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	 New methods of optimizing the design of machines with high stiffness have attracted much 
attention. Conventionally, machine designers have carried out optimization by attempting to 
minimize static deformation or maximize static stiffness. Nevertheless, the dynamic behavior of 
the machine structure plays a deterministic role in the final machining precision. Therefore, we 
propose in this study an integral-stiffness-based optimization method for designing the optimal 
structure of a computer numerically controlled (CNC) grinding machine. The proposed novel 
optimization methodology includes a prototype designed on the basis of know-how and the 
determination of control parameters based on the mode shape, Taguchi’s experimental method 
based on finite element analysis (FEA), and grey relational analysis (GRA). The target 
parameters in the optimization are static stiffness, first natural frequency, and dynamic stiffness. 
Results reveal that the optimal structure of a CNC grinding machine obtained by merely 
considering the static stiffness exhibits good performance when applying static forces but 
inferior performance when applying dynamic forces. A good optimization approach for 
designing a high-precision machine should integrally consider the static stiffness as well as the 
dynamic stiffness. With our proposed methodology, machine designers can design an optimal 
high-stiffness structure of a CNC grinding machine more efficiently and accurately. 

1.	 Introduction

	 Because of the increasingly strict requirements on the machining accuracy, reliability, and 
stability of tool machinery, the goal of optimization for machine structures has gradually shifted 
from high static stiffness towards high dynamic stiffness, and subsequently to high integral 
stiffness (both static and dynamic stiffness). Many previous studies on the optimization of 
machine structures focused on a single module or major components such as the spindle, bed, or 
column,(1–3) or adopted conventional methods of structure analogy, experience-based design, or 
optimization considering only static stiffness,(4–7) which have thus far been insufficient and 
inaccurate. Moreover, numerous optimization methods for increasing the stiffness of the overall 
structure of a machine tool or its components have been proposed. For example, Lei et al.(8) 
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proposed an optimization method based on sensitivity analysis for designing lightweight 
machine tools. Chen et al.(9) studied the optimization problem of a vertical machining center 
using a response surface method. Liusheng et al.(10) adopted topology optimization to improve 
the stiffness of the rib plate in a machine’s column. Jie(11) investigated the optimization problem 
of a lathe bed using dynamic characteristic analysis. From the development history of the above 
proposed optimization techniques for the overall structure of a machine or its components, it can 
be seen that consideration of a machine’s dynamic behavior is not only a trend but also a 
prerequisite in the accurate design of machine tools with an optimal structure. 
	 For computer numerically controlled (CNC) machine tools, the static and dynamic stiffness 
are the most important and fundamental parameters that determine their machining 
performance. The static stiffness refers to the resistance to deformation when a force is applied 
on the machine structure. The natural frequencies and their corresponding modal shapes of free 
oscillation provide an insight into the resonance of the machine. The dynamic stiffness is 
directly related to the dynamic response (deformation) of the machine structure during the 
application of external periodic forces. These three parameters are strongly connected with each 
other. Sometimes a structure with good static stiffness still exhibits large deformation or even 
damage due to resonance or dynamic stimuli at certain frequencies. Thus, an integrative 
examination of the influence of these parameters should be made to improve the design of a 
machine’s structure. In this regard, we will introduce the concept of integral stiffness in the 
optimization process, which refers to a combination of static and dynamic stiffness. 
	 Furthermore, in the optimization process, too many experiments must be performed to 
consider the large number of possible variations of variables. To overcome this problem, we 
adopt a popular experimental method called Taguchi’s method,(12) which can effectively reduce 
the number of experiments and still capture the influence of controlled variables on target 
variables. Moreover, to verify the results of finite element analysis (FEA), experiments on 
measuring the static deformation of a machine structure via displacement sensors are also 
performed in this study.
	 In this study, we propose an innovative methodology based on integral stiffness to optimize 
the structure of a CNC machine tool. In the proposed methodology, we start from a prototype 
machine designed on the basis of know-how and experience. Then, integral optimization 
schemes, which include FEA, experimental identification, parameter selection based on mode 
shapes, Taguchi’s method, grey relational analysis (GRA), and experimental verification, are 
applied to completely and accurately obtain the optimal structure of a machine tool. 

2.	 Integral-stiffness-based Optimization Scheme 

	 Our proposed integral optimization scheme mainly comprises eight steps, as shown in Fig. 1. 
First, we choose a CNC three-head grinding machine as the target for illustration since its 
structure is sophisticated and complex. This target machine features a long and narrow base, a 
wide column, and a three-head ram. Its structure is weak and deforms largely during machining, 
and thus it provides a severe test for the proposed novel methodology. Second, we design a 
prototype grinding machine based on accumulated know-how and experience. Third, we 
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examine three aspects of the behavior of the target machine structure using FEA: static stiffness, 
vibration mode shape, and dynamic stiffness. Moreover, to identify the machine’s static 
deformation, a measurement using displacement sensors is conducted. Fourth, we analyze the 
calculated and measured results obtained in the third step to acquire shape parameters that 
enhance the structure’s integral stiffness. Fifth, we construct a special set of orthogonal arrays 
(OAs) for Taguchi’s experiment based on FEA to investigate the influence of changing these 
shape parameters on integral stiffness. Sixth, we analyze these results via GRA to obtain an 
optimal set of shape parameters. Seventh, we construct an optimal machine structure and 
perform a related FEA calculation. Eighth, we verify the optimal structure via experimental 
measurements of the machine’s static deformation.

3.	 Theoretical Foundations

	 In our proposed integral optimization scheme, the related theories comprise (1) solid 
mechanics: static mechanics, vibration mechanics, and dynamic response analysis; (2) 
experiment design: Taguchi’s method; (3) finite element method (FEM); (4) optimization 
strategy. The following section gives a brief introduction to these theories.

Fig. 1.	 Flow chart of proposed integral optimization scheme.
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3.1	 FEA

3.1.1	 FEM

	 The FEM is a popular and efficient way to analyze a machine’s structure.(13) All linear or 
nonlinear stress problems in solid mechanics, heat transfer, and fluid dynamics can be analyzed 
using FEM. FEM has been successfully applied in many areas,(14–17) and many FEM programs 
have been developed, e.g., ANSYS, SOLIDWORKS, NASTRAN, CREO, and INVENTOR.(18,19) 
SOLIDWORKS has the feature that one may directly use the constructed 3D sketch of the target 
product to perform FEA. Therefore, we adopt this software program to perform the FEM 
calculation in this study.
	 Many previous studies have examined machine stiffness using numerical methods.(20–22) 
Vivekananda et al.(23) adopted ANSYS software to obtain natural frequencies of a machine tool. 
Hong et al.(24) investigated the static structure of a five-axis machining center using 
SOLIDWORKS. Wang(25) used SOLIDWORKS to investigate the structure stiffness of a 
compound machining center. 
	 The procedure of FEM using SOLIDWORKS includes the following three steps. (1) 
Preprocessing phase: dividing the solution domain into suitable finite elements, determining 
shape functions, developing governing equations for individual elements, assembling and 
constructing the global stiffness matrix, and applying suitable restricted conditions. (2) Solution 
phase: solving equations to obtain nodal results (displacement, stress, and strain). (3) 
Postprocessing phase: calculating other variables (natural frequencies and stiffness).

3.1.2	 Static mechanics 

	 When a load is applied on a given body, the static equation of displacement can be expressed 
as

	 [K]{X} = {F},	 (1)

or

	 [K]{X} = {Fe} + {Fr},	 (2)

where 1[ ] [ ]N
siK K

=
=∑  is the stiffness matrix of the system, {X} is the displacement vector, N is 

the element number, [Ks] is the element stiffness matrix, [Fe] is the total external force vector, 
and [Fr] is the reaction load vector.

3.1.3	 Modal analysis 

	 Modal analysis is mainly concerned with the calculation of natural frequencies and mode 
shapes of a structure. Note that three assumptions are usually made in modal analysis: no 
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damping effect, a linear structure, and none of the physical properties change with time (e.g., 
force and displacement). Since no actual force is applied to the structure, the structure is under 
free vibration. The equation of free vibration is

	 [M]{X}+ [K]{X} = {0}. 	 (3)

	 Since the structure is linear, the motion is harmonic. Thus, we may assume that the 
displacement has the following form: 

	 {X} = {X}i{ }{ } ij t
iX X e ω= , i = 1, 2, ..., n,	 (4)

where [X]i denotes the amplitude (mode shape) for the ith frequency ωi and n is the number of 
degrees of freedom of the structure. Then, we substitute Eq. (4) into Eq. (3) and obtain

	 { }2[ ] [ ] { } 0i iK M Xω − =  .	 (5)

	 Equation (5) is an eigenvalue problem. Non-trivial solutions occur only under the following 
criterion:

	 ( )2det [ ] [ ] 0iK Mω − =  .	 (6)

	 We solve the above equation to obtain the eigenvalues {ωi} and their corresponding 
eigenvectors [X]i. 

3.1.4	 Dynamic response 

	 When a time-variant force is applied to a structure, the governing equation of its dynamic 
response can be represented as

	 [M]{X}+ [C]{X } + [K]{X} = {F(t)},	 (7)

where [M] and [K] were defined previously, [C] is the damping matrix, and {F(t)} is the time-
dependent external load vector. Here, we set 

	 {F(t)} = {FmaxeiΨ}eiωt	 (8)

and

	 {X} = {Xmaxeiϕφeiωt},	 (9)

where Fmax denotes the maximum absolute value of the external force, Ψ denotes the force phase 
angle, Xmax denotes the maximum absolute value of the displacement, and ϕ denotes the 
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displacement phase angle. Substituting Eqs. (8) and (9) into Eq. (7) and rearranging, we obtain 
the following final equation for the structural dynamic response:

	 (−ω2[M] + iω[C] + [K]){Xmaxeiϕ}{FmaxeiΨ}.	 (10)

	 The desired displacement vector of the dynamic response {Xmaxeiϕ} can be obtained from 
Eq. (10).

3.2	 Taguchi’s method 

	 Experimental studies usually involve a significant number of factors, and full factorial design 
results may involve a large number of experiments. To reduce the number of experiments to a 
practically acceptable level, we need a good selection method. Here, we adopt Taguchi’s 
method,(26) which is a popular method for reducing the number of experiments in factorial 
design. The method of selecting a limited number of experiments that provide the most 
information is known as a partial factorial experiment (PFE). Taguchi constructed a special set 
of OAs to select PFEs. A single OA may accommodate a number of experimental conditions. 
Commonly used OAs have two, three, or even four levels. Taguchi’s method includes four steps. 
1. Determine the quality characteristics and design parameters related to the product or process. 
2. Design and conduct the experiments. 3. Analyze the results to determine the optimal 
conditions. 4. Run a confirmatory test using the optimal conditions.

3.3	 GRA

	 GRA(27) is a method of measuring the correlation between discrete data sequences. Compared 
with the conventional regression method, GRA has the advantages of no restriction on the 
amount or distribution of data. GRA is a good choice for dealing with problems where the 
amount of data is insufficient or the data do not follow normal distributions. The steps of GRA 
are as follows.
Step 1.	 Construct an initial data sequence from the collected data,

	

(0) (0) (0) (0)
1 1 2 1
(0) (0) (0) (0)
2 2 2 2

(0) (0) (0) (0)

{ (1), (2), ..., ( )}

{ (1), (2), ..., ( )}

{ (1), (2), ..., ( )}n n n n

x x x x m

x x x x m

x x x x m

 =

 =


 =



 .	 (11)

Step 2.	 Normalize the initial data sequence using the following equation:

	
(0)

* ( )( ) i
i

x kx k
ξ

= , i = 1, 2, ..., n; k = 1, 2, ..., m,	 (12)

where ξ = xi
(0) (1) is chosen as the initial data and * *{ ( )}i iX x k= .
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Step 3.	 Choose an ideal data sequence *
0X  (usually the worse or the best) from *

iX  as the 
reference data sequence, denoted as 

	 * * * *
0 0 0 0( ) { (1), (2), ..., ( )}X k x x x m= .	 (13)

Step 4.	 Calculate the norm sequence 0 0 0{ (1), (2), ..., ( )}i i i i mΓ = ∆ ∆ ∆ , whose elements are the 
absolute values of the differences between the comparison sequence and reference sequence, 
defined as

	 * *
0 0( ) ( ) ( )i ik x k x k∆ = − .	 (14)

Step 5.	 Find the maximum and minimum norms among all difference sequences using the 
following equations:

	 0 01 11 1
max max ( ), min min ( )

n m n m
i ii ki k

k kα β
= == =

= ∆ = ∆ . 	 (15)

Step 6.	 Calculate the grey relational coefficients as follows:

	 0
0

( ) , [0,1]
( )i

i
k

k
β λ αγ λ

λ α
+ ⋅

= ∈
∆ + ⋅ . 	 (16)

	 In the above equation, λ is called the distinguishing coefficient. It represents the contrast 
between the background and measured data. In general, it is set as λ = 0.5. 

4.	 Results and Discussion 

4.1	 Prototype design 

	 The prototype of our target three-head grinding machine was designed by professional 
designers of CNC machine tools with over 20 years of experience in designing machine tools, 
particularly grinding machines. The thus designed prototype structure based on accumulated 
know-how and market needs is called Case 1 and shown in Fig. 2.

4.2	 Static and dynamic structural behavior of prototype

	 Using FEA, we examine three aspects of the structure behavior of the prototype machine: 
static stiffness, vibration mode shape, and dynamic stiffness. In addition, to determine the 
difference between actual and simulation results, the static deformation and mode shape of the 
machine are measured for comparison. 
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4.2.1	 Restricted conditions and grid-independent test

	 The applied forces are set to act at the nose of the left, right, and upper grinding heads in the 
Y, −Y, and Z directions, respectively, with a magnitude of 100 kgf. The structure material is 
designated as graphite cast iron. Then, four different meshes are established with minimum 
element sizes of 10, 6, 4, and 3 mm, and it is found that the relative errors of the calculated first 
natural frequencies are 0.786, 0.383, 0.0324, and 0.0331%, respectively. Therefore, the element 
size of 4 mm is chosen for all the FEA calculations. For example, the mesh of the prototype has 
125158 node numbers and 596491 elements.

4.2.2	 Static behavior—stress, strain, and displacement

	 The static stress, strain, and displacement are calculated. The obtained displacement 
distribution of the prototype machine is shown in Fig. 3, which has a maximal displacement of 
14 μm occurring at the grinding head nose in the Z direction (corresponding to a minimal static 
stiffness of Ks = 12.37 kgf/μm). Furthermore, the magnitude of the displacement of the module 
components decreases in the order head > head ram > cross column > vertical column > base. 
Because the module components of the head, head ram, and cross column have larger 
deformations than the other parts of the machine structure, we may choose the static stiffness of 
the grinding head nose, denoted by Ks as one of the index parameters for optimization.

4.2.3	 Verification via displacement measurements using gauge sensors

	 To identify the difference between the FEA results and the actual behaviors of the prototype 
machine, a displacement measurement experiment is carried out. Six strain gauge sensors are 
stamped on the front end of each grinding head to measure the displacement. We apply forces of 
100 kgf in the Y, −Y, and Z directions via the load cells at the front ends of the left, right, and 

Fig. 2.	 (Color online) Configuration and restricted conditions of prototype machine.
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upper grinding heads. Among the six displacement sensors, two of them are stamped on the 
upper grinding spindle, two on the right grinding spindle, and the other two on the left grinding 
spindle. The measured results show that the maximum deformation of 0.01426 mm occurs at the 
bottom of the upper grinding head, which corresponds to an error of 8.85% relative to the FEM 
simulation results. This shows that the following FEA simulation results only slightly deviate 
from the actual machine’s behaviors. 

4.2.4	 Mode shape analysis

	 The dynamic responses consist of two phases: the natural vibration and the frequency 
response of the forced vibration. The mode shape analysis of natural vibration provides a clear 
insight into the effect of the bias of dynamic interaction on the interface between assemblies. 
Analyzing the types of mode shape of the natural vibration and investigating the fragile parts of 
the structure may suggest modifications to the dimensions to enhance the stiffness of the whole 
machine. 
	 Using Eqs. (3)–(6), we obtain the natural frequencies of the target grinding machine. The 
first 30 natural frequencies (M1–M30) are listed in Table 1. Also, the first eight mode shapes are 
shown in Fig. 4, which are used for conveniently analyzing the dynamic behaviors of the 
machine. It can be seen from the first six mode shapes that the column deforms back and forth at 
f = 35.9 Hz and f = 55.5 Hz, the ram deforms to the left and right at f = 83 Hz, the column twists 
at f = 88.6 Hz, and the head deforms at f = 107.6 Hz and f = 143.0 Hz. By examining the 
deformation of these six mode shapes frequently encountered in machining, it is clarified that 
the dimensions of the column, head ram, and head, and the types of their inner ribs are crucial 
factors determining the occurrence of dynamic error of a machine. We set the structure 
parameters used in Taguchi’s experiment as follows: A: ram length (350 and 300 mm), B: ram 
width (250 and 200 mm), C: vertical column length (855 and 955 mm), D: vertical column width 
(500 and 600 mm), E: inner structure (rib) type (+ and *), F: cross column height (925 and 

Fig. 3.	 (Color online) Displacement distribution of structure in Case 1.
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Fig. 4.	 (Color online) First eight mode shapes in Case 1. (a) M1 f = 35.9 Hz. (b) M2 f = 55.5 Hz. (c) M3 f = 83.0 Hz. 
(d) M4 f = 88.6 Hz. (e) M5 f = 107.6 Hz. (f) M6 f = 143.0 Hz. (g) M7 f = 146.0 Hz. (h) M8 f = 149.1 Hz.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Table 1
First 30 natural frequencies of the prototype machine ( f: frequency). 

Mode no. f (Hz) Mode no. f (Hz) Mode no. f (Hz)
M1 35.9 M11 188.9 M21 282.0
M2 55.5 M12 210.0 M22 286.0
M3 83.0 M13 217.3 M23 290.3
M4 88.6 M14 223.7 M24 293.9
M5 107.6 M15 228.1 M25 297.7
M6 143.0 M16 238.6 M26 311.3
M7 146.0 M17 254.3 M27 317.6
M8 149.1 M18 261.4 M28 323.3
M9 156.3 M19 275.6 M29 331.1
M10 170.2 M20 277.8 M30 334.6
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1025 mm), and G: cross column length (1776 and 1926 mm). Moreover, since the larger the first 
natural frequency the better, we choose it as one of the index parameters for optimization and 
denote it by fs.

4.2.5	 Dynamic behavior

	 A harmonic wave analysis is performed using Eqs. (7)–(10) to determine the dynamic 
response under the stimuli of periodically applied forces. The applied forces have the same 
magnitude as those in the static case (100 kgf) but with harmonic frequencies ranging from 0 to 
500 Hz. The calculated maximal deformations for different frequencies are shown in Table 2. It 
can be seen that two large maximal displacements, δ1 = 0.486 mm and δ2 = 0.378 mm, 
respectively appear at f1 = 35.9 Hz and f2 = 148.4 Hz. The external stimuli at these two 
frequencies would induce a large deformation or failure during machining. The dynamic 
stiffness is then obtained at the nose of the upper grinding head via the formula Kd = F/δ1 and the 
obtained result is shown in Fig. 5. The minimal dynamic stiffness is Kd = 6.17 × 102 kgf/μm at 

Table 2 
Maximal displacements for different frequencies in dynamic response of structure in Case 1.
f (Hz) δ (mm) f δ f δ f δ
1.59E−06 0.004 227.1 0.020 333.8 0.005 420.9 0.021

35.9 0.486 236.1 0.017 339.7 0.001 425.5 0.025
50.9 0.007 250.6 0.038 344.1 0.004 430.2 0.021
76.5 0.009 259.7 0.007 352.0 0.003 436.9 0.031
87.3 0.006 272.2 0.025 356.9 0.003 440.4 0.032

103.2 0.016 277.3 0.036 360.4 0.003 450.5 0.006
134.7 0.021 281.1 0.020 366.7 0.012 455.77 0.004
145.3 0.084 285.0 0.019 369.0 0.020 462.1 0.003
148.4 0.378 289.2 0.013 376.8 0.008 465.7 0.003
154.6 0.069 293.0 0.016 379.6 0.016 469.3 0.003
166.9 0.018 296.8 0.013 396.8 0.003 475.3 0.006
184.5 0.008 308.2 0.005 403.2 0.004 480.2 0.004
205.0 0.012 316.29 0.003 405.3 0.005 486.2 0.010
215.6 0.048 321.9 0.003 407.0 0.005 491.7 0.040
222.2 0.030 329.4 0.008 413.4 0.006 500.5 0.011

Fig. 5.	 (Color online) Minimal dynamic stiffness distribution of structure in Case 1.
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35.9 Hz. The strong and weak dynamic responses of the machine structure under external 
periodic stimuli can be clearly understood from this figure. Consequently, we may reasonably 
choose the minimal dynamic stiffness at the grinding head nose, denoted by Kd, as one of the 
index parameters for optimization.

4.3	 Determination of optimization parameters and Taguchi’s experiment 

4.3.1	 Shape parameter selection

	 By examining the static and dynamic conditions for which the target prototype machine is 
weak, we choose three index parameters as the decision factors for optimization: the minimal 
static stiffness at the nose Ks (the larger the better), the first natural frequency fs (the larger the 
better), and the minimal dynamic stiffness Kd (the larger the better). On the other hand, on 
account of possible dimension changes that induce large deformations occurring in the first six 
modal shapes, we select seven shape parameters, A, B, C, D, E, F, and G (described previously), 
as the controlled factors. Each controlled factor has two variation levels. To reduce the number 
of experiments, we establish Taguchi’s OA of L8 (27) so that only eight experiments are required, 
as shown in Table 3. 

4.3.2	 Optimization based on integral stiffness

	 FEA calculations are performed for the above eight cases with Ks, fs, and Kd adopted as the 
index parameters. The calculation results are shown in Table 4. 

4.4	 GRA for optimization

	 To find the rankings of optimality for the above eight cases, we first normalize the obtained 
data in Table 4 via Eq. (12) and the result is shown in Table 5. Then we calculate their grey 
differences via Eq. (14) and the result is shown in Table 6. Finally, we obtain the grey relational 
coefficients using Eq. (16), which are given in Table 7. The results reveal that if we consider only 
the static stiffness of the machine structure, Case 5 has the highest ranking with static stiffness 

Table 3
Taguchi’s orthogonal array of L8 (27).
Cases A B C D E F G
1 300 200 855 500 + 925 1776
2 300 200 855 600 * 1025 1926
3 300 250 955 500 + 1025 1926
4 300 250 955 600 * 925 1776
5 350 200 955 500 * 925 1926
6 350 200 955 600 + 1025 1776
7 350 250 855 500 * 1025 1776
8 350 250 855 600 + 925 1926
unit: mm
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Table 4 
FEA calculation results of Ks, fs, and Kd for cases 1 to 
8.
Cases Ks (kgf/μm) fs (Hz) Kd (kgf/μm)
1 12.340 35.900 0.356
2 12.868 38.713 1.003
3 12.826 37.983 0.941
4 13.132 40.042 1.168
5 13.152 41.235 1.035
6 12.830 37.631 0.901
7 12.596 37.113 0.512
8 12.204 33.641 0.347

Table 5
Normalization results of optimization parameters for 
cases 1 to 8. 
Cases Ks (kgf/μm) fs (Hz) Kd (kgf/μm)
1 0.938 0.871 0.305
2 0.978 0.939 0.859
3 0.975 0.921 0.806
4 0.998 0.971 1
5 1 1 0.886
6 0.976 0.913 0.771
7 0.958 0.900 0.438
8 0.928 0.816 0.297

Table 6 
Grey differences for cases 1–8.
Cases Ks (kgf/μm) fs (Hz) Kd (kgf/μm)
1 0.062 0.129 0.695
2 0.022 0.061 0.141
3 0.025 0.079 0.194
4 0.002 0.029 0
5 0 0 0.114
6 0.024 0.087 0.229
7 0.042 0.1 0.562
8 0.072 0.184 0.703
Grey difference 1 1 1

Table 7 
Grey relational grades for cases 1–8.

Cases Ks (kgf/μm) fs (Hz) Kd (kgf/μm) Grey relational 
coefficient

Grey relational
grade

1 0.89 0.795 0.418 0.701 7
2 0.958 0.891 0.78 0.876 3
3 0.952 0.864 0.72 0.845 4
4 0.996 0.945 1 0.980 1
5 1 1 0.814 0.938 2
6 0.954 0.852 0.686 0.831 5
7 0.922 0.833 0.471 0.742 6
8 0.874 0.731 0.416 0.673 8

Ks = 13.152 kgf/μm. Furthermore, if we consider the static stiffness (the larger the better) in 
conjunction with the first natural frequency (the larger the better) of the machine structure, 
Case 5 still has the highest ranking with Ks =13.152 kgf/μm and fs = 41.235 Hz. However, if we 
consider the static and dynamic stiffness simultaneously, Case 4 instead of Case 5 has the 
highest ranking with Ks =13.132 kgf/μm, fs = 40.042 Hz, and Kd = 1.168 kgf/μm. This 
phenomenon that a machine structure with good static stiffness does not necessarily have good 
dynamic stiffness is highly noteworthy. Note that the dynamic stiffness of the machine structure 
is the factor that most strongly determines the machining precision. Therefore, to design a good 
machine structure, the simultaneous consideration of its static and dynamic stiffness is 
important. 
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4.5	 Optimal structure, verification, and comparison

	 The obtained first 30 natural frequencies and the corresponding first eight mode shapes of 
the optimal machine structure in Case 4 are shown in Table 8 and Fig. 6, respectively. It can be 

Table 8  
First 30 natural frequencies of the optimal machine in Case 4.

Mode no. f (Hz) Mode no. f (Hz) Mode no. f (Hz)
M1 40.0 M11 206.6 M21 282.5
M2 60.5 M12 214.0 M22 289.2
M3 87.0 M13 222.1 M23 291.3
M4 91.0 M14 231.4 M24 294.5
M5 108.1 M15 236.6 M25 298.7
M6 145.8 M16 249.4 M26 305.2
M7 146.8 M17 252.3 M27 309.3
M8 150.6 M18 262.7 M28 311.5
M9 154.3 M19 266.2 M29 320.6
M10 170.5 M20 272.2 M30 336.1

Fig. 6.	 (Color online) First eight mode shapes in Case 4. (a) M1 f = 40.0 Hz. (b) M2 f = 60.5 Hz. (c) M3 f = 83.0 Hz. 
(d) M4 f = 91.0 Hz. (e) M5 f = 108.1 Hz. (f) M6 f = 145.8 Hz. 

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Fig. 6.	 (Color online) (Continued) First eight mode shapes in Case 4. (g) M7 f = 146.8Hz. (h) M8 f = 150.6Hz.

seen that the first mode shape occurs at 40 Hz, with forward and backward vibration; this 
frequency is about 1.11 times that in Case 1. In the frequently used cutting range of 0–3000 rpm 
(0–50 Hz), this specific frequency (40 Hz) still has a high possibility of inducing resonance. The 
machine user may make some adjustments accordingly, such as avoiding operation near this 
frequency. 
	 Furthermore, the maximal dynamic stiffness distribution of the machine structure in Case 4 
is obtained via FEA and its results are shown in Table 9. In the frequently used cutting range 
(0–500 Hz), two large displacements of 0.148 and 0.106 mm appear at 40.0 and 149.7 Hz, 
respectively. These two frequencies under external stimuli would cause a fatal error in 
machining. Compared with the corresponding values of the prototype in Case 1 (0.486 mm at 
35.9 Hz and 0.378 mm at 148.4 Hz) as well as those in the other six cases, the two peak values in 
Case 4 are much smaller. Among the eight cases, the best dynamic stiffness is found in Case 4. 
	 On the other hand, a verification experiment using displacement sensors is performed to 
examine the static stiffness of the obtained optimal structure of the CNC grinding machine in 
Case 4. The same experimental conditions are adopted as for Case 1. The measured maximal 
static deformation is 0.0143 mm and occurs at the bottom of the upper grinding head, which 
corresponds to an error of 8.47% relative to the simulation result (0.0132 mm). 
	 Furthermore, a comparison of the results of this study with those of a similar study for the 
same target machine is made as follows. In the previous study by Wang et al.,(28) the target CNC 
grinding machine based on the optimization of static stiffness exhibited good static behavior 
with a maximum static deformation of 0.0131 mm, while in this study, it exhibits slightly worse 
behavior with a maximum static deformation of 0.0143 mm, about 9% larger. In contrast, the 
optimal target structure in Ref. 28 showed a dynamic deformation of 0.486 mm at 35.9 Hz 
(similar to that of Case 1 in this study), while in this study, it exhibited better dynamic stiffness 
with a maximum deformation of 0.148 mm at 40 Hz, about 30% smaller. Note that under real 
cutting conditions, only the dynamic stiffness has a major influence on the final precision of 
cutting for a machine tool. Therefore, an optimal structure obtained by the consideration of both 
static and dynamic stiffness is a better choice. 
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5.	 Concluding Remarks 

	 In this study, we proposed a novel integral-stiffness-based method to efficiently and 
accurately explore the optimal structure of a CNC three-head grinding machine. Starting from a 
prototype structure designed on the basis of know-how, we examined its static and dynamic 
weaknesses and obtained possible changes of the structure’s dimensions for optimization. Then, 
with the adoption of Taguchi’s OA of L8 (27), which uses the static stiffness, first natural 
frequency, and dynamic stiffness as target factors, we performed eight FEA numerical 
experiments. Also, through GRA, it was found that Case 4 had the optimal integral stiffness 
(both static and dynamic stiffness) structure. Although Case 5 had the best static stiffness, it 
does not necessarily have the best final precision during machining. We proved that the dynamic 
behaviors of a machine’s structure are a significant factor that influences the final deformation 
during machining. Simultaneously considering the static and dynamic stiffness of the machine’s 
structure is a better and more accurate way to optimize the high-stiffness structure of CNC 
machine tools. 
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Table 9 
Maximal displacements for different frequencies in dynamic response of structure in Case 4.

f (Hz) δ (mm) f δ f δ f δ
1.59E−06 0.002 251.6 0.018 360.1 0.002 450.4 0.001

40.0 0.148 260.2 0.004 365.6 0.001 459.2 0.001
55.7 0.003 265.4 0.003 373.1 0.001 467.3 0.001
80.8 0.004 270.8 0.003 380.9 0.001 470.1 0.001
90.1 0.005 280.1 0.006 393.6 0.001 472.3 0.001

104.1 0.007 287.6 0.002 401.1 0.001 473.3 0.001
136.9 0.007 290.8 0.005 404.5 0.001 479.5 0.001
146.5 0.023 293.7 0.003 409.6 0.002 483.0 0.002
149.7 0.106 297.7 0.002 416.0 0.003 487.9 0.001
153.4 0.031 303.7 0.003 420.4 0.005 491.8 0.001
166.7 0.004 308.3 0.003 424.3 0.003 495.2 0.001
198.1 0.002 311.0 0.004 431.6 0.001 498.0 0.001
212.2 0.016 318.5 0.014 436.1 0.002 499.9 0.003
220.1 0.006 332.4 0.004 441.8 0.001 500.4 0.003
229.2 0.005 337.9 0.019 445.1 0.001 — —
235.4 0.002 345.4 0.004 447.2 0.001 — —
246.4 0.001 351.8 0.003 449.5 0.001 — —
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