
1149Sensors and Materials, Vol. 33, No. 4 (2021) 1149–1165
MYU Tokyo

S & M 2524

*Corresponding author: e-mail: 183342462@qq.com
https://doi.org/10.18494/SAM.2021.3002

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Genetic-algorithm-based Convolutional Neural Network 
for Robust Time Series Classification with Unreliable Data

Jiang Wu,1* Yanju Ji,2 and Suyi Li2

1Changchun Institute of Technology, No. 395 Kuanping Road, Changchun City 130012, China
2College of Instrumentation and Electrical Engineering, Jilin University, 

No. 2699 Qianjin Street, Changchun City 130061, China

(Received September 24, 2020; accepted March 8, 2021)

Keywords:	 genetic algorithm, convolutional neural network, time series classification, photoplethysmography

	 Finding robust solutions to time series classification problems using deep neural networks 
has received wide attention. However, unreliable data makes classification very difficult. 
Traditional deep neural networks cannot effectively solve problems with strong noise. In this 
paper, we propose a hybrid convolutional neural network (CNN) model combined with a genetic 
algorithm (GA) for time series classification (TSC) with unreliable data. To obtain a robust CNN 
structure, even though network structural optimization is an NP-hard problem, we design a GA 
for network structure optimization. Several benchmarks and actual datasets are adopted, and 
tests are carried out to prove the effectiveness of the proposed GA-based CNN. The numerical 
results show that our approach has better performance than other state-of-the-art deep neural 
networks.

1.	 Introduction

	 Time series classification (TSC) is one of the most important problems in machine learning 
and data mining. The target of TSC is to discover a classification model that identifies the data 
characteristics, where the data are a description of a series of datasets indexed in time order. 
TSC problems arise in a wide range of fields including natural language processing, image 
processing, scheduling, logistics, medicine, and health. For more extensive explanations of the 
various TSC problems, the reader is referred to previous reviews.(1,2) 
	 The research on TSC has been ongoing for decades. There are three categories of 
approaches for TSC, i.e., distance-based classification, feature-based classification, and support 
vector machine (SVM) and model-based classification.(3) For distance-based classification, 
Faloutsos et al. proposed a Euclidean-distance-based approach, which is a predefined similarity 
measure for TSC.(4) Yi and Faloutsos discussed various distance-based measurement strategies 
and improved the Euclidean distance measurement strategy with common Lp-norms to form 
extensions of the Euclidean distance.(5) Frentzos et al. proposed a dissimilarity metric (DISSIM) 
to measure the spatiotemporal dissimilarity between two similar time series.(6) The above 
approaches are lock-step measures. Although they are widely adopted measurements, Berndt 
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and Clifford(7) and Keogh and Ratanamahatana thought that the Euclidean-distance-based 
measurement strategy and its extensions were insufficiently robust as similarity measures. 
Thus, they proposed dynamic time warping (DTW), a classic speech recognition tool, which 
provides a better match with another time series through the compression of the comparable 
time series. Chen et al. presented an edit distance with real sequence (EDR), in which a 
threshold parameter was adopted, where the distance was quantified according to a threshold 
given in advance.(9) Chen and Ng proposed an edit distance with real penalty (ERP), in which 
DTW and EDR were combined and a constant reference point was set to compute the distance.(10) 
Vlachos et al. studied the longest common subsequence (LCSS), which provided a strategy to 
consider constraining the matching of two points.(11) Similarly, Morse and Patel developed a 
sequence-weighted alignment model (Swale) for TSC.(12) DWT, EDR, ERP, LCSS, and Swale 
are examples of elastic measures. In addition to lock-step measures and elastic measures, there 
are also threshold-based measures, i.e., threshold queries (TQuEST)(13) and pattern-based 
measures, such as the spatial assembling distance (SpADe).(14) A summary of distance-based 
measures is listed in Table 1. Although various variants have been researched, they were still 
distance-based measures or editing distance measures. The measures may work well for simple 
TSC with low-dimension data; however, they still have difficulty with complex TSC.
	 For feature-based classification, some basic approaches, such as decision trees and neural 
networks, and some approaches for feature selection have been studied and adopted to classify 
feature vectors. Then, the sequence classification of TSC is solved by transforming the 
sequence through the results of feature selections.(15) Chuzhanova et al. proposed a gamma-test-
based feature selection for the sequence classification problem.(16) Ji et al. studied an approach 
using contract sequences with a gap miner strategy to mine the distinguishing subsequence 
satisfying the constraints.(17) Nanopoulos et al. presented a feature selection approach for TSC 
with the help of a multilayer perceptron (MLP) neural network.(18) Yoon et al. studied a novel 
unsupervised method based on the common principal component analysis strategy to select 
suitable features.(19) The key factor of feature selection is the criteria used to select the features. 
Eads et al. stressed that the most difficult and important part of feature selection is selecting 
appropriate features. There is necessarily always a trade-off between manual selection and the 
help of domain experts.(20) Moreover, it is difficult to design good features to capture intrinsic 

Table 1
Summary of distance-based measures.
Measure type Measure name

Lock-step measures Lp-norms
L1-norms (Manhattan distance)
L2-norms (Euclidean distance)

Lint-norms
DISSIM

Elastic measures

DTW

Edit-distance-based measure

LCSS
EDR
Swale
ERP

Threshold-based measures TQuEST
Pattern-based measures SpADe
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properties embedded in various time series data. Therefore, the accuracy of feature-based 
methods is usually lower than that of sequence-distance-based ones, particularly 1-nearest 
neighbor (1-NN) with DTW. On the other hand, 1-NN and DTW have been used in many 
studies, but both require too much computation for many real-world applications.(7)

	 In fact, the techniques mentioned above usually depend on handcrafted features that require 
researchers to have sufficient professional knowledge and practical experience. Furthermore, 
even if they need a lot of time and labor, there may still be inevitable deviation during 
classification. Thus, various researchers have focused on effective approaches based on data 
mining tools in recent years.
	 As one of the supervised learning models, SVM is a kind of generalized linear classifier 
for binary data classification. In recent years, many variants of basic SVM have been applied 
for TSC. Kampouraki et al. investigated the potential benefit of Gaussian kernel-based 
SVM on heartbeat TSC.(21) Eads et al. proposed an algorithm called Zeus for TSC, which 
employed evolutionary computation for feature extraction and SVM for classification.(22) 
Alalshekmubarak and Smith changed the output layer of SVM by replacing the linear readout 
function with the radial basis function kernel, and proposed a novel algorithm that combines 
SVM and an echo state network for TSC.(23) Rodríguez and Alonso attempted to combine 
SVM and a boosting algorithm to analyze interval features for time series classification.(24) On 
the basis of a temporal extension of discrete SVMs, Orsenigo and Vercellis proposed a new 
algorithm with the benefit of a warping distance and a softened variable margin.(25) Although 
SVM has strong ability and flexibility in data mining for various applications, it is difficult to 
interpret the results and difficult for users to gain knowledge other than the classification result, 
especially for kernel-based methods. 
	 With the increased availability of time series data, the effectiveness of TSC faces enormous 
challenges. Recently, deep learning (DL) has successfully been applied in various classification 
tasks. This is because DL can learn a hierarchical feature representation from data automatically 
instead of preparing the features manually. The following are some typical DL approaches for 
TSC.
	 The MLP is a common feedforward artificial neural network model. It maps multiple input 
datasets to a single output dataset and adjusts parameters through an error back-propagation 
algorithm. Fawaz et al. studied several state-of-the-art DL algorithms for TSC and proposed an 
open-source DL framework for the TSC community.(26) Zheng et al. employed a DL framework 
to improve feature learning techniques to solve multivariate time series classification.(27) 
Nanopoulos et al. constructed an improved approach based on the MLP for multivariate time 
series.(28) Batres-Estrada applied a DL framework to multivariate financial time series and 
demonstrated the effectiveness of the MLP in TSC.(29)

	 A recurrent neural network (RNN) can describe dynamic time behavior because, unlike 
feedforward neural networks that accept input from more specific structures, RNNs pass states 
in their own networks, thus accepting a wider range of time series structure inputs. The main 
purpose of an RNN is to process and predict sequence data. It is used to model sequence data, 
which means that the current output of a sequence is also related to the previous output. Because 
of its network structure, an RNN will remember previous information and use it to affect the 
output of the following nodes.
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	 Although RNNs have many advantages, there is an obvious problem: long-term dependence. 
As a kind of RNN, long short-term memory (LSTM) can learn long-term dependence 
information and has a gate mechanism to control the flow and loss of features to avoid the 
long-term dependence problem. Since LSTM was proposed by Hochreiter and Schmidhuber 
in 1997,(30) many researchers have contributed to the modern LSTM, such as Felix Gers, Fred 
Cummins, and so on, and a complete system for LSTM has been formed. Owing to the unique 
design structure of LSTM, it is suitable for processing and predicting important events with very 
long intervals and delays in time series. Lipton et al. augmented fully convolutional networks 
(FCNs) with LSTM-RNN submodules for TSC, which have been demonstrated to have state-
of-the-art performance.(31) Karim et al. proposed that LSTM-FCNs and attention LSTM-FCNs 
(ALSTM-FCNs) should be transformed into a multivariate TSC model by augmenting a fully 
convolutional block.(32) Lipton et al. applied LSTM-RNNs to the multilabel classification of 
diagnoses and demonstrated their effectiveness.(33) Malhotra et al. proposed TimeNet based on 
a deep RNN, which can be trained on diverse time series in an unsupervised manner.(34)

	 XGBoost is an open-source software library that provides a gradient-boosting framework. 
From the project description, it aims to provide a “scalable, portable and distributed gradient 
boosting (GBM, GBRT, GBDT) library.” In addition to running on a single machine, it also 
supports distributed processing frameworks such as Apache Hadoop, Apache Spark, and 
Apache Flink. It has gained much popularity and attention recently as it was the algorithm of 
choice for many winning teams of a number of machine learning competitions. Zheng et al. 
proposed a short-term load forecasting method using EMD-LSTM neural networks with an 
XGBoost algorithm for feature importance evaluation.(35) Chen et al. proposed a radar emitter 
classification for large datasets based on weighted XGBoost.(36) 
	 The convolutional neural network (CNN) is a variant of the MLP, which was developed by 
biologists Huber and Wiesel in their early research on the cat visual cortex. The first CNN, 
LeNet-5, was proposed by Lecun and Bottou in 1998.(37) As a kind of feedforward neural 
network with a depth structure, a CNN contains a convolution calculation and is one of the 
representative algorithms of DL. Morabito et al. generated suitable sets of features with the 
help of the representational power of a CNN.(38) Zheng et al. proposed a novel DL framework 
for multivariate TSC.(39) Yang et al. proposed a systematic feature learning method for the 
HAR problem that adopts a deep CNN to automate feature learning from the raw inputs in 
a systematic way.(40) Researchers found that the cooperation and combination of a CNN and 
LSTM can have good performance. Zhou et al. proposed a combination of a CNN and LSTM 
for text classification.(41) Wang et al. proposed a beyond frame-level CNN, which is a saliency-
aware 3D CNN with LSTM for recognition.(42) Wu and Prasad proposed a novel algorithm 
based on a CNN with the help of LSTM for hyperspectral data classification.(43) 
	 However, time series datasets are often mixed with strong noise. For example, noisy 
environments will reduce the effect of natural language processing, and water droplets falling 
on a camera on rainy days can reduce the accuracy of video detection. At present, the design 
of network structures is mostly oriented to the kind of problem instead of the kind of dataset. 
As a result, the performance of a network may vary greatly on different datasets for the same 
kind of problem. To solve this problem, we attempt to adjust the network structure according to 
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the characteristics of the dataset in the training process to make up for the lack of a traditional 
learning model. In this paper, we combine a genetic algorithm (GA) with a CNN and propose a 
hybrid model (GACNN), in which the CNN is trained for a certain number of epochs, and then 
its structure is adjusted by the GA.
	 The rest of the paper is organized as follows. In Sect. 2, we present the problem description 
and the model of TSC. Our proposed GACNN is introduced in Sect. 3. Section 4 presents 
numerical experiments, and Sect. 5 presents the final conclusion.

2.	 Description of Problem

	 TSC can be defined as a classification problem with a series of datasets indexed in time 
order. Three kinds of time series are defined:(2)

•	 A single time series: x = [x1, x2, ..., xn] is a vector with real values, where n is the number of 
real values.

•	 A multidimensional time series: X = [x1, x2, ..., xi, ..., xm] is a matrix with m different single 
time series, where xi is the ith single time series.

•	 A dataset of time series: D = {(X1, y1), (X2, y2), ..., (Xj, yj), ..., (XN, yN)} is a pair dataset 
(Xj, yj), where Xj is a multidimensional time series (or a single time series) and yj is the 
corresponding label vector.

	 We consider a single time series x = [xi]. A time series x of length n is split into fixed-
size windows Si:w = [xi, ..., xi+w−1] of length w using a windowing function. Two consecutive 
windows at offsets i and i + 1 overlap at w − 1 positions:
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	 In the training phase, the objective of TSC is to find the correspondence between windows 
{Si:w} and K feature classes using a learning model. Here, we set a probability distribution over 
K classes with each label value of yj ∈ [1, K], j = 1, 2, ..., K. An illustration of TSC is shown 
in Fig. 1. Given a sequence of values for a time series dataset D, values at multiple time steps 

Fig. 1.	 Illustration of time series classification.
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can be grouped to form an input vector (generally provided by an expert). Algorithm 1 shows a 
general implementation process of a TSC learning algorithm.

Fig. 2.	 Sample dataset of multiple physiologic signals during sleep.

Algorithm 1: TSC learning algorithm.
1.	 Input: time series dataset D, windows {Si:w}, probability distribution {yj} ∈ K classes
2.	 Output: learning model f(θ)
3.	 Begin
4.		  i = 0;
5.		  while i+w ≤ length(D) do						      // w num. of window size
6.			   Ti:w = Di:i+w;								        // Ti:w time series sequence
7.			   update θ = learning({S}, f(θ, Ti:w));
8.		  end
9.		  return f(θ)
10.	 End

	 Example of TSC: Sleep apnea syndrome (SAS) is a sleep disorder that seriously affects 
sleep quality and threatens public health. Polysomnography (PSG) signals, the diagnostic gold 
standard for SAS, are a kind of multidimensional time series: a collection of recordings of 
multiple physiologic signals during sleep. The dataset of PSG signals includes electrocardiogram 
(ECG), photoplethysmography (PPG), electroencephalogram (EEG), stroke volume, and 
peripheral oxygen (SpO2) signals. A sample dataset of PSG is shown in Fig. 2.
	 In general, a doctor can judge the patient’s sleep staging and apnea condition on the basis of 
the PSG signals. There are six types of apnea conditions as follows:

H	 Hypopnea
HA	 Hypopnea with arousal
OA	 Obstructive apnea
X	 Obstructive apnea with arousal
CA	 Central apnea
CAA	 Central apnea with arousal

	 Solving TSC has great significance, such as the above SAS classification by PSG. However, 
in actual situations, the sampling data are mixed with strong noise. This makes the learning of 
data characteristics and the mining of features from sampling data too difficult. As shown in Fig. 3, 
there are significant differences in the data in different situations. Therefore, the learning model 
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must be robust to unreliable data. In this paper, we propose a hybrid CNN model combined with 
a GA for TSC with unreliable data. To obtain a robust CNN network structure, we design a GA 
for network structure optimization.

3.	 GACNN

	 A GACNN aims to find a robust DL model to fit unreliable data. In this paper, the GACNN 
focuses on TSC problems, where the TSC data are mixed with strong noise. The GACNN 
considers both the CNN and GA as its basic algorithms and is suitable for TSC and network 
structure optimization. First, we design and train a full CNN using TSC sampling data. After a 
certain number of training steps, we adopt the GA to adjust the CNN structure by cutting some 
connections between neurons. By repeating the above processes alternately, the GACNN can 
obtain a more efficient DL model. A flowchart for GACNN is shown in Fig. 4, and its overall 

(a)

(b)

(c)

Fig. 3.	 (Color online) Measured PPG signals. (a) Raw signal when sitting calmly; (b) raw signal when moving 
slightly; (c) raw signal acquired in strongly noisy environment.

Fig. 4.	 Algorithm flowchart of GACNN.
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algorithm is shown in Algorithm 2. All details regarding the GACNN are introduced separately 
in the following.

Algorithm 2: GACNN.
1.	 Begin
2.		  Initialize a CNN;
3.		  Train the CNN for TSC;
4.		  for CNN structure optimization step do
5.			   GA-based CNN structure optimization;
6.			   fine-tune the remaining CNN;
7.		  end for
8.		  return fine-tune the remaining CNN;
9.	 End

3.1	 CNN for TSC

	 A deep neural network is a composition of L layers of a bipartite graph with weighted and 
directed arcs. Each layer li, i ∈ (1, L) contains neurons, takes the output of the previous layer li−1 
as the input, and applies an activation function to compute its output:

	 fL(θL, x) = fL−1(θL−1, fL−2(θL−2, fL−3(θL−3, ..., f1(θ1, x)))),	 (2)

where fi corresponds to the activation function applied at layer li using weighted parameters θi 
and input values x.
	 The CNN is one of the classical deep neural networks and is most commonly applied to 
computer vision. Recently, CNNs have been successfully applied in various fields, including TSC.(1) 
To solve TSC problems, the convolution is defined as applying and sliding a filter over the time 
series. The filter of CNN expresses time series as one dimension or multiple dimensions. A 
general function applying the convolution for a time stamp t is given as

	 [ ]( , ),  1, F
t tC f X t Nθ= + ∀ ∈b ,	 (3)

where Ct denotes the convolution applied to the dataset of time series D = {(Xt, yt)} on time stamp t. 
Xt

F is calculated from Xt using a filter F. An example of a CNN structure for TSC with four 
convolutional layers is illustrated in Fig. 5.

3.2	 GA-based CNN structure optimization

	 GAs have attracted wide attention because of their intelligence, parallelism, robustness, good 
adaptability, and the capability of global searching. A GA is a generic population-based meta-
heuristic optimization algorithm that uses some mechanisms inspired by biological evolution: 
mutation, crossover, and selection. Candidate solutions to the optimization problem play the 
role of individuals in a population, and the fitness function determines the environment within 
which the solutions ‘live’.
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	 A CNN structure can be represented by a special directed graph. Consider a CNN G = (N, W) 
consisting of a finite set of neurons Ν = {ni} and a set of weights W = {wk | (ni, nj)} joining 
pairs of neurons in N. For a given dataset of time series X = {Xi}, the loss function of TSC can 
formulated as follows:

	 ( , )G X(X, G).	 (4)

	 An optimized CNN structure G’ can be obtained as (N, W·U), where U = {uk}, uk ∈ (0, 1) is 
a transition matrix. The structure optimization can be formulated as follows:

	 min  ( )( , ,  ) ( , ,  ) UX N W X N W U λ+ Ω− ⋅  ,	 (5)

where ||·|| represents the loss between the original structure G and the optimized structure G’, 
and λΩ(U) is the penalty function of the transition matrix U. Formally, the objective function 
used in CNN structure optimization can be formulated as follows:

	 arg min  ( )( , ,  ) ( , ,  )
U

UX N W X N W U λ+ Ω− ⋅  .	 (6)

	 In the above description, this structure optimization has a computational complexity of O(2n) 
and is an NP-hard problem. The procedure of CNN structure optimization is shown in Algorithm 3.

Fig. 5.	 (Color online) CNN for time series classification. (a) Illustration of Conv. and Max pooling. (b) Example of 
CNN structure for SAS classification.

(a)

(b)
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Algorithm 3: CNN structure optimization.
1.	 Initialize model G(N, W);
2.	 while not end of training do
3.		  for setting steps do
4.			   training by ( , )G X(X, G);
5.		  end for
6.		  evaluate model G(N, W);
7.		  optimize network structure W' ← W ∙ U via GA;
8.		  update G(N, W’)
9.	 end while

Representation
	 How to encode a CNN structure into a chromosome is a key issue of GAs. In this paper, the 
main objective is to determine the optimal combination of {uk ∈ (0, 1)}, and the representation 
is carried out using binary strings. A gene vk(wij) can be seen as a switch that controls the 
existence of a connection from node i to node j. If the state of vk(wij) is 1, then neuron i is 
connected with neuron j in the CNN, and if the state of vk(wij) is 0, then the connection between 
neuron i and neuron j is deleted from the CNN. An example of a representation is shown in Fig. 
6 and a decoded result is shown in Fig. 7.

Evolution
	 To search for an effective network structure, we evaluate a representation by the following 
evolution function:

	    ( )( , ,  ) ( ,  ,  )fitness UX N W X N W Uα λ= + Ω− ⋅  	 (7)

	 1( ) 1
N

kk u
U

N
=Ω = −

∑ ,	 (8)

where α and λ are adaptive weight parameters with adjustable weights, in order to adjust the 
search direction between the loss function and network structure. 

Fig. 6.	 Binary string for CNN structure representation.

Fig. 7.	 Network structure adjustment for representation in Fig. 6.
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	 1 ( , ,  ) ( , ,  )z X N W X N W U= − ⋅  	 (9)

	 2 ( )z U= Ω 	 (10)

	 The weights are defined as follows, where r is a nonnegative random number in the interval [0, 1].

	
1 1
max min

r
z z

α =
−

	 (11)

	
2 2

1
max min

r
z z

λ −
=

−
	 (12)

Mutation
	 Mutation is a genetic operator that produces spontaneous random changes in various 
chromosomes. In the GA, mutation serves the crucial role of either (a) replacing the genes lost 
from the population during the selection process so that they can be tried in a new context or 
(b) providing genes that were not present in the initial population. Mutation selects a gene at 
random; since the gene is 1 (or 0), it will be flipped to 0 (or 1). An example of mutation is shown 
in Fig. 8.

Overall procedure of GA
	 The implementation procedure of the GA is described in Algorithm 4, where P(t) and C(t) 
are parents and offspring, respectively, in the current generation t.

Algorithm 4: GA.
1.	 initialize P(t) by random generated structure U;
2.	 fitness eval(P) by evolution function;
3.	 while not termination condition do
4.		  make P(t) to popsize/2 pairs;
5.		  for each pair do
6.			   compare fitness;
7.			   select the better individual as offspring C(t);
8.			   generate offspring C(t) by mutation;
9.		  end for
10.		  fitness eval(C) by evolution function;
11.	 end while
12.	output the best individual;

Fig. 8.	 Example of mutation.
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4.	 Experiments

	 We apply our GACNN to the MIT-BIH polysomnographic database(44,45) and measured PPG 
signals, and compare its performance with six state-of-the-art models: SVM, MLP, LSTM, 
CNN, CNN+LSTM, and XGBoost. All algorithms are implemented on TensorFlow 1.10 with 
cuDNN 7.0.

4.1	 Datasets

	 The MIT-BIH polysomnographic database is provided by PhysioNet (www.physionet.org). It 
is a dataset of multiple physiologic signals during sleep. The dataset was recorded in Boston’s 
Beth Israel Hospital Sleep Laboratory, where subjects were monitored to evaluate SAS and 
test the effectiveness of constant positive airway pressure. The dataset contains 4/6/7-channel 
polysomnographic recordings with ECG signals annotated beat-by-beat, and EEG and 
respiration signals annotated with respect to sleep stages and apnea. The dataset consists of 18 
records with 16 male subjects, aged 32–56 years (avg. age 43 years) weighing 89–152 kg (avg. 
weight 119 kg). In this paper, the sampling frequency of the selected pulse wave signal is 250 
Hz. The annotation period of the apnea signal is per 30 s, there are a total of 9602 labels, and 
the data dimensions are 9602 × 7500.
	 MIT-BIH with noise synthesis is considered to simulate uncertainty in signal acquisition. 
We synthesize the dataset slp67x with noise, and the sampling frequency is 250 Hz. A set of 
reference signals is shown in Fig. 9(a), which is recorded as 10 s data strings starting from 1 h 17 m. 
First, we superimpose low-frequency mixed sine and cosine signals on the reference signals 
to simulate baseline drift noise, called MIT-BIH-dn [Fig. 9(b)]; then we superimpose white 
Gaussian noise with a 10 dB signal-to-noise ratio and power line interference on the reference 

(a)

(b)

(c)

(d)

Fig. 9.	 (Color online) Sample dataset with noise synthesis. (a) Reference signal, (b) synthetic signal with added 
baseline drift noise, (c) synthetic signal with added random noise and power line interference, and (d) synthetic 
signal with added multiple noises.
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signals, called MIT-BIH-rn [Fig. 9(c)]; lastly, we superimpose multiple noises combined with 
MIT-BIH-dn and MIT-BIH-rn, called MIT-BIH-mn [Fig. 9(d)].
	 Actual PPG data are recorded from seven males and three females with age 26.20 ± 5.14 (mean 
± std) and BMI 21.79 ± 3.40 (mean ± std). We record multiple sets of PPG signals, including a 
raw signal with the subject sitting calmly (PPG), a raw signal with the subject moving slightly 
(PPG-ms), a raw signal acquired under strong noise (PPG-sn), and a raw signal with multiple 
noises (PPG-mn).

4.2	 Experimental settings

	 For CNN and MLP, training is done using mini-batch SGD with a momentum of 0.9, and 
the batch size is set to 64 for all the networks. Networks are trained for a total of 100 epochs; 
we start from a learning rate of 0.01 and divide by two every 10 epochs. For MLP, a dropout is 
applied after every hidden layer, and the dropout rate is set to 0.2.
	 For LSTM and CNN-LSTM, we train the network using Adam with a batch size of 64. 
Both networks are trained for a total of 50 epochs. For SVM and XGBoost, we directly use the 
raw time series samples as the input. SVM with a linear kernel is used as the classifier and the 
penalty C is set to 0.4. For XGBoost, the maximum depth is set to 20 and the maximum number 
of iterations is set to 30. For GACNN, the training schema is similar to that of CNN and MLP, 
using mini-batch SGD with a momentum of 0.9. We apply a GA search at the 30th epoch to 
adapt the structure of the network once. The population size is set to 50 with evolution for 100 
generations.

4.3	 Results on 2-type classifiers 

	 We perform experiments focusing on 2-type classifiers with MIT-BIH benchmarks and 
PPG actual datasets. Firstly, we execute GACNN and six other algorithms on two conventional 
datasets: MIT-BIN 2-classifier (results shown in Table 2) and PPG 2-classifier (results shown 
in Table 3). The CNN-based algorithms (CNN, CNN+LSTM, and GACNN) achieve better 
performance than SVM, MLP, LSTM, and XGBoost, except for CNN+LSTM, which has 
lower performance than MLP on the MIT-BIH 2-classifier. Our GACNN achieves the best 
performance. Furthermore, after optimizing the CNN network structure, about 66% and 44% 
of connections are pruned using the GA, thus increasing the effectiveness of the algorithm. 

Table 2
MIT-BIH 2-classifier.
Method Test error Parameter CTS (ms)
SVM 46.38% — 24.14
MLP 30.62% 8002502 0.32
LSTM 33.14% 379 932.63
XGBoost 35.40% — 0.28
CNN 29.79% 300642 3.82
CNN+LSTM 31.86% 10486 25.81
GACNN 28.33% 103380 2.18

Table 3
PPG 2-classifier.
Method Test error Parameter CTS (ms)
SVM 31.70% — 43.26
MLP 24.31% 4252502 0.22
LSTM 26.45% 162 621.75
XGBoost 28.79% — 0.14
CNN 21.38% 275554 0.88
CNN+LSTM 21.26% 9778 22.72
GACNN 20.66% 155040 0.79
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Then, we execute experiments on two unreliable datasets, MIT-BIH 2-classifier with noise 
(results shown in Table 4) and PPG 2-classifier with noise (results shown in Table 5). Six 
noise experiments are performed. Again, our GACNN achieves the best performance in all 
experiments. The results of the experiments are summarized in Fig. 10.

4.4	 Results on 7-type classifications 

	 Next, we perform experiments focusing on the 7-type classifications with actual PPG 
datasets. First, we execute GACNN and five other algorithms on the conventional dataset PPG 
7-classifier (results shown in Table 6). Then, three noise experiments are performed to compare 
the effectiveness of the six algorithms under unreliable data conditions (results shown in Table 7). 
Our GACNN achieves the best performance in all experiments. The results of the experiments 
are illustrated in Fig. 11.

Table 5
PPG 2-classifier with noise.
Method PPG-ms PPG-sn PPG-mn
SVM 43.61% 44.61% 44.29%
MLP 26.54% 28.71% 27.91%
XGBoost 28.33% 30.83% 31.56%
CNN 22.94% 23.03% 23.32%
CNN+LSTM 24.36% 24.63% 25.70%
GACNN 21.45% 22.33% 22.73%

Table 4
MIT-BIH 2-classifier with noise.
Method MIT-BIH-dn MIT-BIH-rn MIT-BIH-mn
SVM 44.19% 48.76% 46.68%
MLP 33.71% 37.28% 34.84%
XGBoost 35.89% 37.97% 37.97%
CNN 30.34% 31.26% 32.79%
CNN+LSTM 33.42% 32.75% 32.92%
GACNN 28.75% 30.75% 31.25%

Fig. 10.	 (Color online) Summary of performance of seven algorithms in eight experiments.

Table 7
PPG 7-classifier with noise.
Method PPG-ms PPG-sn PPG-mn
SVM 45.80% 46.92% 47.26%
MLP 32.01% 35.21% 34.26%
XGBoost 31.33% 31.61% 31.56%
CNN 25.49% 26.03% 26.29%
CNN+LSTM 27.35% 27.03% 29.33%
GACNN 24.44% 25.03% 25.62%

Table 6
PPG 7-classifier.
Method Test error Parameter CTS (ms)
SVM 33.11% — 51.98
MLP 30.83% 4255007 0.22
LSTM 29.23% 187 874.46
XGBoost 31.65% — 0.27
CNN 23.76% 283239 0.91
CNN+LSTM 26.46% 9943 23.76
GACNN 22.73% 118919 0.75
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5.	 Conclusion

	 In this paper, we proposed a hybrid CNN model combined with a GA to find robust 
solutions to time series classification problems. As discussed in the paper, in the CNN training 
process, the network structural adjustment achieved effective results with robust time series 
classification. Although this network structural optimization is an NP-hard problem, our 
structure optimization approach by the GA showed outstanding performance in solving this 
problem. Benchmarks and actual datasets were adopted and tested to prove the effectiveness 
of the proposed GACNN. The numerical results showed that our approach had superior 
performance to six state-of-the-art deep neural networks.
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