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	 An effective feature reduction method is a key issue to improve the detection performance of 
the electronic nose (e-nose). In this study, a feature reduction method coupled with a support 
vector machine (SVM) was proposed to enhance the detection performance of the e-nose for the 
quality detection of tea. Firstly, the time-domain features were extracted, which can represent 
the original gas information of different grades of tea. Secondly, to consider the importance of 
the relationship between each feature and output category, a subset of multiple features with the 
best variable importance of projection (VIP) score was generated to obtain the optimized feature 
set. Finally, kernel principal component analysis (KPCA) and kernel entropy component analysis 
(KECA) were performed to further reduce the correlation between features to obtain the best 
feature set. The results indicated that VIP-KECA can obtain the best feature set effectively, and 
a good classification accuracy of 98% was obtained. This study shows that the feature reduction 
method is effective for enhancing the detection performance of the e-nose. It also provides an 
effective technique to monitor the quality of tea.

1.	 Introduction

	 The electronic nose (e-nose) is an artificial olfactory system that imitates the human sense of 
smell.(1) By means of cross-sensitivity, it can obtain the overall smell information of a sample 
quickly and accurately. The e-nose system is mainly composed of three parts: a sensor array, 
signal processing, and pattern recognition.(2) The sensor array obtains the smell information of 
the sample. The signal processing performs feature extraction and processing to remove 
redundant information, and the pattern recognition makes the classification decision. Owing to 
its use of sensor detection technology, the e-nose has the advantages of high stability, rapid 
processing, and simple operation, and it has been widely used in food engineering,(3,4) electrical 



2096	 Sensors and Materials, Vol. 33, No. 6 (2021)

engineering,(5) and medical engineering.(6,7) After obtaining the detection data, a feature 
reduction method will affect the detection performance of the e-nose. 
	 The traditional feature processing method mainly includes feature dimensionality reduction 
and feature selection. For the feature dimensionality reduction method, Shan et al. used principal 
component analysis (PCA),(8) Kim et al. used linear discriminant analysis (LDA),(9) and 
Peng et al. used kernel principal component analysis (KPCA)(10) to reduce the dimensionality of 
multiple features. These methods mainly convert linear or nonlinear original features into 
several comprehensive features to remove redundant information, but they do not consider the 
relationship between each feature and the output category. Feature selection methods include the 
filter, wrapper, and embedded methods.(11) Fadi et al. used the information gain,(12) Rehman et al. 
used recursive feature elimination,(13) and Yun et al. used the decision tree(14) to delete redundant 
information that affects gas identification. These methods fully consider the relationship 
between each feature and the output category but cannot reduce the correlation between features. 
Therefore, an effective feature processing method is required, which should consider the 
relationship between each feature and the output category and reduce the correlation between 
features to obtain the optimal feature set. In this work, a feature reduction method is proposed. 
Firstly, the importance of the relationship between each feature and the output category is 
considered, and the original feature set is selected using the variable importance of projection 
(VIP) feature selection method. Secondly, the feature reduction methods of KPCA and KECA 
are used to reduce the correlation between features to obtain the optimal feature set. Finally, a 
support vector machine (SVM) is used to verify the effectiveness of the feature reduction 
method, and it is applied to identify the quality of different grades of tea. 
	 Tea is rich in a variety of chemical components with nutritional value and health functions, 
and is one of the most popular beverages worldwide.(15) Tea is classified into high and low 
grades. In the tea market, low-grade tea is often fraudulently sold as high-grade tea. At present, 
the inspection method of the tea quality mainly relies on artificial sensory evaluation, but the 
method has the disadvantages of strong subjectivity and poor reproducibility.(16) Meanwhile, gas 
chromatography,(17) liquid chromatography,(18) near-infrared spectroscopy,(19) and other 
technologies can qualitatively analyze the chemical composition of tea, but the detection of a 
single chemical composition cannot characterize the overall tea quality. When people choose 
tea, the smell information, which is the external manifestation of the internal chemical 
composition of the tea, directly affects their sensory experience. Therefore, the detection and 
analysis of the smell information of tea based on advanced sensor detection technology can 
provide an effective method for tea quality monitoring.
	 In this work, to improve the detection performance of the e-nose and provide a new 
technology for tea quality detection, a feature reduction method was proposed. Using the VIP 
method, the time-domain features are preliminarily screened, and the optimal feature set is 
determined by kernel entropy component analysis (KECA). A grey wolf optimization (GWO) 
method is also introduced to optimize the two important parameters that affect the classification 
performance of SVM. The process of feature selection and the algorithm are discussed in detail.
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2.	 Materials and Methods

2.1	 Sample preparation

	 Five different grades of Shucheng Xiaolanhua tea were collected as the samples for smell 
information detection. Five grams of tea was placed in a 200 ml beaker, and 150 ml of boiled 
distilled water was added to the beaker, which was covered with a watch glass. After soaking for 
5 min, the tea leaves were removed by filtering, and the filtrate was left to cool to room 
temperature for analysis.

2.2	 Electronic nose

	 The PEN3 e-nose (AIRSENSE Analytics) was used to obtain the smell information of tea. 
The e-nose system consists of an array of metal oxide gas sensors, a gas sampling device, and a 
signal processing unit. Figure 1 shows the structure of the system. Ten different metal oxide 
sensors with specific reactions to different volatile substances are used for sampling. The sensor 
parameters are shown in Table 1. The response value of the sensor is defined as G/G0, where G is 

Fig. 1.	 (Color online) Structure diagram of e-nose system.

Table 1 
Sensor information of PEN3 e-nose.
Sensor Substances detected Threshold value (ml·m−3)
W1C Aromatics 10
W5S Nitrogen oxides 1
W3C Ammonia and aromatic molecules 10
W6S Hydrogen 100
W5C Methane, propane, and aliphatic nonpolar molecules 1
W1S Broad methane 100
W1W Sulfur-containing organics 1
W2S Broad alcohols 100
W2W Aromatics and sulfur- and chlorine-containing organics 1
W3S Methane and aliphatics 10
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the conductance of the sensor when the measured gas enters the air chamber and G0 is the 
conductance of the sensor when pure air enters the air chamber.

2.3	 Experiment

	 The environmental temperature of the experiment was 25 ± 0.5 ℃, and the humidity was 
35 ± 2% RH. The experimental steps were as follows:
(1)	Place 50 mL of tea sample in a 200 mL volumetric flask, seal it with plastic wrap, and allow 

it to stand for 20 min to ensure a sufficient headspace of air.
(2)	Pass clean air treated with activated carbon into the sensor air chamber for 60 s with a flow 

rate of 300 mL/min.
(3)	After cleaning and calibrating the sensor array, measure the smell information of tea for a 

sample for 80 s with a sampling frequency of 1 Hz. Figure 2 shows the response curve of the 
e-nose.

(4)	Repeat steps (1)–(3) for a different sample. Forty samples of each tea were prepared in 
parallel, and 200 samples were obtained for the five different grades of tea.

2.4	 VIP

	 As an important analysis technique, the VIP score reflects the explainability of independent 
variables to dependent variables in partial least squares regression (PLSR).(20) The contribution 
degree of the independent variable (X) to the dependent variable (Y) is called VIPj, as shown in 
Eq. (1).
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Fig. 2.	 (Color online) Response curve of e-nose sensor.
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Here, th is the transfer factor, whj denotes the principal component of the jth input feature, and 
Rd(Y; th) represents the interpretive ability of th for Y. The interpretive of X to Y is transmitted 
through th. If th has a strong ability to interpret Y, and X plays an important role in the 
construction of th, it can be considered that the interpretability of X to Y is amplified.
	 In this work, the independent variable was the time-domain feature extracted from the 
original information of the e-nose, and the dependent variable was the category label of the 
different grades of tea. The higher the VIP score, the greater the explanatory effect of the feature 
on the dependent variable. By using the VIP score, the feature sets L = {L1, L2, ..., Lk} were 
generated, where Li is a subset with i features.

2.5	 KPCA and KECA

	 PCA transforms multidimensional features into several linearly independent comprehensive 
features by a linear transformation.(21,22) However, the multidimensional features of the e-nose 
sensor have complicated and nonlinear relationships. Thus, in KPCA, the original features are 
mapped to a high-dimensional space using a kernel function to make the original features as 
linear as possible.(23) Equation (2) shows the mapping:

	
2
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 

,	 (2)

where K(x, x′) denotes the kernel matrix, x and x′ denote the observation vectors, and τ is the 
kernel parameter. In KPCA, the dimension of the high-dimensional space depends on the 
number of samples. Then, K is decomposed, and the principal components with the highest 
eigenvalues are considered as the eigenvectors. In this work, the number of kernel principal 
components (KPCs) was determined as that giving a cumulative contribution rate of eigenvalues 
(PACR) exceeding 95% and τ was set to 100.
	 In contrast to KPCA, KECA does not use eigenvalues to reduce the feature dimension. 
Instead, it uses the Renyi entropy to find the direction that reduces the dimensionality in the 
high-dimensional space. To ensure the minimum information loss, KECA uses eigenvalues and 
eigenvectors to determine the projection direction.(10) Previous research has shown that the 
features transformed by KECA will be more beneficial for identification. In the process of 
dimensionality reduction, the eigenvector is calculated from the Renyi entropy. Similarly to 
KPCA, the number of kernel entropy components (KECs) was determined as that giving a 
cumulative contribution rate of Renyi entropy (EACR) of greater than 95%, and the same kernel 
function and kernel parameter were applied.

2.6	 GWO-SVM

	 The SVM was proposed by Cortes and Vapnik on the basis of statistical theory.(24) It is based 
on the principle of structural risk minimization and has many advantages for pattern recognition 
problems, such as a small sample size, nonlinearity, and a high-dimensional feature space.(25) In 
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the process of pattern recognition, the kernel function maps the feature vector to a space with a 
higher dimension and establishes a hyperplane in this space. Previous studies have shown that 
the Radial Basis Function (RBF) kernel function exhibits a good classification performance.(11,20) 
Therefore, the RBF was applied as a kernel function to map low-dimensional data. The penalty 
factor c and the kernel function parameter g are important parameters that affect the 
classification performance of the SVM. Therefore, a GWO was introduced to calculate the 
important parameters. The fitness function was the highest accuracy of the training set under 
fivefold cross-validation (CVAccuracy). The best parameters were obtained when the highest 
CVAccuracy was achieved. In the GWO, the initial number of wolves was 30 and the number of 
iterations was 100.

3.	 Results and Discussion

3.1	 Feature extraction

	 Figure 3 shows the sensor response radar chart at 40 s during the detection process for the 
five different grades of tea, where the central axis of each radar chart shows the sensor response 
value. The smell information of the five different grades of tea was similar. Therefore, feature 

(d) (e)

Fig. 3.	 (Color online) Radar charts of e-nose response information. (a) Super, (b) Grade 1, (c) Grade 2, (d) Grade 3, 
and (e) Grade 4.

(a) (b) (c)
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extraction was necessary to represent the original detection signal, which is beneficial for 
improving the ability to identify the tea quality.
	 According to Fig. 2, the response signal of the e-nose was stable and the sampling frequency 
was low. Therefore, the time-frequency domain feature was not considered, and we extracted the 
time-domain features, which were the maximum value over 1–60 s (MAX), the steady-state 
average value over 50–60 s (ME), the integrated value over 1–60 s (IN), and the peak factor of 
over 1–60 s (PF), as expressed by Eqs. (3)–(6), respectively.
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60

2
50

1= ( )
10 t

T f t
=
∑ 	 (4)

	
60

3 1
= ( )T f t dt∫ 	  (5)

	 60 2
4 1

max ( ) 60( ( ))t
T f t f t

=
 =  ∑ 	 (6)

Here, f(t) is the response value at time t, T1 represents the dynamic balance of gas volatilization 
in the steady detection state, T2 is the peak value of the gas volatility concentration, T3 is the 
dynamic characteristic of gas volatilization in the detection process, and T4 is the stability of the 
gas detection process. We used these four features to represent the original detection signal.

3.2	 Feature selection based on VIP score

	 The importance ranking of the 40 features contributing to the classification label was 
calculated using the VIP score, and the ranking result is shown in Fig. 4. The contribution of the 
sixth and eighth sensors’ integral values to the classification result was high, whereas the 

Fig. 4.	 (Color online) Ranking result of VIP score.
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contribution of the first and fifth sensors’ maximum values to the classification result was low. 
However, from the ranking of the VIP scores, we still cannot determine the main features that 
affect the classification performance. Therefore, 40 feature subsets were obtained by feature 
accumulation using the VIP score, which were combined with the classification results of GWO-
SVM to select the main features that affect the tea quality.
	 By the Kennard–Stone (KS) method, the training set and testing set were divided, with 30 of 
the 40 samples of each grade of tea used as the training set and the remaining 10 samples used as 
the testing set. Therefore, the training set contained 150 samples and the testing set contained 50 
samples. The KS method can make the sample distribution of the training set wider and help 
strengthen the generalization ability of a model.(16) Table 2 shows the classification results of the 
40 feature subsets in the GWO-SVM algorithm. Overall, as the number of features increased, 
the classification accuracy increased while the accuracy fluctuated in a small range, indicating 

Table 2 
Classification results of different feature subsets based on GWO-SVM.

No. Features
GWO-SVM

Training set (%) Testing set (%)
#1 In8 67.33 48
#2 In8+In6 67.33 46
#3 In8+In6+Ma8 68 54
#4 In8+In6+Ma8+Me8 68 38
#5 In8+In6+Ma8+Me8+Me9 67.33 58
#6 In8+In6+Ma8+Me8+Me9+Pf9 73.33 60
#7 In8+In6+Ma8+Me8+Me9+Pf9+Ma9 72.67 58
#8 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4 75.33 62
#9 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10 75.33 64
#10 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4 75.33 62
#11 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7 73.33 64
#12 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7 76 78
#13 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7 88 82
#14 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7 88 78
#15 In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10 87.33 78

#16
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4

88 80

#17
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9

88 78

#18
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10

91.33 84

#19
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8

91.33 86

#20
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10

90 86

#21
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2

90 86

#22
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2

91.33 84

#23
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2

93.33 90

#24
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2

93.33 86

#25
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3

91.33 90
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Table 2 
(Continued) Classification results of different feature subsets based on GWO-SVM.

No. Features
GWO-SVM

Training set (%) Testing set (%)

#26
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3

91.33 88

#27
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3

90 90

#28
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1

93.33 90

#29
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1

93.33 92

#30
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1

93.33 92

#31
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6

91.33 92

#32
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6

93.33 90

#33
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6

93.33 92

#34
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4

93.33 90

#35
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5

93.33 90

#36
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5+Pf5

91.33 92

#37
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5+Pf5+Me5

93.33 92

#38
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5+Pf5+Me5+Ma3

91.33 90

#39
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5+Pf5+Me5+Ma3+Ma5

91.33 90

#40
In8+In6+Ma8+Me8+Me9+Pf9+Ma9+Pf4+In10+Me4+In7+Ma7+Pf7+Me7+Pf10+
Ma4+In9+Me10+Pf8+Ma10+In2+Ma2+Me2+Pf2+Pf3+In3+Me3+Pf1+In1+Me1+
Ma6+Me6+Pf6+In4+In5+Pf5+Me5+Ma3+Ma5+Ma1

91.33 90

that there was a correlation between the features. When the number of features reached 25, the 
classification accuracy was the same as that of the original feature fusion set, indicating that the 
original fusion feature contained a large amount of redundant information. When the number of 
features reached 29, the classification accuracy reached a maximum of 92%, above which it 
saturated. It was preliminarily determined that these 29 features were the main features that 
affect the tea quality. 
	 However, the VIP method mainly considers the importance of the relationship between the 
features (independent variables) and category labels (dependent variables), and ignores the 
mutual influence between features. Therefore, the selected features may have a strong 
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correlation, which is not beneficial for improving the classification performance. Therefore, 
KPCA and KECA were used to process the 29 features to obtain the optimal feature set.

3.3	 Dimensionality reduction analysis of KPCA and KECA

	 The dimension of the original fusion features was 40. Figure 5(a) shows the dimensionality 
reduction result of the original fusion features using KPCA. The cumulative contribution rate of 
the first two principal components was 82.92%, and the super, grade 1, and grade 4 teas had a 
large overlap, which shows that the smell information of the grade 4 tea was similar to that of the 
super tea. There was also a large overlap between the grade 2 and grade 3 teas, indicating that 
the smell information was similar. In contrast to KPCA, KECA uses the Renyi entropy to find 
the best projection direction. Figure 5(b) shows the dimensionality reduction result of the 
original fusion features using KECA. The cumulative contribution rate of the first two principal 
components was 87.39%, and the overlap between the smell features of the different grades of 
tea was less than that of KPCA, indicating the advantageousness of KECA in dimensionality 
reduction. However, there was still feature crossover between the super, grade 1, and grade 4 
teas and between the grade 2 and grade 3 teas.
	 The dimension of the feature set selected by the VIP score was 29. Figure 6(a) shows the 
dimensionality reduction result of the KPCA dimensionality reduction method for the feature set 
selected by the VIP score. The cumulative contribution rate of the first two principal components 
was 88.99%. Compared with the dimensionality reduction effect of the original fusion features, 
the clustering effect of the super, grade 1, and grade 4 teas, was obvious, and the overlap of the 
grade 2 and grade 3 teas was reduced. Figure 6(b) shows the dimensionality reduction result of 
the KECA dimensionality reduction method for the feature set selected by the VIP score. The 
cumulative contribution rate of the first two principal components was 93.38%, and a clear 
clustering effect was observed in each category, showing the effectiveness of VIP-KECA.

(a) (b)

 Fig. 5.	 (Color online) Dimensionality reduction effect of the original fusion feature set for different methods. (a) 
KPCA. (b) KECA.
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3.4	 Classification results for different feature sets

	 Table 3 shows the GWO-SVM classification performance for different feature sets. Overall, 
the performance of the feature subset selected by the VIP score was improved slightly and the 
number of feature dimensions was reduced slightly. The original fusion features were directly 
processed by KPCA and KECA, the number of feature dimensions was reduced to 10 and 9, 
respectively, and the classification performance was improved slightly. The feature set selected 
by the VIP score was further reduced by KPCA and KECA, the number of feature dimensions 
was reduced to 6 and 5, respectively, the classification performance was improved significantly, 
and GWO-SVM obtained classification accuracies of 96% and 98%, respectively. Meanwhile, 
the feature processing methods of recursive feature elimination (RFE) and Max-Relevance and 
Min-Redundancy (mRMR) were compared to verify the effectiveness of the feature reduction 
method. The original fusion features were directly processed by RFE and mRMR, the number of 
feature dimensions was reduced to 26 and 25, respectively, and the classification performance 
was improved slightly. Figure 7(a) shows the result of parameter optimization based on the GWO 
using the VIP feature set. As the number of iterations increased, the information of individual 
wolves continued to interact, and the optimal fitness function continued to rise. When the 
number of iterations was 25, the best fitness function of the wolf population was 93.33%, and the 
best parameters c and g were obtained. That is, the training set achieved the highest classification 
accuracy of 93.33% under fivefold cross-validation when the optimal parameter c was 2.17 and g 
was 0.75. Figure 7(b) shows the GWO parameter optimization process under the VIP-KECA 
feature set. When the number of iterations was 20, the best fitness function of the wolf population 
was 97.33%, and the best parameters c and g were obtained. That is, when CVAccuracy reached 
97.33%, the optimal parameter c was 2.04 and g was 0.28.

Fig. 6.	 (Color online) Dimensionality reduction effect of the VIP feature set for different methods. (a) KPCA. (b) 
KECA.

(a) (b)
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4.	 Conclusion 

	 In this work, a feature reduction method was proposed to reduce the number of feature 
dimensions, which was combined with the SVM to identify the smell information of five 
different grades of tea. The preliminary features that affect tea smell information were screened 
using the VIP score. Furthermore, KECA was applied to eliminate the correlation between 
features based on the Renyi entropy. KECA shows a good dimensionality reduction result for the 
VIP feature set. The GWO was used to optimize the important parameters that affect the 
classification performance of the SVM, and a high classification accuracy of 98% was obtained.
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Table 3 
GWO-SVM classification performance for different feature sets. 
Feature set Dimension Best c Best g Training set accuracy (%) Testing set accuracy (%)
Original 40 3.21 0.34 86.67 90.00
VIP 29 2.17 0.75 93.33 92.00
KPCA 10 3.14 0.24 90.00 92.00
KECA 9 1.34 0.22 90.00 92.00
VIP-KPCA 6 2.07 0.02 96.00 96.00
VIP-KECA 5 2.04 0.28 97.33 98.00
RFE 26 2.01 0.63 93.33 92.00
mRMR 25 4.62 0.92 90.00 92.00
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