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 At present, the main focus in the development of convolutional neural networks (CNNs) is 
deepening the network model to improve accuracy. However, this may increase the numbers of 
parameters and calculations in the network architecture. When the network model is applied to 
mobile devices and embedded systems, the storage capacity, computing performance, and 
memory will become major limitations. A local binary convolutional neural network (LBCNN) 
has been proposed to reduce the numbers of parameters and calculations. In the LBCNN, the 
convolutional layer of the CNN is replaced by a local binary convolution (LBC) module. In the 
LBC module, there is a pre-initialized fixed parametric filter layer. Since the parameters of the 
filter are generated in a random manner, the result is different each time and therefore unstable. 
Therefore, to provide a stable and efficient recognition technique for image sensors, we propose 
a genetic-algorithm-based local binary convolutional neural network (GA-LBCNN) for gender 
recognition in this study. The genetic algorithm (GA) is used to search for the best filter 
parameters of the LBCNN. LeNet is adopted as the basic model architecture, and two datasets 
acquired from image sensors, the CIA and MORPH datasets, are used to perform face gender 
classification. According to the evaluation results, LBC successfully reduces the numbers of 
parameters and calculations. Experimental results show that the classification accuracy of the 
proposed GA-LBCNN reaches 88.8 and 98.2% for the CIA and MORPH datasets, respectively. 
Compared with the conventional LBCNN, the classification accuracy of the proposed GA-
LBCNN is increased by 7.2 and 1.1%, respectively, for the two datasets.

1. Introduction

 Owing to the substantial increases in the power of computer hardware equipment and 
computing performance, artificial intelligence applications have flourished. Since LeCun first 
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proposed LeNet,(1) many convolutional neural network (CNN) models have appeared one after 
another, such as AlexNet,(2) VGGNet,(3) GoogLeNet,(4) ResNet, and DenseNet.(5,6) Both AlexNet 
and VGGNet improve accuracy by increasing the number of layers. As a result, the network 
model size and the numbers of parameters and floating point operations (FLOPs) have increased 
significantly. As a result, CNNs can only be used with high-performance equipment. To resolve 
these problems, we improve the standard CNN model and reduce the numbers of parameters and 
calculations to achieve higher accuracy in this study. The improved CNN can run on mobile 
devices, such as devices with limited computing performance, storage space, and memory size. 
This allows real-time processing of the data acquired from sensors such as those in autonomous 
cars and smart cameras.
 Many studies have pointed out that model quantization can effectively reduce the model size, 
storage space, and memory size, making models easier to apply to portable devices. For instance, 
Rastegari et al. (7) quantized the parameters in a network to approximate convolutions using 
binary operations. This resulted in 58 times faster convolutional operations and 32-fold less 
memory use. Zhou et al.(8) proposed a scale estimation quantization approach by analyzing the 
error variance acquired by the quantization process to avoid significant accuracy degradation. 
Furthermore, backward approximation was applied to manage the gradient mismatch problem in 
backward propagation. They concluded that both the compression and acceleration abilities are 
guaranteed by utilizing intermediate integers in quantization; moreover, the method  reaches 
state-of-the-art performance and can be flexibly used on various networks and with different 
datasets. Jacob et al.(9) proposed a quantization program that allows inference to be executed 
using integer-only arithmetic, which can be implemented more efficiently than floating point 
inference on commonly accessible integer-only hardware. As a result, the proposed approach 
improved the tradeoff between on-device latency and accuracy. Han et al.(10) introduced a deep 
compression method including pruning, Huffman coding, and trained quantization. Pruning 
removes redundant weight links and quantization reduces the number of bits that represent each 
connection. In other words, some scholars have modified the architecture of CNNs. Howard et 
al.(11) used depthwise separable convolutions to build lightweight deep neural networks. Ou and 
Li(12) proposed vector kernels of size k × 1 or 1 × k for each convolutional layer. Iandola et al.(13) 
proposed SqueezeNet, which replaces 3 × 3 filters with 1 × 1 filters and reduces the number of 
input channels to 3 × 3 filters. These strategies are desirable to decrease the number of 
parameters in a CNN while attempting to maintain accuracy. Juefei-Xu et al.(14) proposed local 
binary convolutional neural networks (LBCNNs), which reduce the numbers of parameters and 
calculations by replacing the general convolutional layer with a local binary convolution (LBC) 
layer. Almowallad and Sanchez(15) used an emotion distribution learning (EDL)-LBCNN 
framework for distribution learning of human emotions. The EDL-LBCNN incorporates an 
LBC layer into a CNN in order to enhance the feature extraction ability. The framework contains 
two streams: a four-layer CNN and a single LBC layer. The feature maps extracted by the two 
streams are concatenated and utilized as inputs to fully connected layers. However, the 
convolution operation in the LBC layer uses a randomly generated filter, which means that the 
results obtained are different every time and are unstable. Therefore, finding the best mask 
parameters is a problem to be solved.
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 Evolutionary computing has been successful in solving engineering tasks ranging from the 
molecular to the astronomical. In practical applications, the performance of CNNs is highly 
dependent on their parameters, so many evolutionary computing methods are employed in 
designing neural network architectures or even selecting better parameters of CNNs. Suganuma 
et al.(16) attempted to construct CNN architectures automatically using genetic programming. 
The Cartesian genetic programming (CGP) encoding approach has been applied to represent the 
CNN architecture and connectivity. Furthermore, comparatively highly functional modules 
were adopted as the node functions in CGP to narrow the search space. The experimental results 
showed that the CGP encoding approach can automatically find a CNN architecture with 
competitive performance to that of architectures obtained with state-of-the-art models.  Baker et 
al.(17) introduced MetaQNN, a meta-modeling algorithm based on reinforcement learning, which 
is able to produce high-performing CNN architectures for a given learning task. The 
experimental results showed that MetaQNN can be employed in different problem settings, 
including supervised and unsupervised settings. Sinha et al.(18) proposed an approach 
incorporating particle swarm optimization to select the optimal image size, number of filters, 
filter size, and number of CNN layers. Wang et al.(19) proposed a hybrid differential evolution 
CNN, which adopts an IP-based encoding strategy to encode attributes of CNN layers, and new 
mutation and crossover operators were developed for variable-length CNN architectures. Ma et 
al.(20) used the genetic algorithm (GA) to find the optimal layer combination of CNN 
architectures for solving classification problems. The GA finds the best chromosome solution by 
processing the gene chromosome selection, crossover, and mutation. It has the characteristics of 
a group search and only uses fitness functions for the evaluation. Therefore, they chose the GA 
to select the filter parameters in the LBC layer. 
 In this study, an efficient GA-LBCNN is proposed for gender recognition. In the GA-
LBCNN, the GA is used to find the best filter parameters of the LBCNN. The LeNet network is 
adopted in this study. The major contributions of this study are as follows: 
1. The proposed GA-LBCNN solves the problem of fixed filter parameters in the LBC layer to 

improve accuracy.
2. Compared with the conventional LeNet, the proposed GA-LBCNN has fewer parameters and 

calculations in the convolution part.
3. In tests using the CIA and MORPH datasets, it is found that the accuracy of the proposed 

GA-LBCNN reaches 88.8 and 98.2%, respectively, which are higher than the values obtained 
with the conventional LeNet.

 The rest of this paper is organized as follows. Section 2 introduces the proposed GA-LBCNN 
structure. The experimental results obtained using two facial datasets are described in Sect. 3. 
Section 4 gives conclusions.

2. Proposed GA-LBCNN

 This section introduces the use of the GA to optimize the local-binary-based LeNet (LB-
LeNet) parameters. In Sect. 2.1, we explain the difference between the conventional LeNet and 
LB-LeNet. In Sect. 2.2, the overall architecture of the GA-LBCNN after adding the GA is 
described.
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2.1 Local-binary-based LeNet (LB-LeNet)

 To reduce the number of parameters in the model, we replaced the conventional convolutional 
layer in LeNet with the LBC layer in the LBCNN. Figure 1 illustrates the LBC layer.  The binary 
parameters in the LBC layer can effectively reduce the memory space. The architecture 
diagrams of the LBC layer and the conventional convolutional layer are respectively shown in 
Figs. 2(a) and 2(b). Figure 2(a) displays the network architecture of LeNet. First, the input image 
is processed using the convolutional layer to obtain the feature map. The value is adjusted for 
nonlinear changes using the activation function. Then, the feature is concentrated using the 
pooling layer to reduce the size of the feature and the number of calculations. Finally, the 
calculation of the fully connected layer is used to obtain the confidence level of each category 
and turn it into the output result. In Fig. 2(b), LB-LeNet replaces the green 5 × 5 convolutional 
layer in Fig. 2(a) with the gray 5 × 5 fixed binarization parameters and the green 1 × 1 
convolutional layer in Fig. 2(b). Since the binary convolutional filters in LB-LeNet have fixed 
parameters, we use the GA to obtain the optimized parameters of the gray part of Fig. 2(b).

2.2 Proposed GA-LB-LeNet

 In this study, we adopt the LeNet network as a CNN network. Therefore, the proposed GA-
LBCNN is also called GA-LB-LeNet in this paper. The GA is a model derived from biological 
evolution operations including selection, crossover, and mutation. The concept is that better 

(a) (b)

Fig. 1. (Color online) LBC layer. Fig. 2. (Color online) (a) Diagram of LeNet 
architectu re and (b) d iagram of LB-LeNet 
architecture.
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biological genes can be passed to the next generation, and the best solution can be found after 
multiple generations of evolution through mathematical calculations. Figure 3 illustrates the 
coding method of chromosomes in the GA. It converts the binary weighted convolutional layer 
of each layer into a one-dimensional code. The coding length of each chromosome is given by 
Eq. (1). For example, if the input is three channels and the output is a 5 × 5 convolution kernel 
with eight channels, then a chromosome will be converted to one-dimensional information with 
a length of 600.

 ( )2
1

N
in outLLength K C C

=
∗∗=∑  (1)

Here, N is the number of LBC layers, K is the filter size, Cin is the number of input channels, and 
Cout is the number of output channels.
 The process of optimizing the LB-LeNet parameters using the GA algorithm is shown in Fig. 
4. The steps of the proposed GA-LB-LeNet are as follows:
Step 1: Initialize chromosome population individuals. Each individual represents the parameters 

of a 5 × 5 filter, where these parameters are binary parameters.
Step 2: Update the parameters of the 1 × 1 convolutional layer and the fully connected layer in 

the network through the backpropagation algorithm.
Step 3: Calculate the fitness values of the network according to the updated parameters, where 

the fitness value is the accuracy of the test data.
Step 4: Determine whether the termination condition is met. If the maximum number of 

generations is reached, the best individual is obtained and the program is terminated: if 
it is not reached, Step 5 is executed.

Step 5	 Retain the chromosome with the highest fitness value, then take out (n−1) chromosomes 
from the population according to roulette wheel selection. The probability of each 
chromosome in the roulette wheel selection is as follows:

Fig. 3. Coding method of chromosomes in GA. Fig. 4. Proposed GA-LB-LeNet.
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  where k is the number of chromosomes.
Step 6: The chromosomes selected according to Step 5 produce n new chromosomes through 

the crossover operation.
Step 7:	 The chromosomes selected according to Step 5 generate n new chromosomes through 

the mutation operation.
Step 8:	 Use the chromosomes generated by Steps 5–7 as new chromosomes, and then return to 

Step 2 to continue to perform these steps in sequence.

3. Experimental Results

 In this section, to verify the effectiveness of the proposed method, two datasets acquired 
from image sensors, the CIA and MORPH datasets, are used for testing. In this section, the two 
datasets are first introduced. Then, they are compared, with a discussion of the accuracy and 
numbers of parameters and calculations of the proposed GA-LB-LeNet, LB-LeNet, and the 
conventional LeNet.

3.1 CIA and MORPH datasets

 The CIA dataset(21) is a small Chinese facial image dataset, as shown in Fig. 5. The total 
number of images is 2088 (1080 male and 1088 female), and the age distribution ranges from 6 to 
80 years old. This dataset contains face images with different environments, light sources, and 
expressions.
 The MORPH dataset(21) is a multiracial face dataset, as shown in Fig. 6. The total number of 
images is 55134 (46645 male and 8489 female). The dataset contains face images of various 
races including Africa, Europe, Asian, and Hispanic. The age distribution ranges from 16 to 77 
years old. 

Fig. 5. (Color online) CIA dataset.
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3.2 Experimental and analysis results

 This study uses accuracy as the standard for evaluating the system, and its formula is as 
follows:

 Accuracy 
( )

( )
Accuracy

TP TN
TP FP TN FN

+
=

+ + +
, (3)

where TP is the number of true positives, FP is the number of false positives, TN is the number 
of true negatives, and FN is the number of false negatives. The initial parameters of the GA are 
shown in Table 1.
 The experimental results reveal that the accuracy rates of the proposed GA-LB-LeNet are 
88.8 and 98.4% for the CIA and MORPH datasets, respectively. Table 2 shows the classification 
accuracies of LeNet, LB-LeNet, and the proposed GA-LB-LeNet for the CIA dataset. Although 
LB-LeNet uses a fixed mask to reduce the number of calculations, it also reduces the 
classification accuracy. That is, the classification accuracy of LB-LeNet is lower than that of the 
original LeNet model by 3.8%. After the filter parameters are optimized through the GA, the 
classification accuracy of the proposed GA-LB-LeNet is 7.2% higher than that of LB-LeNet and 
3.4% higher than that of LeNet. Table 3 shows the classification accuracies of LeNet, LB-LeNet, 
and the proposed GA-LB-LeNet for the MORPH dataset. The classification accuracy of the 
proposed GA-LB-LeNet is 1.1% higher than that of LB-LeNet and 0.4% higher than that of 
LeNet.

Fig. 6. (Color online) MORPH dataset.

Table 1
Initial parameters of GA.
Population size 4600
Mutation rate 0.05
Crossover rate 0.8
Generations 50
Initial population 20
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 Tables 4 and 5 list the numbers of parameters and operations (FLOPs) required by LeNet and 
LB-LeNet, respectively. The convolutional layers (Conv1 and Conv2) of LeNet were replaced 
with the LBC layers (Conv1-1/Conv1-2 and Conv2-1/Conv2-2). Table 4 shows that the number of 
parameters of the convolutional layer in LeNet is 26570, compared with 5246 for LB-LeNet 
(Table 5), a roughly fivefold reduction.  Since a large number of filter parameters in LB-LeNet 
are set to be fixed, we propose GA-LB-LeNet, in which the GA is used to optimize and adjust 
the filter parameters to obtain better parameters and improve classification results. The numbers 
of parameters and operations of the GA-LB-LeNet model after adding the GA are respectively 
shown in Tables 6 and 7. According to Table 6, the total number of parameters used in the 
convolutional layer (CL) for GA-LB-LeNet is around 80% less than that used in the LeNet 
model. In Table 7, MFLOPs represents megaFLOPs, and the ratio of the operations used in both 
models is also displayed. Compared with LeNet, GA-LB-LeNet requires about 30% fewer 
operations during convolutions.  The total number of operations of the proposed GA-LB-LeNet 
model is 21.6% less than that of the LeNet model.

Table 2
Facial gender classification results using various 
networks for CIA dataset.
Model Accuracy (%)
LeNet 85.40
LB-LeNet 81.60
GA-LB-LeNet 88.80

Table 3 
Facial gender classification results using various 
networks for MORPH dataset.
Model Accuracy (%)
LeNet 98.00
LB-LeNet 97.30
GA-LB-LeNet 98.40

Table 4 
Parameter analysis of LeNet.
Layer Parameters Output size FLOPs
Input 0 50 × 50 × 3 0
Conv1 1520 50 × 50 × 20 7500000
Pool 0 25 × 25 × 20 0
Conv2 25050 25 × 25 × 50 6218750
Pool 0 12 × 12 × 50 0
Flatten 0 7200 0
Fc 3600500 500 7199500
Fc 1002 2 1998
Total 3628072 — 20.92 MFLOPs

Table 5 
Parameter analysis of LB-LeNet.
Layer Parameters Output size FLOPs
Input 0 50 × 50 × 3 0
Conv1-1 608 50 × 50 × 8 2980000
Conv1-2 180 50 × 50 × 20 750000
Pool1 0 25 × 25 × 20 0
Conv2-1 4008 25 × 25 × 8 4995000
Conv2-2 450 25 × 25 × 50 468750
Pool2 0 12 × 12 × 50 0
Flatten 0 7200 0
Fc1 3600500 500 7199500
Fc2 1002 2 1998
Total 3606748 — 16.395 MFLOPs

Table 6 
Comparison of numbers of parameters used in LeNet and GA-LB-LeNet.

Model CL parameter Total CL 
parameters

CL parameter 
ratio

Total 
parametersBP GA

LeNet 26570 0 26570 — 3628072
GA-LB-LeNet 630 4616 5246 — 3606748
LeNet (baseline) vs GA-LB-LeNet — — — −80% —
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Table 7 
Comparison of number of FLOPs of LeNet and GA-LB-LeNet.    
Model Total CL operations CL operation ratio Total FLOPs FLOPs ratio
LeNet 13718750 — 20.920 MFLOPs —
GA-LB-LeNet 9193750 — 16.395 MFLOPs —
LeNet (baseline) vs GA-LB-LeNet — −32.90% — −21.60%

4. Conclusions

 Many state-of-art networks have proved that increasing the number of layers of the CNN is a 
good way to improve accuracy; however, it also introduces problems such as increased storage 
space and computational complexity. The architectures of these networks are often limited in 
their application and cannot be arbitrarily used in mobile devices. In this study, the GA-LBCNN 
is proposed, in which the GA is used to optimize the filter mask parameters in the LBC layer in 
the LBCNN. With the proposed GA-LBCNN, not only can the required storage space and 
computational complexity be reduced, but also the best parameter combination can be found to 
improve the accuracy. LeNet is adopted as the basic model architecture in this study. Therefore, 
the proposed GA-LBCNN is also called GA-LB-LeNet. Experimental results indicate that the 
classification accuracy of the proposed GA-LBCNN reaches 88.8 and 98.2% for the CIA and 
MORPH datasets, respectively. Compared with the conventional LBCNN, the classification 
accuracy of the proposed GA-LBCNN is respectively increased by 7.2 and 1.1% for the two 
datasets. Through the data acquired from image sensors, the proposed GA-LBCNN model can 
not only adopt other networks as a backbone in future research but also be implemented on a 
field-programmable gate array to achieve real-time applications.
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