LoRa wireless 
communication was connected as an IoT system to provide remote monitoring functions 
automatically. The resolution of the optical crackmeter was determined as 0.04 mm in the 
laboratory, while its accuracy was 0.1 mm in the field. Changes in the image pixels of the 
chessboard of the optical crackmeter were influenced by the temperature in the field, so we 
employed a 24-point moving average to analyze the monitoring data. There was a significant 
displacement in the x-axis direction and a significant change in the z-axis distance in the crack 
of the retaining wall in the Jhongsinlun landslide area of 0.067 and 0.060 cm, respectively, 
during three months. There was a similar displacement of approximately 0.1 cm in the 
same period according to measurements made with a linear crackmeter installed next to the 
optical crackmeter. The 3D optical crackmeter with the IoT system is more cost-effective 
than traditional crack meters. Overall, the 3D optical crackmeter with the computer vision 
technology can be used for 3D displacement monitoring of a crack in a structure and for real-
time and long-term monitoring in a landslide area.
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