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	 In this paper, the estimation of a screw’s physical properties using a neural network (NN) 
technique is presented. The aim of this research is to study the effects of various control 
parameters of heat treatment and spheroidization on the physical properties of an alloy steel wire 
in its manufacturing process. The NN model is used to analyze the data collected by the image 
sensor and temperature sensor for heating treatments of alloy steel wire. It is expected that an 
advanced screw manufacturing system with intelligent analysis ability can be developed. Then, 
this smart system will be able to provide the optimal control parameters in real time to produce 
an alloy steel wire with ideal physical properties so that high-quality screws can be produced in 
the later manufacturing process. The results of this study show that the NN model can indeed 
achieve a fairly accurate estimation of the physical properties of a steel wire after the 
spheroidization, quenching, and tempering heat treatments. This shows that the development of 
an artificial-intelligence-based screw process optimization mechanism is very feasible.

1.	 Introduction

	 The main function of screws is to fasten objects. In many applications such as machinery, 
civil engineering, construction, electronics, and automobiles, they are important and 
indispensable basic components. For instance, from the smallest IC chip to the largest aircraft, 
screws are always part of the products.
	 In fact, the screw industry is a traditional industry that uses little high technology, and many 
screw manufacturing processes still rely on the experience of senior technicians. However, with 
the advent of the Industry 4.0 era, reducing the reliance on the experience of senior technicians 
and making manufacturing equipment and control processes capable of intelligence and self-
adaptive capability are the desired goals of every industry, even the traditional screw industry. 
The purpose of our research is to help screw companies improve their manufacturing process.
	 The general procedure for producing screws is shown in Fig. 1. In the production process, 
annealing and quenching are two procedures for changing the physical properties of steel by 
high-temperature heating, in which spheroidizing annealing is performed to aggregate the 
cementite of the steel into spheroids that are uniformly distributed in the ferrite matrix. Such an 
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annealing process can improve the ductility of steel and reduce its hardness so that it can be 
easily machined or deformed. Figure 2 shows a bell-type spheroidizing annealing furnace, 
which is the main equipment used for the spheroidization. 
	 In the spheroidization process, a thermocouple sensor is used to record the temperature 
changes. Figure 3 shows digital monitoring displays of the spheroidizing process.
	 The final heat treatment involves quenching and tempering. Quenching can increase the 
strength and hardness of steel. After quenching, the steel becomes brittle, so it is usually 
tempered again to reduce its brittleness. Basically, tempering is often accompanied by 
quenching. The tempering can eliminate or reduce the quenching stress, stabilize the shape and 
size of the steel, and prevent the deformation and cracking of quenched parts. Figure 4 displays 
the whole process of quenching and tempering.

2.	 Literature Review

	 To control the physical properties and quality of steel by heat treatment, the following related 
studies have been performed. Yu et al. studied the effects of the holding time during both 
austenitizing and spheroidizing on the microstructure and mechanical properties of the high-
carbon martensitic stainless steel 8Cr13MoV.(1) Di et al. reported a spheroidizing procedure for 
the eutectic carbide in a twin roll-cast M2 high-speed steel strip by annealing, quenching, and 
tempering.(2) Studies on changes in the mechanical properties of steel after the spheroidizing 
process have also been performed.(3–11) In a study of quenching and tempering heat treatment, Ji 

Fig. 1.	 Production flow chart of screws.

Fig. 2.	 (Color online) Bell-type spheroidizing annealing furnace (image provided by Fang Sheng Screw Co., Ltd.).
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et al. used a thermal expansion analyzer, Thermo-Calc software, a scanning electron microscope, 
an X-ray diffractometer, and an ultrahigh-temperature confocal microscope to investigate the 
relationship between the microstructure and hardness of high-carbon martensitic stainless steel 
and temperature.(12–13) Luo et al. studied the effect of the subcritical quenching temperature on 
the microstructure of an EH36 ship plate steel of 15 mm thickness and the performance of 
controlled rolling and controlled cooling (TMCP). The results show that the mechanical 
properties of steel can be enhanced, i.e., its hardness and plasticity can be improved.(14) Other 

Fig. 3.	 (Color online) Digital monitoring displays of spheroidizing process (image provided by Fang Sheng Screw 
Co., Ltd.).

Fig. 4.	 (Color online) Process of quenching and tempering heat treatment (image provided by Fang Sheng Screw 
Co., Ltd.).
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related studies on the quenching and tempering of different steels have also been reported.(15–21)

	 From the past research, it is known that many factors in the heat treatment affect the 
properties of steel wires after heat treatment. For instance, the wire diameter, wire weight, 
heating temperature, heating time, and cooling rate in the heat treatment could all affect the 
properties. However, with the large amount of production data every day, factory technicians 
cannot carry out troubleshooting immediately when there are problems in the manufacturing 
process. Usually, the relevant control can only be done in accordance with experience and by 
trial and error. Therefore, not only is the heating process easily prone to errors, but inappropriate 
heating conditions also lead to the waste of raw materials.
	 In our study we use artificial intelligence technology to analyze the heat treatment process. 
The processes of spheroidizing, quenching, and tempering were studied and performed. For the 
case of a variety of different screw product orders, it is hoped that artificial intelligence 
technology can be used to accurately set the relevant control parameters of the heating process 
for the different steel wire materials.

3.	 Neural Network

	 In this study, a neural network (NN) model was used to analyze the spheroidizing, quenching, 
and tempering heat treatments. Data mining is a technique that can extract hidden useful 
information from a large database. In data mining techniques, regression is used to obtain the 
relationship between the output and input variables for a system and express the output as a 
function of the input variables. Model specification and parameter estimation are two common 
applications of regression analysis.
	 Our research is expected to lead to the development of an estimation model for a screw’s 
physical properties after heating treatments. Owing to its powerful learning and adaptive 
capabilities, the NN technique has been widely applied to the field of nonlinear regression for 
unknown systems. Through the training of data, a model mapping the input/output data can be 
automatically developed. Then, the well-trained NN can perform tasks that the user wants it to 
do.(22–25)

	 The NN structure commonly known as a multilayered feedforward network is the topology 
selected in this research. An example of a three-layer feedforward NN model is shown in Fig. 5. 
Each layer is connected to the layer above it in a feedforward manner in the sense that there is no 
feedback from the same layer or a layer above, and the backpropagation (BP) learning algorithm 
is used to train the NN model.(24)

4.	 Experiments

4.1	 Spheroidization

	 In the first experiment, the hardness and spheroidizing rate of an alloy steel wire were 
estimated. The real hardness value of the steel wire was measured using a Rockwell hardness 
tester, and the spheroidizing rate was sensed with a metallographic microscope. The data 
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collected by five spheroidizing furnaces were analyzed. All heating temperatures were sensed 
by a thermocouple sensor, which is a widely used type of temperature sensor. Table 1 lists the 
number of data of each furnace and the amount of data used for training and testing the NNs. For 
the estimations of the hardness and spheroidizing rate, the mean absolute percentage error 
(MAPE) and the accuracy are used, respectively. The size of the NN used for hardness 
estimation is 16-33-33-1, i.e., there are 16 nodes in the input layer, 33 nodes in the first hidden 
layer, 33 nodes in the second hidden layer, and one node in the output layer. The size of the NN 
used for spheroidizing rate estimation is 16-33-33-2. Three levels (1, 2, 3) of the spheroidizing 
rate are coded as (01,10,11). The inputs and outputs for both NNs are listed as follows.
	 Inputs:	 status, wire diameter, total weight, number of pieces, total spheroidizing time, five 

heating segment times, and five heating segment temperatures 
	 Outputs:	 hardness and spheroidizing rate
	 Table 2 presents the estimation results of the hardness and spheroidizing rate of the three 
furnaces. Figures 6 and 7 respectively show the hardness estimated during training and testing 
of the NN for furnace A, where the solid line is the desired hardness and the dashed line is the 
estimated hardness.

4.2	 Quenching and tempering

	 In the second experiment on quenching and tempering, the tensile strength and hardness 
were estimated. The values of tensile strength and hardness were respectively measured using a 
universal testing machine and hardness tester. The quenching and tempering temperatures were 
sensed by thermocouple sensors. The amounts of data collected by quenching and tempering 
treatments A, B, C, and D are 1346, 1008, 1113, and 2297, respectively. For each treatment, two-

Fig. 5.	 Example of a three-layer NN structure.

Table 1 
Number of data of each furnace for training and testing of NN.
Furnace Number of data Training Test
A 83 55 27
B 70 47 23
C 90 60 30
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thirds of the data are used for training the NN and the other one-third are used for testing. The 
size of the NN used for each treatment is 14-20-15-1, i.e., 14 nodes in the input layer, 20 nodes in 
the first hidden layer, 15 nodes in the second hidden layer, and one node in the output layer. The 
inputs and outputs of the NN for both estimations are listed as follows.
	 Inputs:	 belt speed, quenching time, two quenching temperatures, tempering time, four 

tempering temperatures, C, Mn, Cr, and Mo 
	 Outputs:	 tensile strength and hardness
	 Table 3 presents the estimation results of the tensile strength and hardness for the four 
quenching and tempering treatments. Figures 8 and 9 respectively show examples of the 
estimated tensile strength for treatment A during the training and testing of the NN. Examples of 
the estimated hardness during the training and testing for treatment A are respectively shown in 
Figs. 10 and 11. Again, the solid line is the desired value and the dashed line is the estimated 
value. The results clearly show that the NN model can indeed estimate the screw’s physical 
properties after the heating processes of spheroidization, quenching, and tempering. 

Fig. 6.	 Hardness during NN training. Fig. 7.	 Hardness during NN testing.

Table 2
Data for the first experiment.

Furnace Hardness (MAPE) (%) Spheroidizing rate (Accuracy) (%)
Training Testing Training Testing

A 0.006161 0.876 100 96
B 0.0013 0.0040 100 97.77
C 0.0017 0.0021 100 95.55

Table 3
Tensile strength and hardness prediction error of four treatments (A, B, C, D).

Treatment Tensile strength (%) Hardness (%)
Training (MAPE) Test (MAPE) Training (MAPE) Test (MAPE)

A 0.695 1.790 0.833 1.196
B 1.177 1.679 0.995 1.325
C 0.670 1.322 0.912 1.488
D 0.548 1.396 0.815 1.245
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5.	 Conclusions

	 The main purpose of this research is to develop techniques to meet the needs of the screw 
industry. The NN technique is used to generate an estimation model that can predict a screw’s 
physical properties after heating treatments. A good physical property estimation model for a 
screw can be used to determine appropriate control parameters in the screw manufacturing 
process. 
	 In the heating treatments, temperature control and the heating time play very important roles 
in determining the characteristics of the screw steel. To obtain information effectively and 
accurately, a temperature sensor and image sensor were used to collect the relevant signal values 
for the learning of the NN and the construction of estimation modules.
	 Therefore, we hope that in the case of a variety of different product orders and raw materials 
with different chemical compositions, the relevant control parameters of heating processes can 
be set accurately through the use of artificial intelligence technology, enabling the production of 
high-quality screws.

Fig. 8.	 Example of tensile strength estimated during 
training of NN.

Fig. 9.	 Example of tensile strength estimated during 
testing of NN.

Fig. 10.	 Example of hardness estimated during 
training of NN.

Fig. 11.	 Example of hardness estimated during 
testing of NN.
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