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	 An automatic reading of text from an identity (ID) card image has a wide range of social 
uses. In this paper, we propose a novel method for Chinese text recognition from ID card images 
taken by cellphone cameras. The paper has two main contributions: (1) A synthetic data engine 
based on a conditional adversarial generative network is designed to generate million-level 
synthetic ID card text line images, which can not only retain the inherent template pattern of 
ID card images but also preserve the diversity of synthetic data. (2) An improved convolutional 
recurrent neural network (CRNN) is presented to increase Chinese text recognition accuracy, in 
which DenseNet substitutes VGGNet architecture to extract more sophisticated spatial features. 
The proposed method is evaluated with more than 7000 real ID card text line images. The 
experimental results demonstrate that the improved CRNN model trained only on the synthetic 
dataset can increase the recognition accuracy of Chinese text in cellphone-acquired low-quality 
images. Specifically, compared with the original CRNN, the average character recognition 
accuracy (CRA) is increased from 96.87 to 98.57% and the line recognition accuracy (LRA)  is 
increased from 65.92 to 90.10%.

1.	 Introduction

	 Identity (ID) cards are a kind of legal certificate to prove the residential ID of the holder in 
China and are widely used in all aspects of modern social life. It is necessary to input ID card 
information when doing business involving the government, public security, banking, securities, 
insurance, taxation, and so forth. Manually inputting ID card information is inefficient and 
prone to errors, and it is not possible to input unknown words. It will greatly improve the work 
efficiency and service level if ID card information can be read automatically.
	 The most commonly used device for reading ID card information is an ID card reader, which 
is based on the induction principle of magnetic cards and RFID technology. The device can 
quickly and accurately read the information stored in a second-generation ID card chip, but this 
technology needs close contact between the ID card and the card reader. In recent years, with 
the integration of internet technology and traditional industries in China, doing business online 
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is becoming increasingly popular. To read customer information automatically from uploaded 
ID card images, optical character recognition (OCR) technology is needed.
	 OCR refers to using optical equipment to obtain images containing text, and then converting 
the text in the image into computer-readable and editable character codes through digital image 
processing and pattern recognition methods. ID card images can be obtained from a scanner 
or a camera. The OCR technology applied to scanned ID card images is mature, and the 
recognition accuracy has reached over 99%.(1) However, recognizing text from camera-acquired 
low-quality ID card images is still a challenging task.
	 OCR can be divided into two stages: text detection and text recognition. The goal of text 
detection is to produce segmentations or bounding boxes of texts in the whole image, while text 
recognition aims at converting a cropped text image to text strings. This paper only focuses on 
text recognition. There are Chinese characters, English letters, numbers, and punctuations on 
an ID card, which are printed horizontally in lines. A convolutional recurrent neural network 
(CRNN) is the most popular model for recognizing regular texts owing to its capability of 
acquiring competitive results with relatively few parameters.(2) The architecture of a CRNN 
consists of three components: convolutional layers, recurrent layers, and a transcription layer. 
The convolutional layers automatically extract a sequence of features from each input image, 
the recurrent layers predict a label distribution for each frame in the feature sequence, and the 
transcription layer translates the per-frame predictions into the final label sequence.(3) However, 
the CRNN was originally designed for English character recognition. Compared with the 52 
English characters (i.e., 26 lower-case and 26 upper-case letters), there are thousands of Chinese 
characters including more than 6000 commonly used ones. Furthermore, many Chinese 
characters appear similar, e.g., “日 ” and “ 曰 ”, “ 土 ” and “ 士 ”, and “ 治 ” and “ 冶 ”. These 
differences call for a more complicated model to extract more sophisticated structure features to 
recognize Chinese characters. The first contribution of this paper is that a novel convolutional 
neural network (CNN) is introduced into a CRNN model to replace the original convolutional 
layers for the extraction of more sophisticated structure features in Chinese characters. 
	 The supervised training of a large model such as a CRNN, which contains millions of 
parameters, requires a very large amount of labeled training data. Owing to the privacy 
associated with ID cards, it is impossible to build a large-scale training dataset consisting of 
real ID card images except for public security organizations. Synthetic datasets provide detailed 
ground-truth annotations, which are cheap and scalable alternatives to annotating images 
manually. They have been widely used to learn scene text recognition models(4,5) and scene text 
detection models.(6) The second contribution of this paper is that a novel ID card text image 
generator (G) based on a conditional generative adversarial network (cGAN) named pix2pix(7) 
is proposed, which is capable of emulating ID card text images in a natural environment in the 
case of a small number of real ID card images. 

2.	 Related Works

	 Text recognition methods can be broadly divided into three categories: character-based, 
word-based, and sequence-based methods.
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	 Character-based recognition methods generally consist of three steps: character detection, 
character recognition, and character combination. Wang et al. used random ferns and a 
histogram of oriented gradient (HOG) features to detect characters, then found an optimal 
configuration of a particular word via a pictorial structure.(8)  Mishra et al. detected character 
candidates using sliding windows and integrated both bottom-up and top-down cues in a 
unified conditional random field (CRF) model.(9) Bissacco et al. used a neural network classifier 
acting on the HOG features of the segments as scores to find the best combination of segments 
using beam search.(10) Jaderberg et al. used a combination of a binary text/no-text classifier, a 
character classifier, and a bigram classifier densely computed across the word image as cues 
to a Viterbi scoring function in the context of a fixed lexicon.(11) Character-based recognition 
methods require robust and accurate character detection and recognition, otherwise the word 
alignment will lead to incorrect results due to error accumulation from lower to higher levels.
	 Word-based recognition methods treat each word image as a whole without requiring 
character detection and recognition. Goel et al. converted the word recognition task into a 
problem of retrieving the best match from a lexicon image set with a weighted dynamic time 
warping approach.(12) Almazán et al. embedded word images and word labels into a common 
Euclidean space, and used embedding vectors to match images and labels.(13) Jaderberg et al. 
treated text recognition as an image classification problem. Each class corresponded to one 
English word in a pre-defined large dictionary composed of around 90k words.(14) However, 
lexicon-driven word recognition methods lack flexibility and cannot recognize a rarely 
occurring word that is not included in the lexicon. 
	 Sequence-based recognition methods regard text recognition as an image-based sequence 
recognition problem, where images and texts are separately encoded as patch and character 
sequences. Su and Lu extracted a sequential image representation, which is a sequence of HOG 
descriptors, and predicted the corresponding character sequence with a recurrent neural network 
(RNN).(15) Shi et al. proposed an end-to-end neural network architecture that combined CNN 
and RNN for visual feature representation, then the connectionist temporal classification (CTC) 
loss(16) was combined with the RNN outputs to calculate the conditional probability between the 
predicted and target sequences.(3) Inspired by the sequence-to-sequence framework for machine 
translation,(17) Lee and Osindero used a recursive RNN to learn broader contextual information 
and applied an attention-based decoder for sequence generation.(18) Cheng et al. proposed 
a focus mechanism to eliminate the attention drift to improve the recognition performance 
of regular text.(19) Bai et al. proposed an edit probability metric to handle the misalignment 
between the ground-truth string and the attention’s output sequence of a probability distribution.(20) 
Both CTC and encoder–decoder frameworks were originally designed for 1D sequential input 
data, and therefore applied to the recognition of straight and horizontal text, which can be 
encoded into a sequence of feature frames without losing important information. In contrast to 
CTC, the decoder module of the encoder–decoder framework is an implicit language model, so 
it can incorporate more linguistic priors. For the same reason, the encoder–decoder framework 
requires a larger training dataset with a larger vocabulary. Otherwise, the model may degenerate 
when reading words that are not seen during training. In contrast, CTC is less dependent on 
language models and has a better character-to-pixel alignment. Therefore, it is potentially better 
on languages such as Chinese and Japanese that have a large character set.(2)
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3.	 Synthetic ID Card Text Line Image

	 There is a standard template for Chinese ID cards, such as the font, size, spacing, and color. 
We construct a corpus based on the content of Chinese ID cards. So that the corpus is similar 
to the Chinese ID card text distribution, the text of names is randomly selected from a Chinese 
name corpus,(21) the text of addresses comes from a random combination of the different levels 
of administrative divisions in a China area corpus,(22) and the texts of gender, nationality, date of 
birth, and ID card number are randomly selected from their value domains. A punctuation mark 
is inserted between texts of different contents. Some uncommon characters are supplemented to 
mitigate the problem of imbalanced samples.
	 The process of generating a synthetic ID card text line image is shown in Fig. 1. Ten 
consecutive characters are extracted from any position in the corpus to generate a binary text 
line image with size 32 × 280. Next, the binary text line image is distorted with a random, full 
perspective transformation, simulating the 3D world. Because the input image size of G is fixed 
at 256 × 256, the binary text line image and its seven duplicates are mosaicked into one image 
and resized to 256 × 256. The synthetic ID card text image output from G is split into eight 
identical sub-images from top to bottom, one of which is selected as the synthetic ID card text 
line image and resized to 32 × 280. Finally, Gaussian noise, out-of-focus blur, and so forth, are 
added to the synthetic ID card text line image with random intensity.
	 We use a cGAN named pix2pix(7) to train G to learn mapping from binary text images to 
ID card text images. The process of training G is shown in Fig. 2. G learns to translate binary 
text images x to synthetic ID card text images G(x) that cannot be distinguished from the 
corresponding real ID card text images y by an adversarially trained discriminator (D), while 
simultaneously D learns to classify between fake {G(x), x} and real {y, x}.
	 The objective of the pix2pix network can be expressed as

	 *
1arg  min  max ( , ) ( )cGAN LG D

G G D Gλ= +  ,	 (1)

Fig. 1.	 (Color online) Proposed synthetic ID card text line image generation process.
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where ( , )cGAN G D  representing the adversarial loss of the cGAN and 1( )L G  representing the 
L1 distance loss are expressed as

	 [ ] [ ],( , ) log ( , ) log 1 ( , ( ))cGAN x y xG D D x y D x G x= + −   ,	 (2)

	 [ ]1 , 1( ) || ( ) ||L x yG y G x= −  .	 (3)

λ in Eq. (1) controls the relative importance of the two objectives. We set λ to 100 to encourage 
the output of G to be less blurring. Figure 3 illustrates some samples generated by G, which is 
trained with 613 real ID card text images and their corresponding binary text images.

4.	 Improved CRNN 

4.1	 CRNN architecture(3)

	 A CRNN is an end-to-end training neural network for image-based sequence recognition, 
whose architecture consists of three components: convolutional layers, recurrent layers, 
and a transcription layer from bottom to top, as shown in Fig. 4. The convolutional layers 
automatically extract a feature sequence x = x1, ..., xT from each input image, where T is the 
sequence length. The recurrent layers predict a label distribution yt for each frame xt. The 
transcription layer converts the per-frame predictions y = y1, ..., yT into a label sequence l. 
Mathematically, transcription is finding the label sequence l that maximizes P(l|y), where P(l|y) 
is defined in the CTC layer proposed by Graves et al.(16)

	 We denote the training dataset by { , }i i iI= l , where Ii is the training image and li is the 
ground-truth label sequence. The objective is to minimize the negative log-likelihood of the 
conditional probability of ground truth:

Fig. 2.	 (Color online) Process of training G based on pix2pix(7). G learns to translate binary text images x to 
synthetic ID card text images G(x) that cannot be distinguished from the corresponding real ID card text images y by D, 
while simultaneously D learns to classify between fake {G(x), x} and real {y, x}.
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where yi is the sequence produced from Ii by the recurrent and convolutional layers. The 
objective function calculates a cost value directly from an image and its ground-truth label 
sequence, so the network can be end-to-end trained on pairs of images and sequences.

4.2	 Improved feature sequence extraction module

	 The CRNN was originally designed for English character recognition, and its architecture 
of convolutional layers is based on the VGG-VeryDeep architecture,(23) which is prone to 
losing fine spatial features. Compared with English characters, Chinese characters have a 
more sophisticated spatial structure and a more similar appearance. To improve Chinese 

Fig. 3.	 (Color online) Samples of synthetic ID card text line images. 

Fig. 4.	 (Color online) CRNN architecture. The architecture consists of three parts: (1) convolutional layers, which 
extract a feature sequence from the input image; (2) recurrent layers, which predict a label distribution for each frame; (3) 
a transcription layer, which translates the per-frame predictions into the final label sequence.

(1)

(2)

(3)
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text recognition accuracy, a novel feature sequence extraction module based on a dense 
convolutional network (DenseNet) architecture(24) is proposed in this paper as shown in Fig. 5. 
Figure 6 illustrates a five-layer dense block with a growth rate of k = 4. We assume that the 
network comprises L layers, each of which implements a nonlinear transformation Hℓ(∙), where 
ℓ indexes the layer and Hℓ(∙) is a composite function of three consecutive operations: batch 
normalization (BN),(25) a rectified linear unit (ReLU),(26) and a 3 × 3 convolution (Conv). We 
denote the input feature map as x0 and the output of the ℓth layer as xℓ. Then,

	 xℓ = Hℓ([x0, x1, ..., xℓ−1]),	 (5)

where [x0, x1, ..., xℓ−1] refers to the concatenation of the feature maps produced in layers 0, 1, ..., ℓ − 1. 
If each function Hℓ(∙) produces k feature maps, it follows that the ℓth layer has κ0 + k × (ℓ − 1) 
input feature maps, where κ0 is the number of channels in the input layer. The transition layers 
consist of a BN layer and a 1 × 1 convolutional layer followed by a 2 × 2 average pooling layer.
	 The proposed feature sequence extraction module has three dense blocks, with each block 
having eight layers. Before entering the first dense block, a convolution with 64 output channels 
is performed on input images. For convolutional layers with kernel size 3 × 3, each side of the 
inputs is zero-padded by one pixel to keep the feature map size fixed. A 1 × 1 convolution 
followed by 2 × 2 average pooling is used as the transition layer between two contiguous dense 

Fig. 5.	 (Color online) Schematic diagram of proposed feature sequence extraction module. 

Fig. 6.	 (Color online) Five-layer dense block with growth rate of k = 4.(24)
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blocks. At the end of the last dense block, 4 × 1 average pooling is performed to extract the 
feature sequence. We set the text line image size to 32 × 280 and the growth rate to k = 8. The 
exact network configuration is shown in Table 1.

5.	 Experimental Results

5.1	 Implementation details

	 Approximately 2000 real ID card images taken by cellphone camera are provided by a 
construction company under a privacy agreement that prohibited us from revealing the full 
information of any individual. These images are taken from diverse angles and distances under 
various lighting conditions by different cellphone brands and models. We cut them into text 
line images, 613 of which are used to train the pix2pix network and 7824 are used to evaluate 
the performance of the improved CRNN. Experiments are carried out on a workstation with a 
3.4 GHz Intel i7-330 CPU, 16 GB RAM, and an 8 GB NVIDIA GTX 1080 GPU. 
	 The pix2pix network is implemented in TensorFlow 1.2.0. The optimization method is Adam 
with a learning rate of 0.0002 and momentum parameters β1 = 0.5 and β2 = 0.999. The batch 
size is set to 1. The maximum number of iterations is set to 100k. After 90k iterations, ( )1L G (G) 
becomes less than 0.1. When the training is done, the method proposed in Sect. 2 is used to 
generate synthetic ID card text line images. The synthetic dataset contains 6.6 million images 
covering 7265 types of characters in total. 
	 The improved CRNN is implemented in Caffe with CUDA 8.0 and cuDNN 5.6. The 
optimization method is Nesterov with a learning rate of 0.0001, a momentum of 0.9, and γ of 0.5. 
The batch size is set to 64. To verify that the synthetic data is sufficiently realistic to substitute 
for real data, we only use the synthetic data for training and real data for testing. The training 
process takes about 20k iterations to reach convergence. Test images are scaled to a height of 32, 
and the image width is proportionally scaled with height. The image width is at least 280 pixels, 
and we apply zero-padding for short images.

Table 1
Configuration of proposed feature sequence extraction module. The growth rate is k = 8. Note that each “Conv” 
layer shown in the table corresponds to the sequence BN-ReLU-Conv.
Layer Output size Configuration
Convolution 16 × 140 × 64 5 × 5 Conv, stride 2

Dense block 1 16 × 140 × 128
1 1 Conv

8
3 3 Conv
× 

× × 

Transition layer 16 × 140 × 128 1 × 1 Conv
8 × 70 × 128 2 × 2 average pooling, stride 2

Dense block 2 8 × 70 × 192
1 1 Conv

8
3 3 Conv
× 

× × 

Transition layer 8 × 70 × 192 1 × 1 Conv
4 × 35 × 192 2 × 2 average pooling, stride 2

Dense block 3 4 × 35 × 256
1 1 Conv

8
3 3 Conv
× 

× × 
 

Pooling 1 × 35 × 256 4 × 1 average pooling
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5.2	 Results

	 Figure 7 shows samples correctly recognized in the test dataset. It can be seen from Fig. 7 
that even if the text line images are affected by noise, blur, uneven illumination, perspective 
distortion, a complex background, and so forth, the improved CRNN can still accurately 
recognize the text in the images and maintain good robustness. 
	 To further verify the effectiveness of the improved CRNN, we compare it with the original 
CRNN in quantitative and qualitative analyses. We use two metrics to quantitatively evaluate 
the recognition performance: (1) the average character recognition accuracy (CRA) based on the 
longest common subsequence (LCS), defined as

	 ( ˆ( , )) / ( )CRA length LCS l l length l= ,	 (6)

where l̂  represents the predicted label sequence and l represents the ground-truth label sequence; (2) 
line recognition accuracy (LRA), i.e., the percentage of text line images correctly recognized, 
where the text line image is correctly recognized if no character is misidentified. Table 2 shows 
the text recognition accuracies of the improved and original CRNNs. Compared with the 
original CRNN, CRA is increased from 96.87 to 98.57% and LRA is increased from 65.92 to 
90.10% for the improved CRNN. Table 3 lists some images with different recognition results. 
From the qualitative perspective, the improved CRNN can correctly recognize easily confused 
Chinese characters in the case of a complex background (a and b in Table 3) and a slanting 
text line (c and d) owing to higher feature extraction capabilities than the original CRNN. To 
analyze the shortcomings of the improved CRNN, we list some incorrectly recognized samples 

Fig. 7.	 (Color online) Correctly recognized samples in test dataset with improved CRNN. The text below each 
image is the recognition result.

Table 2
Comparison of text recognition accuracy between original and improved CRNNs. 
Method CRA LRA
Original CRNN 96.87% 65.92%
Improved CRNN 98.57% 90.10%
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in Table 4. It is easy to see from the images in Table 4 that recognition errors are mainly caused 
by low resolution (a and b), out-of-focus blur (c), and character interference (d). Thus, we still 
need to design a much finer network structure that can extract fine-grained features.

6.	 Conclusions

	 In this paper, we propose a novel CRNN for Chinese character recognition from ID 
card images taken by cellphone cameras that integrates the advantages of both the CRNN 
architecture and the DenseNet architecture. The CRNN is capable of taking input images of 
various dimensions and produce predictions with different lengths. It directly runs on coarse 
level labels, requiring no detailed annotations for each individual element in the training phase. 
DenseNet allows feature reuse throughout the networks and can consequently learn more 
compact and accurate internal representations. We have also designed a synthetic data engine 
based on a conditional adversarial generative network to generate million-level synthetic ID 
card text line images, which can not only retain the inherent template pattern of ID card images, 
but also preserve the diversity of synthetic data. We evaluate the performance of the proposed 
method with more than 7000 real ID card text line images, and the experimental results 
demonstrate that the improved CRNN model trained only on the synthetic dataset can increase 
the recognition accuracy of Chinese text in cellphone-acquired low-quality images. Specifically, 
compared with the original CRNN, the average CRA is increased from 96.87 to 98.57% and 
the LRA is increased from 65.92 to 90.10%. The proposed Chinese text recognition method has 
been used to read personal information from cellphone-acquired ID card images in an employee 
management system of a construction company that adopts manual interaction to ensure the 

Table 3
(Color online) Different text recognition results obtained with original and improved CRNNs. The 
underlined characters are incorrectly recognized.
No. Test image Original CRNN Improved CRNN
a 性别勇民族汉 性别男民族汉

b 佐址海南省詹州市木棠镇薛宅 住址海南省儋州市木棠镇薛宅

c 村委会山石周村 75 号 村委会山石园村 75 号

d 镇歹麦村委会拖康秦村 镇歹麦村委会拖康素村

Table 4
(Color online) Incorrectly recognized samples in test dataset with improved CRNN. The underlined characters are 
incorrectly recognized.
No. Test image Ground truth Improved CRNN
a 姓名胡昌云 □□胡昌云

b 住址四川省内江市市中区全 □□四川省内江市市中区全

c 姓名莫方森 □□莫方春

d 住址贵州省玉屏侗族自治县田 住址勒现融自□□□□□□□
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accuracy of the input information. For the ID card images whose quality does not meet the 
requirements, the administrator will return them to the users for resubmission.
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