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	 This paper presents a teaching tool for schoolchildren to learn artificial intelligence (AI) 
technology through which a variety of banknotes can be recognized. This was done by first 
using a pretrained YOLOv3 object detection model. Secondly, transfer learning was conducted 
on the pretrained model using 11 collected banknotes, including US$, Euro, Japanese Yen, and 
NT$. The banknote detection model was experimentally validated to give an average precision 
(AP) of up to 99.09% if the threshold Intersection over Union (IoU) is not less than 0.8. Once 
a banknote was successfully recognized, the face value and the country name thereon were 
displayed, and schoolchildren can access suggested websites, i.e., Wikipedia, Google Maps, and 
the Bank of Taiwan, to learn more about the exchange rate between currencies and the history 
and location of the country that issued the banknote. Consequently, schoolchildren can have fun 
using this tool and acquire a more a global outlook. Moreover, they may be motivated to become 
AI professionals in the future.

1.	 Introduction

	 Given their rapid advances, artificial intelligence (AI) technologies have been widely applied 
and already affect our daily lives. In AI-related technologies, deep learning is a hot issue, and 
considerable progress has been made in addressing image recognition issues in computer vision.
(1–4) A clear advantage of a deep learning model is that significantly improved recognition 
accuracy and robustness can be achieved. Furthermore, an input image can be directly applied 
to the model without conventional preprocessing. 
	 Deep-learning-based image recognition models have been developed on the basis of 
convolutional neural networks (CNNs). Representative models include AlexNet,(5) visual 
geometry group (VGG) Net,(6) GoogLeNet, also referred to as Inception,(7) and ResNet.(8) 
Essentially, later-developed models are upgrades or modified versions of VGG Net, Inception, 
and ResNet. Object detection(9–16) and face recognition(17–19) are the most common techniques 
involved in image recognition tasks. 
	 In an object detection task, it is necessary to first locate and then recognize specific objects 
in an image or a video. Object detection is an event in the ImageNet Large Scale Visual 



1768	 Sensors and Materials, Vol. 33, No. 6 (2021)

Recognition Competition (ILSVRC), hosted by ImageNet.(20) Today, commonly used object 
detection models include Regions with CNN features (R-CNN),(9) Faster R-CNN,(10) Single 
Shot MultiBox Detector (SSD),(11,12) and You Only Look Once (YOLO).(13–15) The COCO 
dataset(21) can be trained to recognize up to 80 types of objects, including humans, vehicles, 
cats, and dogs, and can be widely applied to fields such as smart homes, smart security, smart 
traffic, and intelligent image analysis and retrieval.
	 However, the well-established object detection techniques have a limitation, that is, only 
the objects in a pretrained model can be detected, such as the 80 types of objects in the 
COCO dataset. In other words, transfer learning must be conducted so as to detect objects not 
contained in the COCO dataset. In this manner, object detection techniques can be applied to a 
wide variety of disciplines.
	 In light of this, we present in this paper a teaching tool for banknote detection, through 
which schoolchildren, especially those from seven to ten years old, can learn AI technology in 
a fun way. Once a banknote is successfully recognized, the face value and the country name 
are displayed instantly, and suggested websites, i.e., Wikipedia, Google Maps, and the Bank of 
Taiwan, are listed. Schoolchildren can access the listed websites to learn more about the country 
that issued the banknote, and consequently acquire a more global outlook. Hopefully, this tool 
will appeal to schoolchildren and encourage them to engage in the AI industry in the future. 
	 The presented AI-based teaching tool was developed using a pretrained YOLOv3 object 
detection model.(15) Transfer learning was conducted on the model using a variety of collected 
banknotes. The teaching tool can be used by schoolchildren to access the internet for teaching 
purposes. The YOLOv3 model is acknowledged as an efficient object detection model with a 
satisfactory mean average precision (mAP), a measure of object detection performance.(21,22) 
This feature gives the YOLOv3 model a clear advantage over its counterparts. 
	 This paper is outlined as follows. Section 2 refers to the YOLOv3 model used for object 
detection, Sect. 3 details the operation of the presented AI-based teaching tool, Sect. 4 gives a 
discussion of experimental results, and Sect. 5 concludes the paper.

2.	 YOLOv3 Object Detection

	 YOLO, short for you only look once, is a real-time convolution-based object detection 
algorithm. In reality, real-time detection can be carried out well using YOLO but at the cost of 
an acceptable degradation of precision. As its name indicates, YOLOv3 is the third version of 
YOLO(15) and has a high speed. Moreover, as experimentally validated in Ref. 15, YOLOv3-320 
has a slightly higher mAP and runs three times faster than SSD321. Major improvements in 
YOLOv3, as compared with earlier versions, are detailed as follows.
	 Firstly, YOLOv3 employs Darknet-53 as the backbone,(15) which is an upgraded version of 
Darknet-19 used in YOLOv2. In addition to more layers in the backbone, ResNet and Feature 
Pyramid Networks (FPN) were introduced into Darknet-53 for the following reasons. Firstly, the 
vanishing gradient problem due to more layers in the backbone can be resolved using ResNet, 
and small objects can be well detected using the FPN structure, which was a major problem 
in the earlier versions. Similarly to the earlier versions, YOLOv3 lacks a fully connected (FC) 
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layer, and consequently, there is no limitation on input image dimensions, except that they must 
be multiples of 32.
	 In YOLOv3, multiscale detection is carried out using FPN. More precisely, multiscale refers 
to 3-scale here. For example, three feature maps of sizes 13 × 13, 26 × 26, and 52 × 52 are 
employed to detect an input image of size 416 × 416. A small feature map is used to detect a 
large object, and vice versa. Moreover, three anchor boxes are employed for object detection 
in each layer, that is, a total of nine anchor boxes are used to detect nine bounding boxes. As 
a consequence, 13 × 13 × 3 + 26 × 26 × 3 + 52 × 52 × 3 = 10647 bounding boxes in total are 
required in this case, which is more than 12 times as many as that in a YOLOv2 counterpart. 
	 Object detection generates two quantities: object localization and classification. The former 
was referred to as the bounding box prediction in Ref. 15, which predicted the coordinates of the 
bounding boxes and the confidence scores of an object, and the latter was referred to as the class 
prediction therein. For training purposes, a loss function is defined as the sum of the loss of 
bounding box offsets, the loss of object confidence, and the loss of class prediction, formulated 
as

	 Loss = Lbox + Lconf + Lcla, 	 (1)
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Here, Nb and Nc are the number of predicted bounding boxes and the number of types of 
recognizable objects, respectively. Nb = 10647 for an input image of size 416 × 416, and Nc = 80 
for the COCO dataset; λcoord and λnoobj are two constants defined in Ref. 15; σ is the sigmoid 
function; {{ }, , , , , ˆ̂ , , , , ˆ , ˆ obj

i x i y i w i h i i jt t t t O l } are all ground truth parameters; {{ }, , , , ,, ,  , ,  , ( )i x i y i w i h i o i jt t t t t p c } 
are outcomes predicted by YOLOv3. Finally, note that Lbox is expressed as the sum of squared 
error losses, while Lconf and Lcla are expressed as the binary cross-entropy loss.
	 Next, Oi

obj ∈ {0, 1} is used to determine whether there exists an object in the ith bounding 
box. Oi

obj = 0 represents a negative case, while a value of 1 represents a positive case. Similarly, 
li,j ∈ {0, 1} is used to determine whether there exists an object of the jth type in the ith 
bounding box. li,j = 0 represents a negative case, while a value of 1 represents a positive case. 
σ(ti,o) is a confidence score predicted by YOLOv3, and is used to indicate the probability that 
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there is an object in the ith bounding box. pi(ci) is used to indicate the probability that it is an 
object of the jth type. Finally, {{ }, , , ,,  , ,  i x i y i w i ht t t t } and {{ }, , , , ˆ , , ,ˆ̂̂  i x i y i w i ht t t t{ }, , , ,ˆ, , ˆ ,  i x i y i w i ht t t t } are the coordinate 
offsets of the predicted and ground truth bounding boxes, respectively. The compensated 
coordinates of the bounding box are given by

	 ( )x x xtb cσ= + ,	 (5)

	 ( )y y yb t cσ= + ,	 (6)

	 wt
w wb P e= ,	 (7)

	 ht
h hb P e= ,	 (8)

where (bx, by) represents the coordinates of the centroid of the bounding box, (cx, cy) represents 
the offset between the top-left corner of an image and that of the top-left grid cell, (bw, bh) and 
(Pw, Ph) represent the widths and heights of the bounding and ground truth boxes, respectively.

3.	 Proposed System

	 Our aim was to develop a teaching tool for schoolchildren to learn AI-related technologies. 
Schoolchildren are expected to have fun using the tool, become interested in AI technologies, 
and may even become more interested in being AI professionals in the future. Once a banknote 
is successfully recognized, the face value and the country name thereon are listed immediately. 
Schoolchildren can access suggested websites, i.e., Wikipedia, Google Maps, and the Bank of 
Taiwan, for more information, e.g., the exchange rate between currencies and the history and 
location of the country that issued the banknote. Hopefully, this will help schoolchildren to 
acquire a more global outlook. 
	 Illustrated in Fig. 1 is the flow of the AI-based banknote detection tool. As can be seen 
therein, an image is captured using a webcam as the first step. Subsequently, the captured 
image is input into an AI-based banknote detection model. The image, identified as a banknote, 
is framed and the information thereon, i.e., the value and country name, is then displayed. A 
number of suggested websites, as mentioned previously, are also listed for users. Otherwise, 
the detection tool waits for the next input image. In this way, schoolchildren can familiarize 
themselves with the use of this AI-based teaching tool.
	 This work was developed using a pretrained YOLOv3 model, whereon transfer learning 
was carried out. There were two tasks before conducting transfer learning. The first was to 
collect training data, that is, a variety of banknotes having different denominations and issued 
by different countries. The second was to label the collected training data, including bounding 
boxes and classifications.
	 Table 1 lists the development environment in which the presented banknote detection 
system was developed. As can be seen therein, the codes were written in Python, and libraries 
including Keras, TensorFlow, OpenCV, and numpy were used. The hardware consists of a PC, a 
web camera, and a GeForce GTX 1060Ti graphics card.
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	 Table 2 lists the collected training data, that is, a total of 11 banknotes, each including the 
obverse and reverse sides. Since the image on the obverse side is very different from that on the 
reverse side, there are 22 banknote images in this work, numbered 1–22, as shown below the “image 
number” field in Table 2. Finally, transfer training was conducted using the collected training 
data in the pretrained YOLOv3 model, and the model was validated using the testing data. Table 
3 gives all the numbered banknote images.

4.	 Experimental Results

	 An object detection model not only needs to recognize an object, but also has to determine 
a bounding box thereof. Precision is used as a performance measure of a detection model and 
was tested for our teaching tool. As listed in the rightmost column of Table 2, each collected 
banknote image was assigned 20 items of testing data, that is, there were 440 pieces of testing 
data in total. For unbiased testing, no items of training data were reused as items of testing data.
	 As its name indicates, the Intersection over Union (IoU) refers to the intersection area 
between two objects divided by the union area, expressed as

Fig. 1.	 Operation flow of the AI-based teaching tool.

Table 1
Development environment of AI-based teaching tool.
Programming 
language

Python

Library
Keras, TensorFlow, 
OpenCV, numpy, etc.

Detection model YOLOv3

Hardware
PC, web camera, graphics card 

(GeForce GTX 1060Ti)
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Table 2
Collected banknote images.
Banknote Total number 

of training data
Total number 
of testing dataCurrency Value Side Image number

NTD

100 + 1 214 20
– 2 214 20

500 + 3 248 20
– 4 248 20

1000 + 5 245 20
– 6 245 20

USD

5 + 7 214 20
– 8 214 20

20 + 9 228 20
– 10 228 20

50 + 11 238 20
– 12 238 20

EUR

5 + 13 242 20
– 14 242 20

10 + 15 217 20
– 16 217 20

20 + 17 216 20
– 18 216 20

100 + 19 242 20
– 20 242 20

JPY 1000 + 21 212 20
– 22 212 20

Total 5032 440
Note that “+” and “–” identify the obverse and reverse sides of a banknote, respectively.

	 ( , ) A BIoU A B
A B
∩

=
∪

, 	 (9)

where A and B represent the predicted and ground truth bounding boxes, respectively. A high 
value of IoU indicates that there is a good match between A and B. Therefore, the precision 
was evaluated using IoU as a threshold. For example, IoU was set to 0.5 in the PASCAL VOC 
challenge.(22)

	 The precision for the jth classification is defined as
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( )
( ) (
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)

, j
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j j
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= ≤ ≤

+
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where Nc = 22 represents the number of classifications. TP(cj) is the number of true positives (TPs) 
in the recognition of the object of the jth type. TP means that the predicted object type matches 
the ground truth type and IoU is greater than a default threshold. Otherwise, the predicted 
outcome is classified as a false positive (FP).
	 Table 4 lists the values of precision with IoU as a parameter. Note that 100% precision is 
achieved for all the images in the case of IoU ≥ 0.7. This observation also applies to the case of 
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IoU ≥ 0.8, except that 95% precision is obtained for images 6, 7, 17, and 21. As compared with 
the previous two cases, the precision plunges across all the images in the case of IoU ≥ 0.9. The 
precision in each case is averaged and listed in Table 5. As can be seen therein, there is poor 
average precision (AP) in the case of IoU ≥ 0.9, that is, AP = 61.36%. 

Table 3
Numbered banknote images.

Banknote image (image number)

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22)

Table 4
IoU dependence of the precision across banknote images.

Image Precision (%) Image Precision (%)
IoU ≥ 0.7 IoU ≥ 0.8 IoU ≥ 0.9 IoU ≥ 0.7 IoU ≥ 0.8 IoU ≥ 0.9

1 100 100 70 12 100 100 45
2 100 100 70 13 100 100 95
3 100 100 45 14 100 100 70
4 100 100 55 15 100 100 70
5 100 100 65 16 100 100 65
6 100 95 75 17 100 95 70
7 100 95 65 18 100 100 50
8 100 100 50 19 100 100 60
9 100 100 60 20 100 100 65

10 100 100 60 21 100 95 40
11 100 100 50 22 100 100 55
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	 Figure 2 shows predicted and ground truth bounding boxes in red and green, respectively, 
for comparison purposes in each test case. The banknote images in Figs. 2(a) and 2(b) were 
detected with the highest and second highest values of IoU, respectively; in Figs. 2(c) and 2(d), 
they were detected with an IoU of approximately 0.9; in Figs. 2(e) and 2(f), they were detected 
with an IoU slightly higher than 0.8; and in Figs. 2(g) and 2(h), they were detected with an IoU 
below 0.8. The recognized currency, face value, and confidence score are also presented above 
the upper-left corner of the predicted bounding box in Figs. 2(a)–2(h).

Table 5
AP over banknote images
IoU threshold IoU ≥ 0.7 IoU ≥ 0.8 IoU ≥ 0.9
AP (%) 100 99.09 61.36

Fig. 2.	 (Color online) Detected images using the presented banknote detection model. (a) Image 4, IoU = 0.9837.	
(b) Image 16, IoU = 0.9836. (c) Image 6, IoU = 0.9086. (d) Image 11, IoU = 0.9016. (e) Image 10, IoU = 0.8183. (f) 
Image 8, IoU = 0.8173. (g) Image 21, IoU = 0.7811. (h) Image 17, IoU = 0.7459.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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	 There is a satisfactory match between the predicted and ground truth bounding boxes if IoU 
≥ 0.8, that is, an AP of up to 99.09%, as listed in Table 5. It must be stressed that the presented 
banknote detection model was developed as a teaching tool for schoolchildren and not as a 
counterfeit money detector. Therefore, an error in banknote recognition does not result in any 
loss. It is even possible that schoolchildren will be motivated to correct the error as the first step 
to becoming a young AI engineer.

5.	 Conclusions

	 This paper presented an AI-based teaching tool for schoolchildren. A variety of banknotes 
can be well recognized using the teaching tool, through which schoolchildren can obtain hands-
on experience in AI technologies. A pretrained YOLOv3 model for object detection played a 
key role in this tool. Transfer learning was conducted on the pretrained model using collected 
banknote images. The banknote detection model was experimentally validated to perform well 
if IoU ≥ 0.8, that is, an AP of up to 99.09%. Finally, the model was implemented as a teaching 
tool.
	 Once a banknote was successfully recognized, relevant websites, i.e., Wikipedia, Google 
Maps, and the Bank of Taiwan, were displayed instantly, and schoolchildren can access the 
websites to acquire a more global outlook through the recognized banknote, e.g., exchange 
rates between currencies and the history and location of the country that issued the banknote. 
Hopefully, this teaching tool will appeal to children and motivate them to become AI engineers 
in the future.
	 Furthermore, a more efficient model, such as YOLOv4, will be employed in the near future 
so as to upgrade the performance of banknote recognition. In addition, another interesting 
teaching tool for schoolchildren is also planned.
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