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	 Focus on the development of assistive devices for visually impaired and blind people 
(VIBs) to provide assistance in their safety and mobility has increased, but making such 
devices portable is still a challenge. We propose a system for localized obstacle avoidance 
with a haptic-based interface for VIBs implemented using a robotic operating system (ROS) 
to improve the obstacle detection of existing assistive devices. With a depth camera sensor, 
an obstacle localization algorithm was developed utilizing the ROS framework to identify 
key regions to detect head-level, left/right torso-level, and left/right ground-level obstacles. 
The proposed wearable device provides a discernible array of haptic feedback to convey the 
perceived locations of obstacles. The system was tested by blindfolded volunteers to determine 
the accuracy in determining object locations in various environments. Experimental results 
showed the consistency of the system across different setups. The obstacle detection algorithm 
was optimized and evaluated to discriminate noises and concurrently detect smaller obstacles, 
thus making detection more robust. Subsequently, the Eulerian video magnification method was 
used to determine the level of vibration isolation for a prototype.

1.	 Introduction

	 The increasing number of visually impaired and blind people (VIBs) has been highlighted 
by international organizations including the World Health Organization (WHO).(1,2) It was 
estimated that there were more than 200 million people with various levels of visual impairment 
in 2020, and it was projected that by 2050, the number of people with moderate to severe visual 
impairment will reach 550 million people.(3) Those affected by visual impairment experience a 
drop in the quality of life due to limitations in activities they can do and the locations they are 
able to go to.(4) Hence, assistive technologies have been developed by researchers and industry 
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to alleviate the struggles of VIBs. Currently, there are numerous solutions that try to tackle 
this problem, from traditional white canes used like an extended arm(5) to wearable ultrasonic 
sensors that detect obstacle proximity(6) and implants that stimulate the visual cortex to invoke 
“sight” in VIBs.(7) 
	 However, most recently proposed assistive devices for the mobility of VIBs require multiple 
sensors, and their accuracy is greatly influenced by external conditions, the limited interface 
with the user, the inability to detect obstacles, especially at head level, and insufficient 
portability.(8–11) In this paper, we used the robotic operating system (ROS) framework to 
develop a wearable assistive device for VIBs, which provides localized obstacle detection with a 
haptic-based interface to address the major gaps existing in assistive devices for the mobility of 
VIBs.	

2.	 Materials and Methods

	 We implemented the obstacle detection and localization system to enable safe mobility for 
VIBs through the early detection of obstacles in their paths. A traditional device used by VIBs 
in their travels is the white cane,(12–14) which can only detect obstacles on the ground and cannot 
detect obstacles such as hanging branches and other overhead obstacles. Although a sensor can 
be attached to a white cane to detect head-level obstructions, only binary data, i.e., an obstacle 
existing/not existing around the sensor, can be obtained without any location data.(15) Hence, to 
overcome the limitations of existing devices, we implemented a region-based single sensor for 
obstacle detection, which provides more information to the user. A haptic feedback mechanism 
was developed for the sensor that provided one motor for each of the different regions of interest 
around the user.

2.1	 Proposed system architecture

	 The ROS framework was used to develop the proposed system architecture. The ROS 
framework is a common environment in the field of robotics that is used for the development 
of scalable applications. It enables different programs to run simultaneously even when using 
different programming languages. It is also convenient for integrating these programs into 
a single architecture because it uses a message-passing type of communication, wherein a 
node publishes a language-neutral variable on a topic for use in any other node within the 
architecture. This message-passing type of communication allows the ROS framework to be a 
multilanguage architecture.(16,17) The proposed architecture using the ROS framework was run 
on a Raspberry Pi 4 (RPi4) embedded system. The researchers made use of Ubiquity Robot 
OS, which runs on Ubuntu 16.04-based images and has an ROS pre-installed. Most of the 
nodes were developed using Python language and made use of both the ROS and Python 2.7 
dependencies. Two ROS nodes were utilized for the system to implement the system workflow, 
namely, the depth image acquisition node and the obstacle localization node.	
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2.2	 Depth image acquisition

	 The system made use of an Intel RealSense D435i depth camera (Intel Corporation, 
California, U.S.A.) for its visual inputs. This camera enables the RGB and depth streams to be 
used in the different modules of the device. The depth information was obtained by using a dot 
projector and two infrared cameras at different positions, and the concept of triangulation was 
applied to calculate the depth.(18) The value obtained by the depth sensor is the depth value, not 
the range. Hence, the depth pixel value is a measurement from the parallel plane of the viewer 
and not the absolute range.  For the proposed system, we made use of the librealsense package 
developed by the ROS organization for rapid integration of the depth camera with the ROS 
environment.

2.3	 Obstacle localization

	 The depth image captured by the sensor is pre-processed by applying a median filter to 
eliminate salt-and-pepper noise in the raw depth image stream. Then it is divided into five 
regions, namely, the left ground, right ground, left torso, right torso, and head levels, to cover the 
regions in which the user may encounter obstacles. The ground levels are covered by the white 
cane, while the upper levels correspond to regions where there may be suspended obstacles to 
the side of the user.(15) The left and right regions for the torso and ground levels allow the user to 
react to obstacles on one side by moving in the opposite direction. The region setup within the 
depth frame is shown in Fig. 1. The obstacle detection algorithm detects not only the presence 
of obstacles in each region but also the distance between the user and obstacles. This is done by 
extracting the fifth percentile of the depth values for each pixel in a region. 

2.4	 Haptic interface

	 The implementation of the haptic interface is portrayed in Fig. 2, wherein each region is 
represented by a specific haptic motor embedded on a haptic lace. Martinez et al. found that 

(a) (b)

Fig. 1.	 (Color online) Obstacle detection designed to provide the user with (a) depth image perceived by Intel 
RealSense and (b) region assignment for obstacle detection along the user’s path.
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a haptic interface for mobility information is more efficient than using an auditory system, 
since the former can also be used as other interfaces such as for communications, textual 
notifications, etc.(19) The GPIO pins of the RPi4 were used to trigger the controls for the haptic 
motors based on the output of the localization algorithm using pulse-width modulation (PWM) 
signals. A stronger vibration is felt whenever an obstacle is closer, and this is achieved by 
changing the operating voltage of each motor through the PWM signal.

3.	 Results and Discussion

3.1	 System component evaluation
	
	 The accuracy of the Intel RealSense D435i depth readings was tested for different lighting 
conditions and distances to determine their reliability and whether a recalibration was required. 
The developed obstacle localization algorithm was evaluated on many distinct types of 
obstacles. Figure 3 shows a sample test input and the result of the algorithm, wherein Fig. 3(a) is 
a pseudo-colored plot of a depth frame in a region with a 1 m obstacle present in the frame and 
Fig. 3(b) shows a histogram of the input depth image, where the red line indicates the result of 
the algorithm. Subsequently, the results showed accurate distance measurement of the obstacle 
present for each region. For each scenario, 30 depth readings were accumulated per combination 
of distance and identified lighting condition, with the average shown in Table 1. Data on the 
different scenarios (distances and lighting conditions) showed results very close to the ground 
truth, demonstrating that the sensor is sufficiently accurate to be integrated with the proposed 
system without any recalibration.
	 A prototype of the developed system was developed, as shown in Fig. 4(a), with the location 
of the motor marked with a cross, and it was evaluated to verify the vibration isolation of 
each motor from the other parts of the prototype. The Eulerian video magnification technique 
developed by Wu et al. was utilized to visually detect the location and spread of vibration of 
each haptic motor in the prototype. The technique basically enhances the small vibrations in a 

Fig. 2.	 (Color online) Haptic interface of the proposed system. (a) Placement of vibration motors on the user’s 
body and (b) developed haptic hardware.

(a) (b)
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Fig. 3.	 (Color online) Obstacle localization results. (a) Depth frame input with 1 m obstacle and (b) histogram of 
the depth image, where the red line shows the distance of the detected obstacle.

(a) (b)

Table 1 
Average readings of depth sensor for different lighting conditions and distances.

Distance (m)
Ground truth 1.0 1.5 2.0 2.5 3.0

Lighting
conditions

Indoor
(≈450 lux) 1.000 1.500 2.005 2.500 3.034

Outdoor

Morning
(≈14000 lux) 1.002 1.501 1.998 2.503 3.006

Midday
(≈20000+ lux) 1.007 1.503 2.015 2.505 3.020

Afternoon
(≈17500 lux) 1.004 1.501 2.040 2.504 2.997

Evening
(≈0 lux) 1.002 1.502 2.001 2.510 3.009

Cloudy
(≈12500 lux) 1.003 1.502 2.005 2.501 3.005

Overall mean 1.003 1.501 2.011 2.504 3.012

Fig. 4.	 (Color online) Vibration isolation test of the prototype using Eulerian video magnification. (a) System 
prototype, (b) pseudo-colored image of the vibration intensity in the setup, and (c) 3D graph of the accumulated per 
pixel intensity differences of the magnified and original videos. 

(a) (b) (c)

video stream, which are originally indistinguishable by the naked eye, through the application 
of spatial decomposition, temporal filtering, and amplification of the frames in the video stream.(20) 
A 20 s video of the prototype with the right ground motor turned on was recorded at 240 fps 
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to serve as input for the Eulerian video magnification method with the  magnification set to 
50. A per-frame comparison of the resulting magnified and original videos was done through 
calculation of the per-pixel grey level value differences of each frame. Figure 4(b) shows a 
pseudo-colored representation of the accumulated differences of the magnified and original 
videos and Fig. 4(c) shows a graph of the magnitude of the accumulated differences. According 
to these results, the prototype was clearly able to isolate the motor vibration relatively near to 
the location of the motor. This will allow the effective transfer of information about the obstacle 
detected by the system to the VIB user. 

3.2	 Preliminary user testing
	
	 An initial user evaluation of the system was conducted with 10 volunteers, five males 
and five females, with ages of 19–28. They were all normally sighted individuals who were 
blindfolded to conduct the test. It is important to note that we conducted minimal training of 
the test participants on the basic user instructions of the prototype prior to the evaluation. The 
evaluation has two main parts: identification of every pattern and combination of the haptic 
motors, and navigation in an obstacle course with different types of obstacles as shown in 
Fig. 5(a). The haptic implementation patterns and combinations are detailed in Table 2 and 

Fig. 5.	 (Color online) Experimental setup. (a) Actual experimental setup and (b) map of obstacle course.  

(a) (b)

Table 2 
Interpretation of vibration patterns.
Vibration pattern no. Active vibration motors Region assignment Interpretation of obstacle detected
1 Right chest 4 Right ground
2 Right shoulder 2 Right torso 
3 Nape 1 Head level 
4 Left shoulder 3 Left torso
5 Left ground 5 Left ground
6 All 1, 2, 3, 4, 5 Full body obstruction
7 Right shoulder and right chest 2, 4  Full right body obstruction
8 Left shoulder and left chest 3, 5  Full left body obstruction
9 Right chest and left chest 4, 5 Full ground obstruction
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the researchers performed a 30-item test on the blindfolded volunteers on vibration pattern 
comprehension. For the second experiment, as seen in Fig. 5(b), the black ellipse is the starting 
point and the pale ellipse is the end point. Although there were several obstacles in the path, it 
was expected that the participant would be able to navigate around the obstacles and reach the 
intended destination. The participant moved forward by following the sound of the beacon at 
the finish point. For this experiment, the participant wore the prototype of the haptic lace and 
attempted to follow navigational instructions communicated through vibrations, moving away 
from obstacles perceived through vibration patterns by stepping to the left or right to navigate 
around them or through touching an obstacle in the head region to safely go under it.
	 Table 3 shows the results of the recorded 30-item test on vibration pattern comprehension. 
It shows that the users were able to perceive the correct location of the obstacle with an average 
accuracy of 85% and a reaction time of 2.28 s. Vibration 3, which activates the vibration motor 
in the user’s nape, showed the highest accuracy and had the quickest response time. This may 
be because of the sensitivity of the nape area, which can easily be distinguished from the 
other locations of the body where the vibration motors are placed. Vibration 9, which activates 
vibration motors located on the right and left chest areas, had the slowest reaction time, and 
this may be due to the participants being extra careful in determining whether the vibration 
was from just one of the chest areas or both. On average, the vibration patterns involving 
the activation of multiple vibration motors (Vibrations 6, 7, 8, and 9) were less accurate than 
those involving the activation of a single vibration motor. This is because all the participants 
had minimal training on using the prototype prior to the experimentation; thus, most of the 
participants tended to focus on the region where they felt the strongest vibration and could not 
always perceive other vibrating motors. However, as the participants got used to the device, it 
was observed that their comprehension of each vibration pattern combination improved, which 
is supported by the results in the subsequent experiment involving obstacle course navigation.  
In the obstacle course navigation, the system was able to accurately detect the obstacles in the 
course and effectively communicate them to the test participants through the haptic lace. Given 
the overall satisfactory response time of all participants in the first test, they found it easy to 
react to any obstacle by immediately stopping, followed by comprehension of the vibration 
patterns and necessary adjustments to navigate around all types of obstacles.

Table 3
Average correct vibration recognition and average response time to vibration patterns.
Vibration pattern Average correct answers (%) Average reaction time (s)
Vibration 1 88.9 2.51
Vibration 2 80.0 2.38
Vibration 3 100.0 1.87
Vibration 4 86.7 2.49
Vibration 5 93.0 2.49
Vibration 6 88.9 1.93
Vibration 7 59.3 2.25
Vibration 8 73.3 2.24
Vibration 9 81.5 2.79
Overall 85.0 2.28
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4.	 Conclusions

	 Existing assistive devices to improve the safety and mobility of VIBs still have limitations. 
The requirement of multiple sensors, the degree of accuracy, the limited user interface, the 
detection of types of obstacles, especially head-level obstacles, and portability are several 
aspects in which related assistive technologies are still unsatisfactory. Thus, there is still a 
need for improvements and innovations in these areas through the integration of state-of-the-
art technologies. We developed a wearable assistive device that addresses the above-mentioned 
limitations and presents a viable solution through the application of modern technologies. This 
was achieved through implementing an ROS-based system architecture on a wearable assistive 
device that can localize different types of obstacles through region-based obstacle detection with 
an intuitive haptic interface. The reliability of the proposed system was evaluated by conducting 
multiple system component assessments. The depth camera sensor showed high distance-
reading accuracy, not only for different distances but also for different lighting conditions. 
The localization algorithm was also proven to be robust through testing with different types of 
obstacles. The haptic interface of the prototype was also assessed to determine the degree of 
motor vibration isolation using the Eulerian video magnification method, with results showing 
very well isolated vibration. After obtaining these promising results for the system, initial user 
testing was conducted on 10 blindfolded participants. An average accuracy of 85% was obtained 
for the perception of different vibration patterns and combinations with a mean response 
time of 2.28 s, and all participants were easily able to complete an obstacle course navigation 
task relatively quickly. The results indicate not only the reliability of the system but also its 
comprehensiveness, making it easy to use. Further evaluation was planned with actual VIB 
users to further improve the system, which has been delayed owing to the current COVID-19 
pandemic. 
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