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 This paper presents a teaching tool for schoolchildren to learn artificial intelligence (AI) 
technology through which a variety of banknotes can be recognized. This was done by first 
using	a	pretrained	YOLOv3	object	detection	model.	Secondly,	transfer	learning	was	conducted	
on the pretrained model using 11 collected banknotes, including US$, Euro, Japanese Yen, and 
NT$. The banknote detection model was experimentally validated to give an average precision 
(AP) of up to 99.09% if the threshold Intersection over Union (IoU)	is	not	less	than	0.8.	Once	
a banknote was successfully recognized, the face value and the country name thereon were 
displayed, and schoolchildren can access suggested websites, i.e., Wikipedia, Google Maps, and 
the Bank of Taiwan, to learn more about the exchange rate between currencies and the history 
and location of the country that issued the banknote. Consequently, schoolchildren can have fun 
using this tool and acquire a more a global outlook. Moreover, they may be motivated to become 
AI professionals in the future.

1. Introduction

 Given their rapid advances, artificial intelligence (AI) technologies have been widely applied 
and already affect our daily lives. In AI-related technologies, deep learning is a hot issue, and 
considerable progress has been made in addressing image recognition issues in computer vision.
(1–4) A clear advantage of a deep learning model is that significantly improved recognition 
accuracy and robustness can be achieved. Furthermore, an input image can be directly applied 
to the model without conventional preprocessing. 
 Deep-learning-based image recognition models have been developed on the basis of 
convolutional neural networks (CNNs). Representative models include AlexNet,(5) visual 
geometry group (VGG) Net,(6) GoogLeNet, also referred to as Inception,(7) and ResNet.(8) 
Essentially, later-developed models are upgrades or modified versions of VGG Net, Inception, 
and	ResNet.	Object	detection(9–16) and face recognition(17–19) are the most common techniques 
involved in image recognition tasks. 
 In an object detection task, it is necessary to first locate and then recognize specific objects 
in	 an	 image	 or	 a	 video.	 Object	 detection	 is	 an	 event	 in	 the	 ImageNet	 Large	 Scale	 Visual	
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Recognition Competition (ILSVRC), hosted by ImageNet.(20) Today, commonly used object 
detection models include Regions with CNN features (R-CNN),(9) Faster R-CNN,(10) Single 
Shot MultiBox Detector (SSD),(11,12)	 and	 You	 Only	 Look	 Once	 (YOLO).(13–15)	 The	 COCO	
dataset(21) can be trained to recognize up to 80 types of objects, including humans, vehicles, 
cats, and dogs, and can be widely applied to fields such as smart homes, smart security, smart 
traffic, and intelligent image analysis and retrieval.
 However, the well-established object detection techniques have a limitation, that is, only 
the objects in a pretrained model can be detected, such as the 80 types of objects in the 
COCO	dataset.	In	other	words,	transfer	learning	must	be	conducted	so	as	to	detect	objects	not	
contained	in	the	COCO	dataset.	In	this	manner,	object	detection	techniques	can	be	applied	to	a	
wide variety of disciplines.
 In light of this, we present in this paper a teaching tool for banknote detection, through 
which schoolchildren, especially those from seven to ten years old, can learn AI technology in 
a	 fun	way.	Once	a	banknote	 is	 successfully	 recognized,	 the	 face	value	and	 the	country	name	
are displayed instantly, and suggested websites, i.e., Wikipedia, Google Maps, and the Bank of 
Taiwan, are listed. Schoolchildren can access the listed websites to learn more about the country 
that issued the banknote, and consequently acquire a more global outlook. Hopefully, this tool 
will appeal to schoolchildren and encourage them to engage in the AI industry in the future. 
	 The	 presented	 AI-based	 teaching	 tool	 was	 developed	 using	 a	 pretrained	 YOLOv3	 object	
detection model.(15) Transfer learning was conducted on the model using a variety of collected 
banknotes. The teaching tool can be used by schoolchildren to access the internet for teaching 
purposes.	The	YOLOv3	model	 is	acknowledged	as	an	efficient	object	detection	model	with	a	
satisfactory mean average precision (mAP), a measure of object detection performance.(21,22) 
This	feature	gives	the	YOLOv3	model	a	clear	advantage	over	its	counterparts.	
	 This	 paper	 is	 outlined	 as	 follows.	 Section	 2	 refers	 to	 the	YOLOv3	model	 used	 for	 object	
detection, Sect. 3 details the operation of the presented AI-based teaching tool, Sect. 4 gives a 
discussion of experimental results, and Sect. 5 concludes the paper.

2. YOLOv3 Object Detection

	 YOLO,	 short	 for	 you	 only	 look	 once,	 is	 a	 real-time	 convolution-based	 object	 detection	
algorithm.	In	reality,	real-time	detection	can	be	carried	out	well	using	YOLO	but	at	the	cost	of	
an	acceptable	degradation	of	precision.	As	its	name	indicates,	YOLOv3	is	the	third	version	of	
YOLO(15)	and	has	a	high	speed.	Moreover,	as	experimentally	validated	in	Ref.	15,	YOLOv3-320	
has a slightly higher mAP and runs three times faster than SSD321. Major improvements in 
YOLOv3,	as	compared	with	earlier	versions,	are	detailed	as	follows.
	 Firstly,	YOLOv3	employs	Darknet-53	as	 the	backbone,(15) which is an upgraded version of 
Darknet-19	used	in	YOLOv2.	In	addition	to	more	layers	in	the	backbone,	ResNet	and	Feature	
Pyramid Networks (FPN) were introduced into Darknet-53 for the following reasons. Firstly, the 
vanishing gradient problem due to more layers in the backbone can be resolved using ResNet, 
and small objects can be well detected using the FPN structure, which was a major problem 
in	the	earlier	versions.	Similarly	to	the	earlier	versions,	YOLOv3	lacks	a	fully	connected	(FC)	
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layer, and consequently, there is no limitation on input image dimensions, except that they must 
be multiples of 32.
	 In	YOLOv3,	multiscale	detection	is	carried	out	using	FPN.	More	precisely,	multiscale	refers	
to 3-scale here. For example, three feature maps of sizes 13 × 13, 26 × 26, and 52 × 52 are 
employed to detect an input image of size 416 × 416. A small feature map is used to detect a 
large object, and vice versa. Moreover, three anchor boxes are employed for object detection 
in each layer, that is, a total of nine anchor boxes are used to detect nine bounding boxes. As 
a consequence, 13 × 13 × 3 + 26 × 26 × 3 + 52 × 52 × 3 = 10647 bounding boxes in total are 
required	in	this	case,	which	is	more	than	12	times	as	many	as	that	in	a	YOLOv2	counterpart.	
	 Object	detection	generates	two	quantities:	object	localization	and	classification.	The	former	
was referred to as the bounding box prediction in Ref. 15, which predicted the coordinates of the 
bounding boxes and the confidence scores of an object, and the latter was referred to as the class 
prediction therein. For training purposes, a loss function is defined as the sum of the loss of 
bounding box offsets, the loss of object confidence, and the loss of class prediction, formulated 
as

 Loss = Lbox + Lconf + Lcla,  (1)

where
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Here, Nb and Nc are the number of predicted bounding boxes and the number of types of 
recognizable objects, respectively. Nb = 10647 for an input image of size 416 × 416, and Nc = 80 
for	 the	 COCO	 dataset;	 λcoord and λnoobj are two constants defined in Ref. 15; σ is the sigmoid 
function; {{ }, , , , , ˆ̂ , , , , ˆ , ˆ obj

i x i y i w i h i i jt t t t O l } are all ground truth parameters; {{ }, , , , ,, ,  , ,  , ( )i x i y i w i h i o i jt t t t t p c } 
are	outcomes	predicted	by	YOLOv3.	Finally,	note	that	Lbox is expressed as the sum of squared 
error losses, while Lconf and Lcla are expressed as the binary cross-entropy loss.
 Next, Oi

obj ∈ {0, 1} is used to determine whether there exists an object in the ith bounding 
box. Oi

obj = 0 represents a negative case, while a value of 1 represents a positive case. Similarly, 
li,j ∈ {0, 1} is used to determine whether there exists an object of the jth type in the ith 
bounding box. li,j = 0 represents a negative case, while a value of 1 represents a positive case. 
σ(ti,o)	 is	a	confidence	score	predicted	by	YOLOv3,	and	is	used	to	indicate	 the	probability	 that	
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there is an object in the ith bounding box. pi(ci) is used to indicate the probability that it is an 
object of the jth type. Finally, {{ }, , , ,,  , ,  i x i y i w i ht t t t } and {{ }, , , , ˆ , , ,ˆ̂̂  i x i y i w i ht t t t{ }, , , ,ˆ, , ˆ ,  i x i y i w i ht t t t } are the coordinate 
offsets of the predicted and ground truth bounding boxes, respectively. The compensated 
coordinates of the bounding box are given by

 ( )x x xtb cσ= + , (5)

 ( )y y yb t cσ= + , (6)

 wt
w wb P e= , (7)

 ht
h hb P e= , (8)

where (bx, by) represents the coordinates of the centroid of the bounding box, (cx, cy) represents 
the offset between the top-left corner of an image and that of the top-left grid cell, (bw, bh) and 
(Pw, Ph) represent the widths and heights of the bounding and ground truth boxes, respectively.

3. Proposed System

	 Our	aim	was	to	develop	a	teaching	tool	for	schoolchildren	to	learn	AI-related	technologies.	
Schoolchildren are expected to have fun using the tool, become interested in AI technologies, 
and	may	even	become	more	interested	in	being	AI	professionals	in	the	future.	Once	a	banknote	
is successfully recognized, the face value and the country name thereon are listed immediately. 
Schoolchildren can access suggested websites, i.e., Wikipedia, Google Maps, and the Bank of 
Taiwan, for more information, e.g., the exchange rate between currencies and the history and 
location of the country that issued the banknote. Hopefully, this will help schoolchildren to 
acquire a more global outlook. 
 Illustrated in Fig. 1 is the flow of the AI-based banknote detection tool. As can be seen 
therein, an image is captured using a webcam as the first step. Subsequently, the captured 
image is input into an AI-based banknote detection model. The image, identified as a banknote, 
is framed and the information thereon, i.e., the value and country name, is then displayed. A 
number	 of	 suggested	websites,	 as	mentioned	 previously,	 are	 also	 listed	 for	 users.	Otherwise,	
the detection tool waits for the next input image. In this way, schoolchildren can familiarize 
themselves with the use of this AI-based teaching tool.
	 This	 work	 was	 developed	 using	 a	 pretrained	 YOLOv3	 model,	 whereon	 transfer	 learning	
was carried out. There were two tasks before conducting transfer learning. The first was to 
collect training data, that is, a variety of banknotes having different denominations and issued 
by different countries. The second was to label the collected training data, including bounding 
boxes and classifications.
 Table 1 lists the development environment in which the presented banknote detection 
system was developed. As can be seen therein, the codes were written in Python, and libraries 
including	Keras,	TensorFlow,	OpenCV,	and	numpy	were	used.	The	hardware	consists	of	a	PC,	a	
web camera, and a GeForce GTX 1060Ti graphics card.
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 Table 2 lists the collected training data, that is, a total of 11 banknotes, each including the 
obverse and reverse sides. Since the image on the obverse side is very different from that on the 
reverse side, there are 22 banknote images in this work, numbered 1–22, as shown below the “image 
number” field in Table 2. Finally, transfer training was conducted using the collected training 
data	in	the	pretrained	YOLOv3	model,	and	the	model	was	validated	using	the	testing	data.	Table	
3 gives all the numbered banknote images.

4. Experimental Results

 An object detection model not only needs to recognize an object, but also has to determine 
a bounding box thereof. Precision is used as a performance measure of a detection model and 
was tested for our teaching tool. As listed in the rightmost column of Table 2, each collected 
banknote image was assigned 20 items of testing data, that is, there were 440 pieces of testing 
data in total. For unbiased testing, no items of training data were reused as items of testing data.
 As its name indicates, the Intersection over Union (IoU) refers to the intersection area 
between two objects divided by the union area, expressed as

Fig.	1.	 Operation	flow	of	the	AI-based	teaching	tool.

Table 1
Development environment of AI-based teaching tool.
Programming 
language

Python

Library
Keras, TensorFlow, 
OpenCV,	numpy,	etc.

Detection model YOLOv3

Hardware
PC, web camera, graphics card 

(GeForce GTX 1060Ti)
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Table 2
Collected banknote images.
Banknote Total number 

of training data
Total number 
of testing dataCurrency Value Side Image number

NTD

100 + 1 214 20
– 2 214 20

500 + 3 248 20
– 4 248 20

1000 + 5 245 20
– 6 245 20

USD

5 + 7 214 20
– 8 214 20

20 + 9 228 20
– 10 228 20

50 + 11 238 20
– 12 238 20

EUR

5 + 13 242 20
– 14 242 20

10 + 15 217 20
– 16 217 20

20 + 17 216 20
– 18 216 20

100 + 19 242 20
– 20 242 20

JPY 1000 + 21 212 20
– 22 212 20

Total 5032 440
Note that “+” and “–” identify the obverse and reverse sides of a banknote, respectively.

 ( , ) A BIoU A B
A B
∩

=
∪

,  (9)

where A and B represent the predicted and ground truth bounding boxes, respectively. A high 
value of IoU indicates that there is a good match between A and B. Therefore, the precision 
was evaluated using IoU as a threshold. For example, IoU	was	set	to	0.5	in	the	PASCAL	VOC	
challenge.(22)

 The precision for the jth classification is defined as
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where Nc = 22 represents the number of classifications. TP(cj) is the number of true positives (TPs) 
in the recognition of the object of the jth type. TP means that the predicted object type matches 
the ground truth type and IoU	 is	 greater	 than	 a	 default	 threshold.	 Otherwise,	 the	 predicted	
outcome is classified as a false positive (FP).
 Table 4 lists the values of precision with IoU as a parameter. Note that 100% precision is 
achieved for all the images in the case of IoU ≥ 0.7. This observation also applies to the case of 
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IoU ≥ 0.8, except that 95% precision is obtained for images 6, 7, 17, and 21. As compared with 
the previous two cases, the precision plunges across all the images in the case of IoU ≥ 0.9. The 
precision in each case is averaged and listed in Table 5. As can be seen therein, there is poor 
average precision (AP) in the case of IoU ≥ 0.9, that is, AP = 61.36%. 

Table 3
Numbered banknote images.

Banknote image (image number)

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22)

Table 4
IoU dependence of the precision across banknote images.

Image Precision (%) Image Precision (%)
IoU	≥	0.7 IoU	≥	0.8 IoU	≥	0.9 IoU	≥	0.7 IoU	≥	0.8 IoU	≥	0.9

1 100 100 70 12 100 100 45
2 100 100 70 13 100 100 95
3 100 100 45 14 100 100 70
4 100 100 55 15 100 100 70
5 100 100 65 16 100 100 65
6 100 95 75 17 100 95 70
7 100 95 65 18 100 100 50
8 100 100 50 19 100 100 60
9 100 100 60 20 100 100 65

10 100 100 60 21 100 95 40
11 100 100 50 22 100 100 55
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 Figure 2 shows predicted and ground truth bounding boxes in red and green, respectively, 
for comparison purposes in each test case. The banknote images in Figs. 2(a) and 2(b) were 
detected with the highest and second highest values of IoU, respectively; in Figs. 2(c) and 2(d), 
they were detected with an IoU of approximately 0.9; in Figs. 2(e) and 2(f), they were detected 
with an IoU slightly higher than 0.8; and in Figs. 2(g) and 2(h), they were detected with an IoU 
below 0.8. The recognized currency, face value, and confidence score are also presented above 
the upper-left corner of the predicted bounding box in Figs. 2(a)–2(h).

Table 5
AP over banknote images
IoU threshold IoU	≥	0.7 IoU	≥	0.8 IoU	≥	0.9
AP (%) 100 99.09 61.36

Fig. 2. (Color online) Detected images using the presented banknote detection model. (a) Image 4, IoU = 0.9837. 
(b) Image 16, IoU = 0.9836. (c) Image 6, IoU = 0.9086. (d) Image 11, IoU = 0.9016. (e) Image 10, IoU = 0.8183. (f) 
Image 8, IoU = 0.8173. (g) Image 21, IoU = 0.7811. (h) Image 17, IoU = 0.7459.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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 There is a satisfactory match between the predicted and ground truth bounding boxes if IoU 
≥ 0.8, that is, an AP of up to 99.09%, as listed in Table 5. It must be stressed that the presented 
banknote detection model was developed as a teaching tool for schoolchildren and not as a 
counterfeit money detector. Therefore, an error in banknote recognition does not result in any 
loss. It is even possible that schoolchildren will be motivated to correct the error as the first step 
to becoming a young AI engineer.

5. Conclusions

 This paper presented an AI-based teaching tool for schoolchildren. A variety of banknotes 
can be well recognized using the teaching tool, through which schoolchildren can obtain hands-
on	experience	 in	AI	 technologies.	A	pretrained	YOLOv3	model	 for	object	detection	played	a	
key role in this tool. Transfer learning was conducted on the pretrained model using collected 
banknote images. The banknote detection model was experimentally validated to perform well 
if IoU ≥ 0.8, that is, an AP of up to 99.09%. Finally, the model was implemented as a teaching 
tool.
	 Once	 a	 banknote	 was	 successfully	 recognized,	 relevant	 websites,	 i.e.,	Wikipedia,	 Google	
Maps, and the Bank of Taiwan, were displayed instantly, and schoolchildren can access the 
websites to acquire a more global outlook through the recognized banknote, e.g., exchange 
rates between currencies and the history and location of the country that issued the banknote. 
Hopefully, this teaching tool will appeal to children and motivate them to become AI engineers 
in the future.
	 Furthermore,	a	more	efficient	model,	such	as	YOLOv4,	will	be	employed	in	the	near	future	
so as to upgrade the performance of banknote recognition. In addition, another interesting 
teaching tool for schoolchildren is also planned.
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