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	 We propose a novel intelligent grinding assistance system (IGAS) for the grinding of silicon 
carbide (SiC) with computer numerical control (CNC). The proposed IGAS predicts surface 
roughness (Ra) and suggests suitable parameters for the grinding process. To establish the Ra 
prediction model, a type-2 functional-link-based fuzzy neural network (T2FLFNN), which 
updates the network parameter by Lévy-based dynamic group differential evolution (LDGDE), 
is developed. The LDGDE includes the Lévy flight and dynamic group mechanism to improve 
the shortcomings of the traditional differential evolution (DE) algorithm. Subsequently, DE is 
adopted to optimize the grinding parameters according to user requirements. Experimental 
results of practical machining show that the mean absolute percentage error (MAPE) using the 
IGAS is as low as 1.62%. Therefore, the proposed IGAS can provide suitable grinding parameters 
according to the requirements of users.

1.	 Introduction

	 Silicon carbide (SiC) is a semiconductor material composed of silicon (Si) and carbon (C). 
SiC has a strong bonding force, is chemically and mechanically stable, and has been widely used 
in electronic parts, vehicles, and aerospace.(1–3) However, SiC has high hardness and brittleness 
and poor workability. Therefore, the processing of SiC materials is challenging. Because SiC has 
low fracture toughness, attempts to machine it may result in severe edge fracture and 
deterioration of quality. Many researchers have used an ultrasound-assisted grinding system to 
machine SiC. Liu et al.(4) discussed the tool wear problem in conventional milling and ultrasonic-
vibration-assisted milling. They found that the ultrasonic vibration milling used in machining 
can reduce tool wear. Increasing the ultrasonic amplitude also increases tool wear. Wang et al.(5) 
carried out a single abrasive ultrasonic vibration cutting test. Compared with ordinary cutting, 
ultrasonic-vibration-assisted grinding reduced the grinding force by about 60% and achieved 
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high-efficiency processing of SiC composite materials with low damage. Chen et al.(6) used a 
PCD tool for ultrasonic-assisted milling of SiC composites. They pointed out that ultrasonic 
vibration of an appropriate amplitude promotes the removal of carbon fibers in micro-brittle 
fracture and reduces the roughness of the processed surface. These studies indicate that 
ultrasound-assisted machining can enhance machining quality.
	 Different grinding parameters will result in different surface roughness (Ra). Predicting Ra 
for different combinations of parameters is an important issue. Multivariate analysis (such as 
regression analysis) has been widely used to build predictive models. Kong et al.(7) designed an 
Ra prediction model by adopting Bayesian linear regression (BLR). They also analyzed the 
performance of different models including standard BLR, Gaussian BLR, standard SBLR, and 
Gaussian SBLR. Experimental results showed that standard SBLR had the best predictive 
performance among these models. Sudianto et al.(8) employed several parameters such as feeding 
speed, spindle revolution, depth of cut, helix angle, length of cut, cutting speed, and nose radius 
of cut to predict Ra. The regression method was used to build the prediction model. The results 
showed that the proposed regression can effectively predict Ra from the machining parameters. 
However, the disadvantage of multivariate analysis is that it requires quite complex calculations 
to obtain satisfactory conclusions, and a large number of variables need to be collected from 
observations. Recently, artificial neural networks have been used to establish prediction models. 
Srikant et al.(9) proposed a backpropagation neural network (BPNN) to build a tool wear 
prediction model. Experimental results showed that the BPNN model performed well in 
predicting tool wear with high accuracy. Cheri et al.(10) designed a fuzzy neural network (FNN), 
which combined the concepts of fuzzy logic and neural networks, for surface roughness 
prediction of a cold-rolled steel strip. The fuzzy logic has a human reasoning mechanism and the 
neural network provides nonlinear approximation ability, which make the prediction 
performance of the FNN higher than that of a neural network. Although these methods can be 
applied successfully, the prediction model performance is unstable in a factory environment 
because noise introduces uncertainty into the input signal, affecting the prediction result. To 
resolve the problem of uncertainty, a type-2 fuzzy neural network (type-2 FNN)(11,12) has been 
used to establish a prediction model. A type-2 FNN adopts fuzzy sets as membership values, 
which provide a footprint of the uncertainty to deal with the uncertainty problem. Lin et al.(13) 
designed a type-2 FNN to solve prediction problems. Gaussian noise was added to the input 
signal to verify the type-2 FNN’s anti-noise capability. The experimental results demonstrate 
that a type-2 FNN is more robust than an FNN. The aforementioned methods used the 
backpropagation (BP) algorithm(14,15) to adjust the network parameters. Nevertheless, the BP 
algorithm has the disadvantage of falling into a local minimum.
	 To acquire the global optimum solution, many studies adopted evolutionary computation 
methods to optimize network parameters. The evolutionary algorithms include differential 
evolution (DE),(16,17) particle swarm optimization (PSO),(18) artificial bee colony (ABC),(19) 
genetic algorithm (GA),(20) and whale optimization algorithm (WOA).(21) Compared with other 
evolutionary algorithms, DE has the advantages of rapid convergence, fewer parameters, and a 
simple structure. However, the traditional DE still easily falls into a local optimum when 
confronted with a complex problem. In this study, Lévy-based dynamic group differential 



Sensors and Materials, Vol. 33, No. 6 (2021)	 1931

evolution (LDGDE) is developed to enhance the traditional DE and improve the accuracy of the 
prediction model.
	 The above-mentioned methods only used the grinding processing parameters to predict Ra. 
That is, they did not consider using the Ra value to generate suitable grinding processing 
parameters for the user. The selected parameters of the grinding process will differ according to 
the quality requirements. Different combinations of grinding parameters corresponding to 
different qualities can be considered as an optimization problem. The effective provision of 
appropriate grinding parameters to users can not only save time but also improve processing 
efficiency. Therefore, we propose a novel intelligent grinding assistance system (IGAS) for 
grinding with computer numerical control (CNC) in this study. The IGAS adopted a type-2 
functional-link-based fuzzy neural network (T2FLFNN) to construct the prediction network. 
The prediction accuracy of the designed T2FLFNN is compared with those of a BPNN and 
FNN. Then, PSO is utilized to optimize the grinding parameters. According to the requirements 
of the user, the proposed IGAS can suggest suitable parameters for the grinding process. 
Experimental results demonstrate the effectiveness of the proposed IGAS. 
	 This paper is organized as follows. Section 2 introduces the experimental equipment. Section 
3 outlines the proposed IGAS. The experimental results are discussed in Sect. 4. Section 5 
presents the conclusion.

2.	 Experimental Equipment

2.1	 Material

	 In this study, SiC is adopted as the material. The advantages of SiC are high thermal 
conductivity and excellent wear resistance. The properties of SiC are shown in Table 1. 

2.2	 Ultrasonic tool holder and grinding pin

	 A BT-40 ultrasonic tool holder (Hantop Intelligence Tech) is utilized to enhance the grinding 
quality.(22) The specifications of the ultrasonic tool holder are shown in Fig. 1 and Table 2. In this 
study, a diamond grinding pin is used in the grinding process. The specifications of the diamond 
grinding pin are shown in Fig. 2 and Table 3. 

Table 1
Mechanical properties of SiC.
Mechanical SI/Metric Value
Elastic modulus (GPa) 410
Compressive strength (MPa) 3900
Flexural strength (MPa) 550
Fracture toughness (MPa∙ml/2) 4.6
Density (gm/cc) 3.1
Maximum use temperature (°C) 1650
Hardness (kg/mm2) 2800
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Table 2
Specifications of BT-40 ultrasonic tool holder.
Operating frequency 20–32 kHz
Weight 2 kg
Maximum spindle speed 24000 rpm
Automatic tool changer Yes
Runout <5 μm

Table 3
Specifications of the diamond grinding pin.
Head (Ø D) 6.0 mm
Width (T) 5 mm
Collar (K) 5 mm
Shank (Ø Y) 8 mm
Length (L) 80 mm

Fig. 1.	 (Color online) BT-40 ultrasonic tool holder.

Fig. 2.	 Diamond grinding pin.

2.3	 CNC machine tool

	 A QUASER-MV184C CNC machine tool(23) is adopted to collect the grinding experimental 
data. The BT-40 tool holder is also installed in the CNC machine tool to reduce the processing 
time and improve the grinding quality. The QUASER-MV184C CNC machine tool contains a 
HEIDENHAIN TNC640 controller. Figure 3 and Table 4 present the machine tool and its 
specifications, respectively. 

2.4	 Surface profiler

	 The Ra of SiC was measured by a ZYGO NewView™ 8300 3D optical surface profiler(24) 
after the grinding process. The profiler and its specifications are respectively shown in Fig. 4 
and Table 5. 
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Fig. 3.	 (Color online) CNC machine tool with BT-40 tool holder.

Table 4
Specifications of the CNC machine tool.
Table size (mm) 1200 × 600
Max spindle speed (rpm) 12000
Travel X/Y/Z (mm) 1020/610/610
Table load capacity (kg) 500

Fig. 4.	 (Color online) NewView™ 8300 3D optical surface profiler.

Table 5
Specifications of NewView™ 8300.

Vertical scan range 20 mm with extended scan
150 µm with precision piezo drive

Surface topography repeatability 0.2 nm
Repeatability of RMS 0.01 nm
Optical lateral resolution 0.34 µm (100× objective)
Spatial sampling 0.04 µm (100× objective 2× zoom)
Maximum data scan speed 96 µm/s
Height response linearity ≤30 nm
Step height repeatability 0.1%
Step height accuracy for extended scans 0.8%
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Fig. 5.	  Architecture of T2FLFNN.

3.	 Intelligent Grinding Assistance System (IGAS)

	 In order to assist users in choosing suitable grinding parameters, the IGAS is introduced in 
this subsection. The IGAS contains two main functions: Ra prediction and grinding parameter 
optimization. To improve the accuracy of the prediction model, a T2FLFNN with an LDGDE 
parameter updating algorithm is developed to establish the prediction model. After that, PSO is 
adopted to optimize the grinding parameters.

3.1	 Proposed T2FLFNN for Ra prediction

3.1.1	 T2FLFNN architecture

	 The architecture of the T2FLFNN is presented in Fig. 5. The IF-THEN rule is defined as 
follows:  
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where xi is the input, yi is the output, Aij represents the type-2 fuzzy sets, j = 1, 2, …, R represents 
the rule number, ωkj is the link weight, M is the number of basis functions,  and φk represents the 
basis trigonometric function.
	 The Gaussian function in Eq. (2) is used as the type-2 fuzzy membership function, which has 
uncertainty mean 
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	 The firing strengths (3) (3) and j ju u  of each rule node are calculated by an algebraic product 
operation.
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	 A method reducing the order is adopted to transform the type-2 fuzzy set into a type-1 fuzzy 
set.
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Here, 1k kj
M

kω ϕ
=∑  is a nonlinear combination of inputs. The functional expansion is based on a 

trigonometric function and defined as 
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3.1.2	 Parameter learning using LDGDE

	 Traditional DE has many shortcomings such as trapping at local optima and low precision. 
Therefore, LDGDE with the Lévy flight and dynamic group mechanism is proposed to overcome 
the shortcomings of DE. The pseudocode of LDGDE is shown in Fig. 6.
	 The steps are expressed as follows: 
Coding: The T2FLFNN parameters are coded into a vector. The parameters include uncertainty 
mean mij, standard deviation σij, and link weight ωkj. Then the target vector ,

i
D GX  is randomly 

initialized in the solution space. The mathematical model is expressed as 

	 , 1, 2, ,,  , ..., i i i i
D G G G D GX x x x =   .	 (9)

Fig. 6.	 Pseudocode of T2FLFNN.
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Here, i = 1, 2, …, NP. NP represents the size of the population, G is the current generation 
number, and D is the dimension.
Vector grouping: The group number of the initial state is 0. The vectors are sorted in descending 
order of fitness values. The thresholds of fitness and distance are calculated as the average 
difference in the distance and the average difference in the fitness between the ungrouped vector 
and the group leader in group number 0, respectively.
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Here, δg and φg are the differences in the distance and fitness between the ungrouped vectors 
and the group leader, Dg and Fg represent threshold values of fitness and distance, g

jL  is the jth 
dimension of the gth group leader, and N is the total number of ungrouped vectors, respectively. 
To group the vectors, the difference in the distance value (εi) and the difference in the fitness 
value ψi between the ungrouped vectors and the leader vectors are calculated as 
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The group number of the vector is updated to g if εi > Dg and ψi < Fg.
Mutation: We propose a new mutation method that introduces the Lévy flight strategy and 
refers to the group leader position to enhance the efficiency of the traditional DE algorithm. The 
mutation formula can be expressed as

	 ( ) ( )1 2 3  i best rL r r r
G G G G G GU X F X X F X X= + − + − ⊕ Lévy(β),	 (16)
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1/β
µ
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where 1, 2, ,[ ,  , ...,  ]i i i i
G G G D GU u u u=  is the mutant vector, best

GX  is the best fitness vector, F is the 
mutation weight factor, rL

GX  is a random leader, β = 1.5 is the Lévy flight exponent, and μ and υ 
represent Gaussian normal distributions with a zero mean and variances of 2

µσ  and 2
υσ , 

respectively.
Recombination: To generate a new trial vector 1, 2, ,[ ,  , ...,  ]i i i i

G G G D GV v v v= , the following formula 
is used to cross the mutation vector with the target vector:
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where (0,1)λ∈  represents random values of each dimension and CR is the crossover rate.
Selection: The next generation of target vectors is selected on the basis of the evaluated fitness 
value. The target vector will remain if the fitness value of the trial vector is worse than that of the 
current target vector. This is described as 
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3.2	 Optimization of grinding parameters

	 In this study, the IGAS combined with the T2FLFNN prediction model and PSO algorithm is 
proposed to assist the user in grinding parameter selection. The mathematical model is defined 
as 

	 ( ) ( )1 1 2 2( ) ( ) ( ) ( )1i i best i best iV n V C Pn n nX C G Xω ϕ ϕ+ = + − + − ,	 (22)

	 ( ) ( ) ( 1)1  i i iX n nn X V+ = ++ .	  (23)

Here, Vi(n) represents the velocity for particle Xi(n), ω represents the inertia weight, Gbest is the 
best particle among the particles, Pbest is the best particle among the current particles, C1 and C2 
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are the cognitive parameter and social parameter, respectively, and φ1 and φ2 are randomly set 
between 0 and 1. The fitness function F(∙) is used to evaluate whether the grinding parameters 
satisfy the quality requirements of the user, where

	 ( )
1( )  

1 a a
F

T M
⋅ =

+ − .	 (24)

Here, Ma represents the surface roughness obtained from the prediction model and Ta represents 
the grinding target Ra set by the operator.

4.	 Experimental Results

	 The full factorial design method is employed to collect the experimental data in this section. 
To verify the Ra prediction model effectively, the proposed T2FLFNN is compared with the 
BPNN(24) and FNN. In addition, PSO is used for grinding parameter optimization, and different 
target Ra values are used to generate grinding parameters in the actual grinding process for 
verification.

4.1	 Data collection

	 The experimental data are collected by the full factorial design method. Table 6 presents the 
grinding parameters. The grinding parameters are the axial depth of cut, cutting speed, feed 
rate, ultrasonic power, and radial depth of cut. A total of 2200 data are collected to establish the 
prediction. The training data and testing data are divided in the ratio of 80 to 20%. 

4.2	 Ra prediction results

	 The proposed T2FLFNN is compared with the BPNN and FNN to verify the effectiveness of 
the prediction model. The dataset is split into 1760 training data and 440 testing data for building 
the prediction model. Each model is trained by 3000 iterations, then its effectiveness is evaluated 
using the mean absolute percentage error (MAPE), defined as 

	
1

0 ˆ10 % n
i i

ii

y yMAPE
n y=

−
= ∑ ,	 (25)

Table 6
Parameters of grinding experiment.
Axial depth of cut (mm) 0.004, 0.02
Cutting speed (mm/min) 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225  

Feed rate (mm/min) 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 
180, 190, 200, 210, 220, 230, 240, 250, 260

Ultrasonic power (%) 0, 10, 30, 60, 100
Radial depth of cut (mm) 5.5
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where ˆiy  is the actual measured Ra value, n is the number of data, and yi is the predicted value. 
The performance of each prediction model is shown in Fig. 7 and Table 7. The BPNN has the 
highest MAPE (7.89%) among the prediction models. The FNN combines fuzzy logic and a 
neural network; therefore, the MAPE (6.07%) is better than that of the BPNN. Compared with 

(a) (b)

(c) (d)

(e) (f)

Fig. 7.	 (Color online) Prediction results of various models: (a) BPNN, (b) prediction error using BPNN, (c) FNN, 
(d) prediction error using FNN, (e) T2FLFNN, and (f) prediction error using T2FLFNN.
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Table 7
Prediction performance of each model.
Model MAPE (%)
BPNN 7.89
FNN 6.07
T2FLFNN 5.04

the BPNN(25) and FNN, the proposed T2FLFNN with the LDGDE parameter learning method 
has a lower MAPE (5.04%). This indicates that the type 2 fuzzy set adopted by the proposed 
T2FLFNN has the best performance. In addition, the accuracy of the predictive model is crucial 
for optimizing the grinding processing parameters for performance. If the accuracy of the 
prediction model is insufficient, the parameters optimized by the evolutionary algorithm will not 
be able to obtain the expected results. The results showed that the T2FLFNN is sufficiently 
accurate to establish an Ra prediction model.

4.3	 Grinding parameter optimization results

	 Different combinations of grinding parameters will produce different Ra. In this subsection, 
PSO is used to solve the parameter optimization problem. The initial parameters of PSO are 
shown in Table 8. The parameters of PSO are the number of generations, the acceleration 
constants C1 and C2, the single inertia weight ω, and the number of particles. In this experiment, 
11 different target values of Ra are adopted to generate grinding processing parameters. The 
generated parameters are used in the MV184C CNC machine for grinding processing to verify 
the performance. The experimental results are shown in Fig. 8 and Table 9. As shown in Table 9, 
the 11 sets of parameters generated by the IGAS have an MAPE of 1.62%. This indicates that the 
proposed IGAS can assist users in selecting grinding parameters in line with their processing 
quality requirements.

Table 8
Initial parameters of PSO.

Particles ω C1, C2 Generations
40 0.5 2 200

Fig. 8.	 (Color online) Experimental results of 
grinding processing.

Table 9
Exper iment resu lt s for each set of g r ind ing 
parameters.
No. Target Ra Actual Ra MAPE
1 0.5 0.49

1.62%

2 0.55 0.52
3 0.6 0.62
4 0.65 0.66
5 0.7 0.73
6 0.75 0.77
7 0.8 0.82
8 0.85 0.88
9 0.9 0.92

10 0.95 0.93
11 1 1.03
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5.	 Conclusions

	 We introduced a novel IGAS to assist the user in the grinding process. The proposed IGAS 
uses a T2FLFNN to establish a prediction model, then PSO is used to obtain the optimized 
grinding parameters. To improve the accuracy of the T2FLFNN, LDGDE, which includes the 
Lévy flight and dynamic group mechanism, is developed to update the network parameters. The 
MAPE experimentally obtained using the proposed T2FNN is 6.07% and is superior to the 
values obtained with the BPNN and FNN.  In addition, 11 different target values of Ra are 
adopted to generate grinding processing parameters. The generated parameters are used in an 
MV184C CNC machine for grinding processing to verify the performance of the proposed 
IGAS. The experimental results of practical machining show that the MAPE using the IGAS is 
as low as 1.62%. Therefore, the proposed IGAS can provide suitable grinding parameters 
according to the requirements of users.
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