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 Probing biomedical materials with multiple wavelengths can not only obtain an in-depth 
understanding of the detected biomedical materials but also differentiate the materials. 
Biomedical materials have different optical properties (e.g., absorption and induction) for 
different wavelengths. Therefore, to achieve this purpose, we present in this study our 
experimental results on fabricating portable biomedical sensing devices. In this research phase, 
we assembled two types of system. One system used light sources with multiple wavelengths 
and photodetectors detecting these wavelengths, with which we preliminarily tested the 
absorbance of glucose solutions with different concentrations. The other was an Arduino-based 
glucose sensing system.

1. Introduction

 Different strategies, e.g., electrical-based and optical-based measurements, have been 
proposed for detecting biomedical materials. Optical detection utilizes the optical properties 
(e.g., absorption) of detected biomedical materials. Biomedical material detection is of increasing 
importance and has a wide range of applications, e.g., pathological examination, industrial 
chemical detection, and personal physiological monitoring.(1,2) For instance, as shown in Fig. 
1(a), hemoglobin exhibits different optical absorption characteristics(3) for the oxy and deoxy 
states. Compared with the deoxy-hemoglobin state (deoxy-hemoglobin, Hb), oxy-hemoglobin 
(hemoglobin bound to oxygen, HbO2) has stronger absorbance in the near-infrared regime 
(wavelengths longer than ~800 nm) but weaker absorbance between 600 and 800 nm. Both show 
similar absorbances for wavelengths shorter than ~600 nm. Therefore, probing hemoglobin with 
multiple wavelengths can differentiate its state. 
 Glucose has stronger absorption than water in some near-infrared wavelength ranges, e.g., 
900–1000 nm [Fig. 1(b)];(4–6) thus, these ranges can be used for sensing glucose. Conventional 
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optical-based measurements typically use a single or single-band wavelength light source and a 
photodetector, which will limit the capability to differentiate biomedical materials. For example, 
both oxy-hemoglobin and deoxy-hemoglobin absorb light in the range of 900–1000 nm, although 
oxy-hemoglobin has stronger absorption. Hence, for a mixture of oxy-hemoglobin and deoxy-
hemoglobin, it is difficult to quantitatively extract the absorption of each component using a 
single or single-band wavelength. However, it is possible to resolve this issue by using multiple 
(band) wavelengths. In addition to detectability, portability is another consideration for modern 
biomedical sensing systems. Ideally, a sensing system can be integrated as a chip. 
 
2. Experiments

 In this study, we present our preliminary results of fabricating a portable multiple-wavelength 
biomedical sensing system. In this phase, we performed preliminary tests on glucose solutions 
with different concentrations. The results showed good linearity of the absorbance with the 

Fig. 1. (Color online) (a) Molar extinction coefficients of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb).(3) 
(b) Absorption spectrum of glucose.(4)

(a)

(b)
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glucose concentration. We also measured the absorbance using a broadband white light source 
and a spectrometer, which also exhibited good linearity with the glucose concentration but had a 
different slope from that of the multiple-wavelength sensing system. The cause of the difference 
in slope is still under investigation but may be related to the difference in the optical design. 
 Figure 2(a) shows a schematic of the preliminary design of our multiple-wavelength 
biomedical sensing system. The light source, located at the top, is composed of a multiple-
wavelength LED array with emission colors of blue, green, red, and near infrared. Their 
emission spectra are plotted in Fig. 3(a). The bottom of the system comprises a detector array, 
where the photodetectors denoted as B, G, R, and IR have a response range and peak wavelength 
of 400–540 and 460 nm, 480–600 and 540 nm, 590–720 and 660 nm, and 880–1050 and 940 
nm, respectively, which were obtained from the detector datasheets and are replotted in Fig. 3(b). 
Thus, the response ranges of the individual photodetectors basically match the emission spectra 
of the corresponding LEDs. Both the LED and photodetector arrays are controlled by an Arduino 
circuit board (model Arduino UNO Rev3). The LEDs are turned on for 0.5 s in the sequence of 
near infrared, red, green, and blue, and only the single corresponding photodetector is read 
while the LED is on. The sample, which is glucose solution in this study, is placed between the 
LED and photodetector arrays. The distance d between the sample and photodetector is set to 7 
or 4.2 cm to examine the effect of the optical design, as discussed later. 
 In addition, we fabricated another Arduino-based system, as shown in Fig. 2(b), to verify the 
performance of the multiple-wavelength biomedical sensing system. The multiple-wavelength 
LED array was replaced by a broadband light source (tungsten lamp) with emission light coupled 
into a fiber. After passing through the sample, the light was collected by a fiber through a 
collimated lens, then sent to an Ocean Optics spectrometer. 
 To preliminarily test the proposed multiple-wavelength biomedical sensing system, glucose 
solutions of different concentrations were used as samples, which were prepared by adding 
different weights of glucose to a fixed volume (20 ml) of deionized (DI) water. The pure DI 
water was used as a reference sample. The optical density (OD) of the glucose solution was 

Fig. 2. (Color online) (a) Schematic of the preliminary design of our multiple-wavelength biomedical sensing 
system. (b) Another biomedical system with a white light source and a spectrometer.
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calculated using OD = logI0 − logI, where I0 and I are the transmitted light intensities of the DI 
water and glucose solution, respectively. 

3. Results and Discussion

 Figure 3(a) shows the measured OD (for d = 7 cm) of different glucose concentrations 
(different glucose weights) for blue, green, red, and near-infrared wavelengths. The OD for all 
wavelengths shows good linearity with the glucose concentration. The slope decreases from 
0.0468 to 0.0133 as the wavelength increases from blue to near infrared. As shown in Fig. 3(b), 
the OD for different wavelengths (438.2, 566.24, 688.32, and 988.02 nm) measured by an Ocean 
Optics spectrometer also exhibits good linearity with the glucose concentration. However, the 
slopes for the wavelengths of blue (438.2 nm), green (566.24 nm), and red (688.32 nm) are nearly 
identical and are larger than that for near infrared (988.02 nm). Rather than calculate the ODs 
using a single wavelength, the ODs were also calculated using the integrated spectral ranges of 
415.23–520.43, 495.38–585.67, 615.4–705.65, and 900.2–1049.75 nm for the corresponding 
photodetectors of B, G, R, and IR. The results were similar to those obtained from a single 
wavelength. This phenomenon is considerably different from that observed using the proposed 
multiple-wavelength sensing system. 

Fig. 3. (Color online) Optical density vs glucose weight for different colors (blue, green, red, near IR) measured by 
(a) multiple-wavelength sensing system with d = 7 cm, (b) spectrometer system (single wavelength), (c) multiple-
wavelength sensing system with d = 4.2 cm, and (d) spectrometer system (integrated spectral range).
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 To clarify the reason for this phenomenon, we decreased the distance d from 7 to 4.2 cm and 
remeasured the OD of different glucose concentrations using the multiple-wavelength sensing 
system. As shown in Fig. 3(c), the OD still exhibited good linearity for the blue, green, red, and 
near-infrared wavelengths. However, the slopes for the blue, green, and red wavelengths were 
nearly the same and were larger than that for the near-infrared wavelength, which is consistent 
with the results obtained using the spectrometer system. In addition, the slope for near infrared 
was basically unchanged for the different values of d. This observation is associated with the 
effect of light scattering since the calculated OD includes absorption as well as light scattering. 
This argument is based on two points: (1) for d = 7 cm, the slope decreases as the wavelength 
increases, which is consistent with the decrease in light scattering with increasing wavelength;(7) 
(2) glucose has a certain amount of absorption in the near-infrared regime but no absorption in 
the spectral range between blue and red. However, for the blue, green, and red lights, the 
measured ODs were larger than that for the near-infrared light.
 These results also indicate that light scattering can be used as another way to differentiate 
biomedical materials, but more investigation is still required. Although by shortening the 
distance d, the observation using the proposed multiple-wavelength sensing system was similar 
to the phenomenon observed using the spectrometer system, the slopes extracted using this 
sensing system for all wavelengths were still smaller than those obtained using the spectrum 
system. This difference in the slopes may be related to the difference in the optical design 
between the two systems, but more investigation is required to confirm this. 
 Figure 4(a) shows a schematic of the preliminary design of the second Arduino-based sensing 
system. The biomedical system shows the readout value from Arduino IDE for Windows in Fig. 
4(b). Figure 5(a) shows boxplots of the glucose weight for different samples measured by the 
multiple-wavelength sensing system. Figure 5(b) shows the measured data for the Arduino-based 
system. Table 1 shows a comparison of the performances of the proposed system with previous 
systems. We also found that the scattering of light may affect the measurement and probably can 
serve as another way to differentiate biomedical materials. Note that by replacing the Arduino 
circuit board with a wireless function, the fabricated system can become a portable wireless 
sensing system. The size of the system can also be reduced further.

Fig. 4. (Color online) (a) Schematic of the preliminary design of the other biomedical sensing system. (b) 
Biomedical system with a readout value based on Arduino.

(a) (b)
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4. Conclusion

 We fabricated a portable multiple-wavelength biomedical sensing system by assembling 
LEDs of multiple colors and photodetectors to detect their wavelengths. To evaluate our 
preliminary system, we measured the OD of glucose solutions with different concentrations, 
which exhibited good linearity with the glucose concentration. In addition, we also measured the 
absorbance of the glucose solutions using a broadband white light source and a spectrometer. 
This results also exhibited linearity but with different slopes of the absorbance as a function of 
the glucose concentration, which confirmed the linearity obtained from the proposed sensing 
system. The difference in the slopes may be related to the difference in the optical design 
between these two systems.

Fig. 5. (Color online) Boxplots of glucose weight for different samples measured by (a) multiple-wavelength 
sensing system and (b) Arduino system.

(a)

(b)

Table 1
Performance comparison of glucose sensing system.(8–10)

Reference Basic sensing mechanism Response time (min) Selectivity
(8) Surface stress change ~39 Yes
(9) Volume change ~121 No
(10) Pressure change 40–80 Yes
Proposed system Optical/electrical change <1 Yes
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