
1149Sensors and Materials, Vol. 33, No. 4 (2021) 1149–1165
MYU Tokyo

S & M 2524

*Corresponding author: e-mail: 183342462@qq.com
https://doi.org/10.18494/SAM.2021.3002

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Genetic-algorithm-based Convolutional Neural Network
for Robust Time Series Classification with Unreliable Data

Jiang Wu,1* Yanju Ji,2 and Suyi Li2

1Changchun Institute of Technology, No. 395 Kuanping Road, Changchun City 130012, China
2College of Instrumentation and Electrical Engineering, Jilin University,

No. 2699 Qianjin Street, Changchun City 130061, China

(Received September 24, 2020; accepted March 8, 2021)

Keywords:	 genetic algorithm, convolutional neural network, time series classification, photoplethysmography

	 Finding robust solutions to time series classification problems using deep neural networks
has received wide attention. However, unreliable data makes classification very difficult.
Traditional deep neural networks cannot effectively solve problems with strong noise. In this
paper, we propose a hybrid convolutional neural network (CNN) model combined with a genetic
algorithm (GA) for time series classification (TSC) with unreliable data. To obtain a robust CNN
structure, even though network structural optimization is an NP-hard problem, we design a GA
for network structure optimization. Several benchmarks and actual datasets are adopted, and
tests are carried out to prove the effectiveness of the proposed GA-based CNN. The numerical
results show that our approach has better performance than other state-of-the-art deep neural
networks.

1.	 Introduction

	 Time series classification (TSC) is one of the most important problems in machine learning
and data mining. The target of TSC is to discover a classification model that identifies the data
characteristics, where the data are a description of a series of datasets indexed in time order.
TSC problems arise in a wide range of fields including natural language processing, image
processing, scheduling, logistics, medicine, and health. For more extensive explanations of the
various TSC problems, the reader is referred to previous reviews.(1,2)
	 The research on TSC has been ongoing for decades. There are three categories of
approaches for TSC, i.e., distance-based classification, feature-based classification, and support
vector machine (SVM) and model-based classification.(3) For distance-based classification,
Faloutsos et al. proposed a Euclidean-distance-based approach, which is a predefined similarity
measure for TSC.(4) Yi and Faloutsos discussed various distance-based measurement strategies
and improved the Euclidean distance measurement strategy with common Lp-norms to form
extensions of the Euclidean distance.(5) Frentzos et al. proposed a dissimilarity metric (DISSIM)
to measure the spatiotemporal dissimilarity between two similar time series.(6) The above
approaches are lock-step measures. Although they are widely adopted measurements, Berndt

1150	 Sensors and Materials, Vol. 33, No. 4 (2021)

and Clifford(7) and Keogh and Ratanamahatana thought that the Euclidean-distance-based
measurement strategy and its extensions were insufficiently robust as similarity measures.
Thus, they proposed dynamic time warping (DTW), a classic speech recognition tool, which
provides a better match with another time series through the compression of the comparable
time series. Chen et al. presented an edit distance with real sequence (EDR), in which a
threshold parameter was adopted, where the distance was quantified according to a threshold
given in advance.(9) Chen and Ng proposed an edit distance with real penalty (ERP), in which
DTW and EDR were combined and a constant reference point was set to compute the distance.(10)
Vlachos et al. studied the longest common subsequence (LCSS), which provided a strategy to
consider constraining the matching of two points.(11) Similarly, Morse and Patel developed a
sequence-weighted alignment model (Swale) for TSC.(12) DWT, EDR, ERP, LCSS, and Swale
are examples of elastic measures. In addition to lock-step measures and elastic measures, there
are also threshold-based measures, i.e., threshold queries (TQuEST)(13) and pattern-based
measures, such as the spatial assembling distance (SpADe).(14) A summary of distance-based
measures is listed in Table 1. Although various variants have been researched, they were still
distance-based measures or editing distance measures. The measures may work well for simple
TSC with low-dimension data; however, they still have difficulty with complex TSC.
	 For feature-based classification, some basic approaches, such as decision trees and neural
networks, and some approaches for feature selection have been studied and adopted to classify
feature vectors. Then, the sequence classification of TSC is solved by transforming the
sequence through the results of feature selections.(15) Chuzhanova et al. proposed a gamma-test-
based feature selection for the sequence classification problem.(16) Ji et al. studied an approach
using contract sequences with a gap miner strategy to mine the distinguishing subsequence
satisfying the constraints.(17) Nanopoulos et al. presented a feature selection approach for TSC
with the help of a multilayer perceptron (MLP) neural network.(18) Yoon et al. studied a novel
unsupervised method based on the common principal component analysis strategy to select
suitable features.(19) The key factor of feature selection is the criteria used to select the features.
Eads et al. stressed that the most difficult and important part of feature selection is selecting
appropriate features. There is necessarily always a trade-off between manual selection and the
help of domain experts.(20) Moreover, it is difficult to design good features to capture intrinsic

Table 1
Summary of distance-based measures.
Measure type Measure name

Lock-step measures Lp-norms
L1-norms (Manhattan distance)
L2-norms (Euclidean distance)

Lint-norms
DISSIM

Elastic measures

DTW

Edit-distance-based measure

LCSS
EDR
Swale
ERP

Threshold-based measures TQuEST
Pattern-based measures SpADe

Sensors and Materials, Vol. 33, No. 4 (2021)	 1151

properties embedded in various time series data. Therefore, the accuracy of feature-based
methods is usually lower than that of sequence-distance-based ones, particularly 1-nearest
neighbor (1-NN) with DTW. On the other hand, 1-NN and DTW have been used in many
studies, but both require too much computation for many real-world applications.(7)

	 In fact, the techniques mentioned above usually depend on handcrafted features that require
researchers to have sufficient professional knowledge and practical experience. Furthermore,
even if they need a lot of time and labor, there may still be inevitable deviation during
classification. Thus, various researchers have focused on effective approaches based on data
mining tools in recent years.
	 As one of the supervised learning models, SVM is a kind of generalized linear classifier
for binary data classification. In recent years, many variants of basic SVM have been applied
for TSC. Kampouraki et al. investigated the potential benefit of Gaussian kernel-based
SVM on heartbeat TSC.(21) Eads et al. proposed an algorithm called Zeus for TSC, which
employed evolutionary computation for feature extraction and SVM for classification.(22)
Alalshekmubarak and Smith changed the output layer of SVM by replacing the linear readout
function with the radial basis function kernel, and proposed a novel algorithm that combines
SVM and an echo state network for TSC.(23) Rodríguez and Alonso attempted to combine
SVM and a boosting algorithm to analyze interval features for time series classification.(24) On
the basis of a temporal extension of discrete SVMs, Orsenigo and Vercellis proposed a new
algorithm with the benefit of a warping distance and a softened variable margin.(25) Although
SVM has strong ability and flexibility in data mining for various applications, it is difficult to
interpret the results and difficult for users to gain knowledge other than the classification result,
especially for kernel-based methods.
	 With the increased availability of time series data, the effectiveness of TSC faces enormous
challenges. Recently, deep learning (DL) has successfully been applied in various classification
tasks. This is because DL can learn a hierarchical feature representation from data automatically
instead of preparing the features manually. The following are some typical DL approaches for
TSC.
	 The MLP is a common feedforward artificial neural network model. It maps multiple input
datasets to a single output dataset and adjusts parameters through an error back-propagation
algorithm. Fawaz et al. studied several state-of-the-art DL algorithms for TSC and proposed an
open-source DL framework for the TSC community.(26) Zheng et al. employed a DL framework
to improve feature learning techniques to solve multivariate time series classification.(27)
Nanopoulos et al. constructed an improved approach based on the MLP for multivariate time
series.(28) Batres-Estrada applied a DL framework to multivariate financial time series and
demonstrated the effectiveness of the MLP in TSC.(29)

	 A recurrent neural network (RNN) can describe dynamic time behavior because, unlike
feedforward neural networks that accept input from more specific structures, RNNs pass states
in their own networks, thus accepting a wider range of time series structure inputs. The main
purpose of an RNN is to process and predict sequence data. It is used to model sequence data,
which means that the current output of a sequence is also related to the previous output. Because
of its network structure, an RNN will remember previous information and use it to affect the
output of the following nodes.

1152	 Sensors and Materials, Vol. 33, No. 4 (2021)

	 Although RNNs have many advantages, there is an obvious problem: long-term dependence.
As a kind of RNN, long short-term memory (LSTM) can learn long-term dependence
information and has a gate mechanism to control the flow and loss of features to avoid the
long-term dependence problem. Since LSTM was proposed by Hochreiter and Schmidhuber
in 1997,(30) many researchers have contributed to the modern LSTM, such as Felix Gers, Fred
Cummins, and so on, and a complete system for LSTM has been formed. Owing to the unique
design structure of LSTM, it is suitable for processing and predicting important events with very
long intervals and delays in time series. Lipton et al. augmented fully convolutional networks
(FCNs) with LSTM-RNN submodules for TSC, which have been demonstrated to have state-
of-the-art performance.(31) Karim et al. proposed that LSTM-FCNs and attention LSTM-FCNs
(ALSTM-FCNs) should be transformed into a multivariate TSC model by augmenting a fully
convolutional block.(32) Lipton et al. applied LSTM-RNNs to the multilabel classification of
diagnoses and demonstrated their effectiveness.(33) Malhotra et al. proposed TimeNet based on
a deep RNN, which can be trained on diverse time series in an unsupervised manner.(34)

	 XGBoost is an open-source software library that provides a gradient-boosting framework.
From the project description, it aims to provide a “scalable, portable and distributed gradient
boosting (GBM, GBRT, GBDT) library.” In addition to running on a single machine, it also
supports distributed processing frameworks such as Apache Hadoop, Apache Spark, and
Apache Flink. It has gained much popularity and attention recently as it was the algorithm of
choice for many winning teams of a number of machine learning competitions. Zheng et al.
proposed a short-term load forecasting method using EMD-LSTM neural networks with an
XGBoost algorithm for feature importance evaluation.(35) Chen et al. proposed a radar emitter
classification for large datasets based on weighted XGBoost.(36)
	 The convolutional neural network (CNN) is a variant of the MLP, which was developed by
biologists Huber and Wiesel in their early research on the cat visual cortex. The first CNN,
LeNet-5, was proposed by Lecun and Bottou in 1998.(37) As a kind of feedforward neural
network with a depth structure, a CNN contains a convolution calculation and is one of the
representative algorithms of DL. Morabito et al. generated suitable sets of features with the
help of the representational power of a CNN.(38) Zheng et al. proposed a novel DL framework
for multivariate TSC.(39) Yang et al. proposed a systematic feature learning method for the
HAR problem that adopts a deep CNN to automate feature learning from the raw inputs in
a systematic way.(40) Researchers found that the cooperation and combination of a CNN and
LSTM can have good performance. Zhou et al. proposed a combination of a CNN and LSTM
for text classification.(41) Wang et al. proposed a beyond frame-level CNN, which is a saliency-
aware 3D CNN with LSTM for recognition.(42) Wu and Prasad proposed a novel algorithm
based on a CNN with the help of LSTM for hyperspectral data classification.(43)
	 However, time series datasets are often mixed with strong noise. For example, noisy
environments will reduce the effect of natural language processing, and water droplets falling
on a camera on rainy days can reduce the accuracy of video detection. At present, the design
of network structures is mostly oriented to the kind of problem instead of the kind of dataset.
As a result, the performance of a network may vary greatly on different datasets for the same
kind of problem. To solve this problem, we attempt to adjust the network structure according to

Sensors and Materials, Vol. 33, No. 4 (2021)	 1153

the characteristics of the dataset in the training process to make up for the lack of a traditional
learning model. In this paper, we combine a genetic algorithm (GA) with a CNN and propose a
hybrid model (GACNN), in which the CNN is trained for a certain number of epochs, and then
its structure is adjusted by the GA.
	 The rest of the paper is organized as follows. In Sect. 2, we present the problem description
and the model of TSC. Our proposed GACNN is introduced in Sect. 3. Section 4 presents
numerical experiments, and Sect. 5 presents the final conclusion.

2.	 Description of Problem

	 TSC can be defined as a classification problem with a series of datasets indexed in time
order. Three kinds of time series are defined:(2)

•	 A single time series: x = [x1, x2, ..., xn] is a vector with real values, where n is the number of
real values.

•	 A multidimensional time series: X = [x1, x2, ..., xi, ..., xm] is a matrix with m different single
time series, where xi is the ith single time series.

•	 A dataset of time series: D = {(X1, y1), (X2, y2), ..., (Xj, yj), ..., (XN, yN)} is a pair dataset
(Xj, yj), where Xj is a multidimensional time series (or a single time series) and yj is the
corresponding label vector.

	 We consider a single time series x = [xi]. A time series x of length n is split into fixed-
size windows Si:w = [xi, ..., xi+w−1] of length w using a windowing function. Two consecutive
windows at offsets i and i + 1 overlap at w − 1 positions:

	
 

1 2 1

1: 2: 1:
,..., [, .[]].. ,

(,) , , ...,
w w

w w n w w
t t tt

win w S S S
+

− +

 
 =  
  

x .	 (1)

	 In the training phase, the objective of TSC is to find the correspondence between windows
{Si:w} and K feature classes using a learning model. Here, we set a probability distribution over
K classes with each label value of yj ∈ [1, K], j = 1, 2, ..., K. An illustration of TSC is shown
in Fig. 1. Given a sequence of values for a time series dataset D, values at multiple time steps

Fig. 1.	 Illustration of time series classification.

1154	 Sensors and Materials, Vol. 33, No. 4 (2021)

can be grouped to form an input vector (generally provided by an expert). Algorithm 1 shows a
general implementation process of a TSC learning algorithm.

Fig. 2.	 Sample dataset of multiple physiologic signals during sleep.

Algorithm 1: TSC learning algorithm.
1.	 Input: time series dataset D, windows {Si:w}, probability distribution {yj} ∈ K classes
2.	 Output: learning model f(θ)
3.	 Begin
4.		 i = 0;
5.		 while i+w ≤ length(D) do						 // w num. of window size
6.			 Ti:w = Di:i+w;								 // Ti:w time series sequence
7.			 update θ = learning({S}, f(θ, Ti:w));
8.		 end
9.		 return f(θ)
10.	 End

	 Example of TSC: Sleep apnea syndrome (SAS) is a sleep disorder that seriously affects
sleep quality and threatens public health. Polysomnography (PSG) signals, the diagnostic gold
standard for SAS, are a kind of multidimensional time series: a collection of recordings of
multiple physiologic signals during sleep. The dataset of PSG signals includes electrocardiogram
(ECG), photoplethysmography (PPG), electroencephalogram (EEG), stroke volume, and
peripheral oxygen (SpO2) signals. A sample dataset of PSG is shown in Fig. 2.
	 In general, a doctor can judge the patient’s sleep staging and apnea condition on the basis of
the PSG signals. There are six types of apnea conditions as follows:

H	 Hypopnea
HA	 Hypopnea with arousal
OA	 Obstructive apnea
X	 Obstructive apnea with arousal
CA	 Central apnea
CAA	 Central apnea with arousal

	 Solving TSC has great significance, such as the above SAS classification by PSG. However,
in actual situations, the sampling data are mixed with strong noise. This makes the learning of
data characteristics and the mining of features from sampling data too difficult. As shown in Fig. 3,
there are significant differences in the data in different situations. Therefore, the learning model

Sensors and Materials, Vol. 33, No. 4 (2021)	 1155

must be robust to unreliable data. In this paper, we propose a hybrid CNN model combined with
a GA for TSC with unreliable data. To obtain a robust CNN network structure, we design a GA
for network structure optimization.

3.	 GACNN

	 A GACNN aims to find a robust DL model to fit unreliable data. In this paper, the GACNN
focuses on TSC problems, where the TSC data are mixed with strong noise. The GACNN
considers both the CNN and GA as its basic algorithms and is suitable for TSC and network
structure optimization. First, we design and train a full CNN using TSC sampling data. After a
certain number of training steps, we adopt the GA to adjust the CNN structure by cutting some
connections between neurons. By repeating the above processes alternately, the GACNN can
obtain a more efficient DL model. A flowchart for GACNN is shown in Fig. 4, and its overall

(a)

(b)

(c)

Fig. 3.	 (Color online) Measured PPG signals. (a) Raw signal when sitting calmly; (b) raw signal when moving
slightly; (c) raw signal acquired in strongly noisy environment.

Fig. 4.	 Algorithm flowchart of GACNN.

1156	 Sensors and Materials, Vol. 33, No. 4 (2021)

algorithm is shown in Algorithm 2. All details regarding the GACNN are introduced separately
in the following.

Algorithm 2: GACNN.
1.	 Begin
2.		 Initialize a CNN;
3.		 Train the CNN for TSC;
4.		 for CNN structure optimization step do
5.			 GA-based CNN structure optimization;
6.			 fine-tune the remaining CNN;
7.		 end for
8.		 return fine-tune the remaining CNN;
9.	 End

3.1	 CNN for TSC

	 A deep neural network is a composition of L layers of a bipartite graph with weighted and
directed arcs. Each layer li, i ∈ (1, L) contains neurons, takes the output of the previous layer li−1
as the input, and applies an activation function to compute its output:

	 fL(θL, x) = fL−1(θL−1, fL−2(θL−2, fL−3(θL−3, ..., f1(θ1, x)))),	 (2)

where fi corresponds to the activation function applied at layer li using weighted parameters θi
and input values x.
	 The CNN is one of the classical deep neural networks and is most commonly applied to
computer vision. Recently, CNNs have been successfully applied in various fields, including TSC.(1)
To solve TSC problems, the convolution is defined as applying and sliding a filter over the time
series. The filter of CNN expresses time series as one dimension or multiple dimensions. A
general function applying the convolution for a time stamp t is given as

	 [](,), 1, F
t tC f X t Nθ= + ∀ ∈b ,	 (3)

where Ct denotes the convolution applied to the dataset of time series D = {(Xt, yt)} on time stamp t.
Xt

F is calculated from Xt using a filter F. An example of a CNN structure for TSC with four
convolutional layers is illustrated in Fig. 5.

3.2	 GA-based CNN structure optimization

	 GAs have attracted wide attention because of their intelligence, parallelism, robustness, good
adaptability, and the capability of global searching. A GA is a generic population-based meta-
heuristic optimization algorithm that uses some mechanisms inspired by biological evolution:
mutation, crossover, and selection. Candidate solutions to the optimization problem play the
role of individuals in a population, and the fitness function determines the environment within
which the solutions ‘live’.

Sensors and Materials, Vol. 33, No. 4 (2021)	 1157

	 A CNN structure can be represented by a special directed graph. Consider a CNN G = (N, W)
consisting of a finite set of neurons Ν = {ni} and a set of weights W = {wk | (ni, nj)} joining
pairs of neurons in N. For a given dataset of time series X = {Xi}, the loss function of TSC can
formulated as follows:

	 (,)G X(X, G).	 (4)

	 An optimized CNN structure G’ can be obtained as (N, W·U), where U = {uk}, uk ∈ (0, 1) is
a transition matrix. The structure optimization can be formulated as follows:

	 min ()(, ,) (, ,) UX N W X N W U λ+ Ω− ⋅  ,	 (5)

where ||·|| represents the loss between the original structure G and the optimized structure G’,
and λΩ(U) is the penalty function of the transition matrix U. Formally, the objective function
used in CNN structure optimization can be formulated as follows:

	 arg min ()(, ,) (, ,)
U

UX N W X N W U λ+ Ω− ⋅  .	 (6)

	 In the above description, this structure optimization has a computational complexity of O(2n)
and is an NP-hard problem. The procedure of CNN structure optimization is shown in Algorithm 3.

Fig. 5.	 (Color online) CNN for time series classification. (a) Illustration of Conv. and Max pooling. (b) Example of
CNN structure for SAS classification.

(a)

(b)

1158	 Sensors and Materials, Vol. 33, No. 4 (2021)

Algorithm 3: CNN structure optimization.
1.	 Initialize model G(N, W);
2.	 while not end of training do
3.		 for setting steps do
4.			 training by (,)G X(X, G);
5.		 end for
6.		 evaluate model G(N, W);
7.		 optimize network structure W' ← W ∙ U via GA;
8.		 update G(N, W’)
9.	 end while

Representation
	 How to encode a CNN structure into a chromosome is a key issue of GAs. In this paper, the
main objective is to determine the optimal combination of {uk ∈ (0, 1)}, and the representation
is carried out using binary strings. A gene vk(wij) can be seen as a switch that controls the
existence of a connection from node i to node j. If the state of vk(wij) is 1, then neuron i is
connected with neuron j in the CNN, and if the state of vk(wij) is 0, then the connection between
neuron i and neuron j is deleted from the CNN. An example of a representation is shown in Fig.
6 and a decoded result is shown in Fig. 7.

Evolution
	 To search for an effective network structure, we evaluate a representation by the following
evolution function:

	 ()(, ,) (, ,)fitness UX N W X N W Uα λ= + Ω− ⋅  	 (7)

	 1() 1
N

kk u
U

N
=Ω = −

∑ ,	 (8)

where α and λ are adaptive weight parameters with adjustable weights, in order to adjust the
search direction between the loss function and network structure.

Fig. 6.	 Binary string for CNN structure representation.

Fig. 7.	 Network structure adjustment for representation in Fig. 6.

Sensors and Materials, Vol. 33, No. 4 (2021)	 1159

	 1 (, ,) (, ,)z X N W X N W U= − ⋅  	 (9)

	 2 ()z U= Ω 	 (10)

	 The weights are defined as follows, where r is a nonnegative random number in the interval [0, 1].

	
1 1
max min

r
z z

α =
−

	 (11)

	
2 2

1
max min

r
z z

λ −
=

−
	 (12)

Mutation
	 Mutation is a genetic operator that produces spontaneous random changes in various
chromosomes. In the GA, mutation serves the crucial role of either (a) replacing the genes lost
from the population during the selection process so that they can be tried in a new context or
(b) providing genes that were not present in the initial population. Mutation selects a gene at
random; since the gene is 1 (or 0), it will be flipped to 0 (or 1). An example of mutation is shown
in Fig. 8.

Overall procedure of GA
	 The implementation procedure of the GA is described in Algorithm 4, where P(t) and C(t)
are parents and offspring, respectively, in the current generation t.

Algorithm 4: GA.
1.	 initialize P(t) by random generated structure U;
2.	 fitness eval(P) by evolution function;
3.	 while not termination condition do
4.		 make P(t) to popsize/2 pairs;
5.		 for each pair do
6.			 compare fitness;
7.			 select the better individual as offspring C(t);
8.			 generate offspring C(t) by mutation;
9.		 end for
10.		 fitness eval(C) by evolution function;
11.	 end while
12.	output the best individual;

Fig. 8.	 Example of mutation.

1160	 Sensors and Materials, Vol. 33, No. 4 (2021)

4.	 Experiments

	 We apply our GACNN to the MIT-BIH polysomnographic database(44,45) and measured PPG
signals, and compare its performance with six state-of-the-art models: SVM, MLP, LSTM,
CNN, CNN+LSTM, and XGBoost. All algorithms are implemented on TensorFlow 1.10 with
cuDNN 7.0.

4.1	 Datasets

	 The MIT-BIH polysomnographic database is provided by PhysioNet (www.physionet.org). It
is a dataset of multiple physiologic signals during sleep. The dataset was recorded in Boston’s
Beth Israel Hospital Sleep Laboratory, where subjects were monitored to evaluate SAS and
test the effectiveness of constant positive airway pressure. The dataset contains 4/6/7-channel
polysomnographic recordings with ECG signals annotated beat-by-beat, and EEG and
respiration signals annotated with respect to sleep stages and apnea. The dataset consists of 18
records with 16 male subjects, aged 32–56 years (avg. age 43 years) weighing 89–152 kg (avg.
weight 119 kg). In this paper, the sampling frequency of the selected pulse wave signal is 250
Hz. The annotation period of the apnea signal is per 30 s, there are a total of 9602 labels, and
the data dimensions are 9602 × 7500.
	 MIT-BIH with noise synthesis is considered to simulate uncertainty in signal acquisition.
We synthesize the dataset slp67x with noise, and the sampling frequency is 250 Hz. A set of
reference signals is shown in Fig. 9(a), which is recorded as 10 s data strings starting from 1 h 17 m.
First, we superimpose low-frequency mixed sine and cosine signals on the reference signals
to simulate baseline drift noise, called MIT-BIH-dn [Fig. 9(b)]; then we superimpose white
Gaussian noise with a 10 dB signal-to-noise ratio and power line interference on the reference

(a)

(b)

(c)

(d)

Fig. 9.	 (Color online) Sample dataset with noise synthesis. (a) Reference signal, (b) synthetic signal with added
baseline drift noise, (c) synthetic signal with added random noise and power line interference, and (d) synthetic
signal with added multiple noises.

Sensors and Materials, Vol. 33, No. 4 (2021)	 1161

signals, called MIT-BIH-rn [Fig. 9(c)]; lastly, we superimpose multiple noises combined with
MIT-BIH-dn and MIT-BIH-rn, called MIT-BIH-mn [Fig. 9(d)].
	 Actual PPG data are recorded from seven males and three females with age 26.20 ± 5.14 (mean
± std) and BMI 21.79 ± 3.40 (mean ± std). We record multiple sets of PPG signals, including a
raw signal with the subject sitting calmly (PPG), a raw signal with the subject moving slightly
(PPG-ms), a raw signal acquired under strong noise (PPG-sn), and a raw signal with multiple
noises (PPG-mn).

4.2	 Experimental settings

	 For CNN and MLP, training is done using mini-batch SGD with a momentum of 0.9, and
the batch size is set to 64 for all the networks. Networks are trained for a total of 100 epochs;
we start from a learning rate of 0.01 and divide by two every 10 epochs. For MLP, a dropout is
applied after every hidden layer, and the dropout rate is set to 0.2.
	 For LSTM and CNN-LSTM, we train the network using Adam with a batch size of 64.
Both networks are trained for a total of 50 epochs. For SVM and XGBoost, we directly use the
raw time series samples as the input. SVM with a linear kernel is used as the classifier and the
penalty C is set to 0.4. For XGBoost, the maximum depth is set to 20 and the maximum number
of iterations is set to 30. For GACNN, the training schema is similar to that of CNN and MLP,
using mini-batch SGD with a momentum of 0.9. We apply a GA search at the 30th epoch to
adapt the structure of the network once. The population size is set to 50 with evolution for 100
generations.

4.3	 Results on 2-type classifiers

	 We perform experiments focusing on 2-type classifiers with MIT-BIH benchmarks and
PPG actual datasets. Firstly, we execute GACNN and six other algorithms on two conventional
datasets: MIT-BIN 2-classifier (results shown in Table 2) and PPG 2-classifier (results shown
in Table 3). The CNN-based algorithms (CNN, CNN+LSTM, and GACNN) achieve better
performance than SVM, MLP, LSTM, and XGBoost, except for CNN+LSTM, which has
lower performance than MLP on the MIT-BIH 2-classifier. Our GACNN achieves the best
performance. Furthermore, after optimizing the CNN network structure, about 66% and 44%
of connections are pruned using the GA, thus increasing the effectiveness of the algorithm.

Table 2
MIT-BIH 2-classifier.
Method Test error Parameter CTS (ms)
SVM 46.38% — 24.14
MLP 30.62% 8002502 0.32
LSTM 33.14% 379 932.63
XGBoost 35.40% — 0.28
CNN 29.79% 300642 3.82
CNN+LSTM 31.86% 10486 25.81
GACNN 28.33% 103380 2.18

Table 3
PPG 2-classifier.
Method Test error Parameter CTS (ms)
SVM 31.70% — 43.26
MLP 24.31% 4252502 0.22
LSTM 26.45% 162 621.75
XGBoost 28.79% — 0.14
CNN 21.38% 275554 0.88
CNN+LSTM 21.26% 9778 22.72
GACNN 20.66% 155040 0.79

1162	 Sensors and Materials, Vol. 33, No. 4 (2021)

Then, we execute experiments on two unreliable datasets, MIT-BIH 2-classifier with noise
(results shown in Table 4) and PPG 2-classifier with noise (results shown in Table 5). Six
noise experiments are performed. Again, our GACNN achieves the best performance in all
experiments. The results of the experiments are summarized in Fig. 10.

4.4	 Results on 7-type classifications

	 Next, we perform experiments focusing on the 7-type classifications with actual PPG
datasets. First, we execute GACNN and five other algorithms on the conventional dataset PPG
7-classifier (results shown in Table 6). Then, three noise experiments are performed to compare
the effectiveness of the six algorithms under unreliable data conditions (results shown in Table 7).
Our GACNN achieves the best performance in all experiments. The results of the experiments
are illustrated in Fig. 11.

Table 5
PPG 2-classifier with noise.
Method PPG-ms PPG-sn PPG-mn
SVM 43.61% 44.61% 44.29%
MLP 26.54% 28.71% 27.91%
XGBoost 28.33% 30.83% 31.56%
CNN 22.94% 23.03% 23.32%
CNN+LSTM 24.36% 24.63% 25.70%
GACNN 21.45% 22.33% 22.73%

Table 4
MIT-BIH 2-classifier with noise.
Method MIT-BIH-dn MIT-BIH-rn MIT-BIH-mn
SVM 44.19% 48.76% 46.68%
MLP 33.71% 37.28% 34.84%
XGBoost 35.89% 37.97% 37.97%
CNN 30.34% 31.26% 32.79%
CNN+LSTM 33.42% 32.75% 32.92%
GACNN 28.75% 30.75% 31.25%

Fig. 10.	 (Color online) Summary of performance of seven algorithms in eight experiments.

Table 7
PPG 7-classifier with noise.
Method PPG-ms PPG-sn PPG-mn
SVM 45.80% 46.92% 47.26%
MLP 32.01% 35.21% 34.26%
XGBoost 31.33% 31.61% 31.56%
CNN 25.49% 26.03% 26.29%
CNN+LSTM 27.35% 27.03% 29.33%
GACNN 24.44% 25.03% 25.62%

Table 6
PPG 7-classifier.
Method Test error Parameter CTS (ms)
SVM 33.11% — 51.98
MLP 30.83% 4255007 0.22
LSTM 29.23% 187 874.46
XGBoost 31.65% — 0.27
CNN 23.76% 283239 0.91
CNN+LSTM 26.46% 9943 23.76
GACNN 22.73% 118919 0.75

Sensors and Materials, Vol. 33, No. 4 (2021)	 1163

5.	 Conclusion

	 In this paper, we proposed a hybrid CNN model combined with a GA to find robust
solutions to time series classification problems. As discussed in the paper, in the CNN training
process, the network structural adjustment achieved effective results with robust time series
classification. Although this network structural optimization is an NP-hard problem, our
structure optimization approach by the GA showed outstanding performance in solving this
problem. Benchmarks and actual datasets were adopted and tested to prove the effectiveness
of the proposed GACNN. The numerical results showed that our approach had superior
performance to six state-of-the-art deep neural networks.

References

	 1	 J. C. B. Gamboa: Deep Learning for Time-series Analysis, arXiv preprint (2017). https://arxiv.org/
abs/1701.01887

	 2	 H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller: Data Min. Knowl. Discovery 33 (2019)
917. https://link.springer.com/article/10.1007/s10618-019-00619-1

	 3	 Abanda, Amaia, U. Mori, and J.A. Lozano: Data Min. Knowl. Discovery 33 (2019) 378.
	 4	 C. Faloutsos, M. Ranganathan, and Y. Manolopoulos: Fast: ACM (1994).
	 5	 B. K. Yi and C. Faloutsos: Prof. 26th Int. Conf. Very Large Data Bases 99 (2000) 385. http://www.vldb.org/

conf/2000/P385.pdf
	 6	 E. Frentzos, K. Gratsias, and Y. Theodoridis: IEEE Int. Conf. Data Engineering (2007) 816–825. https://doi.

org/10.1109/ICDE.2007.367927
	 7	 D. J. Berndt and J. Clifford: 3rd Int. Conf. Knowledge Discovery and Data Mining. AAAI 10.16 (1994) 359–

370. https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
	 8	 E. Keogh and C. A. Ratanamahatana: Knowl. Inf. Syst. 7 (2005) 358. https://link.springer.com/article/10.1007/

s10115-004-0154-9
	 9	 L. Chen, M. T. Özsu, and V. Oria: SIGMOD Int. Conf. Management of Data (ACM, 2005) 491–502. https://

dl.acm.org/doi/abs/10.1145/1066157.1066213
	10	 L. Chen and R. Ng: 30th Int. Conf. Very Large Data Bases (2004) 792–803. https://doi.org/10.1016/B978-

012088469-8.50070-X
	11	 M. Vlachos, G. Kollios, and D. Gunopulos: IEEE 18th Int. Conf. Data Engineering (2002) 673–684. https://

doi.org/10.1109/ICDE.2002.994784
	12	 M. D. Morse and J. M. Patel: SIGMOD Int. Conf. Management of Data (ACM, 2007) 569–580. https://dl.acm.

org/doi/abs/10.1145/1247480.1247544
	13	 J. Aßfalg, H. P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz: Int. Conf. Extending Database

Technology 19 (2006) 276. https://doi.org/10.1007/11687238_19

Fig. 11.	 (Color online) Performance of six algorithms in four experiments.

https://arxiv.org/abs/1701.01887
https://arxiv.org/abs/1701.01887
https://link.springer.com/article/10.1007/s10618-019-00619-1
http://www.vldb.org/conf/2000/P385.pdf
http://www.vldb.org/conf/2000/P385.pdf
https://doi.org/10.1109/ICDE.2007.367927
https://doi.org/10.1109/ICDE.2007.367927
https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://link.springer.com/article/10.1007/s10115-004-0154-9
https://link.springer.com/article/10.1007/s10115-004-0154-9
https://dl.acm.org/doi/abs/10.1145/1066157.1066213
https://dl.acm.org/doi/abs/10.1145/1066157.1066213
https://doi.org/10.1016/B978-012088469-8.50070-X
https://doi.org/10.1016/B978-012088469-8.50070-X
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/ICDE.2002.994784
https://dl.acm.org/doi/abs/10.1145/1247480.1247544
https://dl.acm.org/doi/abs/10.1145/1247480.1247544
https://doi.org/10.1007/11687238_19

1164	 Sensors and Materials, Vol. 33, No. 4 (2021)

	14	 Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. Tung: IEEE 23rd Int. Conf. Data Engineering (2007) 786–
795. https://ieeexplore.ieee.org/document/4221727

	15	 Z. Xing, J. Pei, and E. J. Keogh: SIGKDD Explorations Newsletter ACM 12 (2010) 40. https://dl.acm.org/
doi/10.1145/1882471.1882478

	16	 N. A. Chuzhanova, A. J. Jones, and S. Margetts: Bioinformatics 14 (1998) 139. https://doi.org/10.1093/
bioinformatics/14.2.139

	17	 X. Ji, J. Bailey, and G. Dong: Int. Conf. Data Mining (IEEE, 2005) 8. https://ieeexplore.ieee.org/
document/1565679

	18	 A. Nanopoulos, R. Alcock, and Y. Manolopoulos: Feature-based Classification of Time-series Data (2001).
https://datalab.csd.auth.gr/wp-content/uploads/publications/IJCR02nam.pdf

	19	 H. Yoon, K. Yang, and C. Shahabi: IEEE Trans. Knowledge and Data Engineering 17 (2005) 1186. https://doi.
org/10.1109/TKDE.2005.144

	20	 D. Eads, K. Glocer, S. Perkins, and J. Theiler: 9th Annu. Conf. Neural Information Processing Systems (2005)
1–8. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.4333&rep=rep1&type=pdf

	21	 A. Kampouraki, G. Manis, and C. Nikou: IEEE Trans. Inf. Technol. Biomed. 13 (2008) 512. https://doi.
org/10.1109/TITB.2008.2003323

	22	 D. R. Eads, D. Hill, S. Davis, D. R. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. B. Porter, and J. P. Theiler:
Soc. Opt. Photon. 4787 (2002) 74. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.4333

	23	 A. Alalshekmubarak, and L. S. Smith: IEEE 9th Int. Conf. Innovations in Information Technology (2013)
42–47. https://doi.org/10.1109/Innovations.2013.6544391

	24	 J. J. Rodríguez, and C. J. Alonso: Res. Develop. Intell. Syst. XXI. SGAI (2005) 244–245. https://doi.
org/10.1007/1-84628-102-4_18

	25	 C. Orsenigo and C. Vercellis: Pattern Recognit. 43 (2010) 3787. https://doi.org/10.1016/j.patcog.2010.06.005
	26	 H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller: Data Min. Knowl. Discovery 33 (2019)

917. https://link.springer.com/article/10.1007/s10618-019-00619-1
	27	 Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao: Int. Conf. Web-age Information Management (2014) 298–

310. https://link.springer.com/chapter/10.1007%2F978-3-319-08010-9_33
	28	 A. Nanopoulos, R. Alcock, and Y. Manolopoulos: Inf. Process. Technol. (2001) 49. https://dl.acm.org/

doi/10.5555/766914.766918
	29	 B. Batres-Estrada: Deep Learning for Multivariate Financial Time Series (2015).
	30	 S. Hochreiter and J. Schmidhuber: Neural Comput. 9 (1997) 1735. https://www.mitpressjournals.org/doi/

abs/10.1162/neco.1997.9.8.1735
	31	 Z. C. Lipton, D. C. Kale, and R. C. Wetzel: Phenotyping of Clinical Time Series with LSTM Recurrent Neural

Networks, arXiv preprint (2015). https://arxiv.org/abs/1510.07641
	32	 F. Karim, S. Majumdar, H. Darabi, and S. Harford: Neural Networks 116 (2019) 237. https://doi.org/10.1016/

j.neunet.2019.04.014
	33	 Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel: Learning to Diagnose with LSTM Recurrent Neural

Networks, arXiv preprint (2015). https://arxiv.org/abs/1511.03677
	34	 P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff: TimeNet: Pre-trained Deep Recurrent Neural Network

for Time Series Classification, arXiv preprint (2017). https://arxiv.org/abs/1706.08838
	35	 H. Zheng, J. Yuan, and L. Chen: Energies 10 (2017) 1168. https://doi.org/10.3390/en10081168
	36	 W. Chen, K. Fu, J. Zuo, X. Zheng, T. Huang, and W. Ren: IET Radar Sonar Navig. 11 (2017) 1203. https://doi.

org/10.1049/iet-rsn.2016.0632
	37	 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner: Proc. IEEE 86 (1998) 2278. https://doi.org/10.1109/5.726791
	38	 F. C. Morabito, M. Campolo, C. Ieracitano, J. M. Ebadi, L. Bonanno, A. Bramanti, S. Desalvo, N. Mammone, and P.

Bramanti: IEEE 2nd Int. Forum Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (2016) 1–6. https://doi.org/10.1109/RTSI.2016.7740576

	39	 Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao: Int. Conf. Web-age Information Management (2014) 298–
310. https://link.springer.com/chapter/10.1007/978-3-319-08010-9_33

	40	 J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy: IJCAI 15 (2015) 3995. https://personal.ntu.edu.
sg/xlli/publication/HARcnn.pdf

	41	 C. Zhou, C. Sun, Z. Liu, and F. Lau: A C-LSTM Neural Network for Text Classification, arXiv preprint (2015).
https://arxiv.org/abs/1511.08630

	42	 X. Wang, L. Gao, J. Song, and H. Shen: IEEE Signal Process. Lett. 24 (2016) 510. https://doi.org/10.1109/
LSP.2016.2611485

	43	 H. Wu and S. Prasad: Remote Sens. 9 (2017) 298. https://doi.org/10.3390/rs9030298
	44	 Y. Ichimaru and G. B. Moody: Psychiatry Clin. Neurosci. 53 (1999) 175. https://doi.org/10.1046/j.1440-

1819.1999.00527.x
	45	 G. B. Moody, R. G. Mark, and A. L. Goldberger: IEEE Eng. Med. Biol. Mag. 20 (2001) 70. https://doi.

org/10.1109/51.932728

https://ieeexplore.ieee.org/document/4221727
https://dl.acm.org/doi/10.1145/1882471.1882478
https://dl.acm.org/doi/10.1145/1882471.1882478
https://doi.org/10.1093/bioinformatics/14.2.139
https://doi.org/10.1093/bioinformatics/14.2.139
https://ieeexplore.ieee.org/document/1565679
https://ieeexplore.ieee.org/document/1565679
https://datalab.csd.auth.gr/wp-content/uploads/publications/IJCR02nam.pdf
https://doi.org/10.1109/TKDE.2005.144
https://doi.org/10.1109/TKDE.2005.144
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.4333&rep=rep1&type=pdf
https://doi.org/10.1109/TITB.2008.2003323
https://doi.org/10.1109/TITB.2008.2003323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.4333
https://doi.org/10.1109/Innovations.2013.6544391
https://doi.org/10.1007/1-84628-102-4_18
https://doi.org/10.1007/1-84628-102-4_18
https://doi.org/10.1016/j.patcog.2010.06.005
https://link.springer.com/article/10.1007/s10618-019-00619-1
https://link.springer.com/chapter/10.1007%2F978-3-319-08010-9_33
https://dl.acm.org/doi/10.5555/766914.766918
https://dl.acm.org/doi/10.5555/766914.766918
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1510.07641
https://doi.org/10.1016/j.neunet.2019.04.014
https://doi.org/10.1016/j.neunet.2019.04.014
https://arxiv.org/abs/1511.03677
https://arxiv.org/abs/1706.08838
https://doi.org/10.3390/en10081168
https://doi.org/10.1049/iet-rsn.2016.0632
https://doi.org/10.1049/iet-rsn.2016.0632
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/RTSI.2016.7740576
https://link.springer.com/chapter/10.1007/978-3-319-08010-9_33
https://personal.ntu.edu.sg/xlli/publication/HARcnn.pdf
https://personal.ntu.edu.sg/xlli/publication/HARcnn.pdf
https://arxiv.org/abs/1511.08630
https://doi.org/10.1109/LSP.2016.2611485
https://doi.org/10.1109/LSP.2016.2611485
https://doi.org/10.3390/rs9030298
https://doi.org/10.1046/j.1440-1819.1999.00527.x
https://doi.org/10.1046/j.1440-1819.1999.00527.x
https://doi.org/10.1109/51.932728
https://doi.org/10.1109/51.932728

Sensors and Materials, Vol. 33, No. 4 (2021)	 1165

About the Authors

	 Jiang Wu is a teacher at Changchun Institute of Engineering, Jilin, China.
She received her Ph.D. degree from the College of Instrumentation and
Electrical Engineering, Jilin University, China, in 2019. Her research
interests include testing technology and automation equipment development.
(183342462@qq.com)

	 Yanju Ji is a professor in the College of Instrumentation and Electrical
Engineering, Jilin University, China. She received her Ph.D. degree from
Geo-exploration Science and Technology, Jilin University, China, in 2004.
Her research interests include the time domain electromagnetic theory and
detection technology. (jiyj@jlu.edu.cn)

	 Suyi Li is a professor in the College of Instrumentation and Electrical
Engineering, Jilin University, China. She received her Ph.D. degree in
test measurements and instruments from Jilin University, China, in 2009.
Her research interests include biomedical signal processing and ocean oil
exploration. (lsy@jlu.edu.cn)

