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	 Coffee is one of the most popular drinks in the world. It contains antioxidants and health-
promoting nutrients that can boost one’s energy and focus. However, defective beans mixed in 
with raw beans can easily affect the flavor and even be harmful to human health. The traditional 
human visual inspection of defective beans is extremely laborious and time-consuming and may 
result in low-quality coffee due to worker stress and fatigue. We propose a lightweight and 
explainable intelligent coffee bean quality inspection system that uses deep learning (DL) and 
computer vision (CV) technologies to assist operators in detecting defects, including mold, 
fermentation, insect bites, and crushed beans. We use knowledge distillation (KD) to achieve 
model compression. The basic explainable convolutional neural network (CNN) model is 
established using the explainable AI (XAI) method. The implemented system has a high 
identification rate, low complexity, and low power consumption, and can explain the judgment 
criteria of the complex classification model.

1.	 Introduction

	 Coffee is one of the most popular beverages in human society. Drinking a cup of coffee 
before work is a daily routine for many people. 95% of Taiwan’s coffee beans are imported. If 
raw coffee beans are stored improperly in a hot and humid environment during transport, they 
are easily contaminated by ochratoxin A, which causes palpitations, headaches, and other 
symptoms. Moreover, crushed and insect-eaten beans and small stones, if not removed 
completely, will prevent even roasting, which reduces the flavor and even affects human 
health.(1)

	 The traditional method of detecting defective beans and crushed stones has been by human 
visual inspection, which requires training and long-term experience. The process is not only 
time-consuming but also prone to misjudgments due to worker stress and fatigue. Thus, the 
quality and efficiency of the process decrease with increasing working hours. To solve the 
problem, automated optical inspection (AOI) has been introduced as it uses optical instruments 
together with computer vision (CV) technology to capture surface images and detect foreign 
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objects or defects such as abnormal patterns. Introducing AOI into the production line improves 
inspection accuracy and speed, and production efficiency. It is especially appropriate for mass 
production.(2–18)

	 Deep learning (DL) has been adopted in AOI, which is a data-driven algorithm that learns 
how to classify objects from training data. DL learns to detect defective beans and foreign 
objects from a database of numerous images of defective and good-quality beans. Therefore, 
DL-based CV technology has helped the coffee industry enhance the performance of quality 
inspection and reduce the use of human inspection, which saves cost and time and solves the 
bottleneck of product testing.
	 Many researchers have studied methods of automatically classifying the quality of raw coffee 
beans. Faridah et al.(2) used texture analysis and RGB color information to extract the 
characteristics of coffee beans, and they trained a neural network for classification using the 
data. Turi et al.(3) combined color, morphology, and texture data with an artificial neural network 
(ANN) to identify the species and region of origin of Ethiopian coffee beans. This method 
successfully classified four coffee beans from different regions. L*a*b* color measurement 
values based on Commission Internationale d’Eclairage (CIE) have been used as features, and 
ANN and Bayesian classifiers (Bayes classifiers) have been applied for the quality classification 
of raw beans.(4) As convolutional neural networks (CNNs) are efficient in image feature 
extraction,(5) classification, object inspection, and so forth, deep CNNs are applied in the field of 
image processing. Thus, several researchers have tried to use a CNN to assess the quality of 
coffee beans. Huang et al.(6) used a CNN to process images of coffee beans and analyze image 
information. Pinto et al.(7) applied a CNN to classify six different types of defective beans. In 
Ref. 8, hyperspectral signals were processed by using a support vector machine and a CNN to 
find and classify insect-eaten and rotten beans. A CNN shows good performance in image 
classification or recognition but has high computational complexity. As a CNN requires large 
storage space and computing resources,(9) it cannot be used on mobile devices or embedded 
platforms. This problem must be solved to implement a smart coffee bean inspection system. 
Although deep neural networks (DNNs) have been successfully applied in many applications, 
the complex operation process does not ensure reliability. As neural layers become deeper and 
more complex, the process becomes more difficult for a human to understand. Therefore, it is 
not easy to effectively apply a DNN. Despite their high degree of regularity, DNNs sometimes 
produce unpredictable results, potentially causing errors.(10) This requires an understanding of 
the internal mechanism by which DNNs make decisions.
	 To solve such problems, many studies on model compression methods have been carried out 
to minimize the consumption of computing resources and time. As a result, accelerated model 
training and inferencing have been proposed. Model compression methods include network 
quantization, pruning, and knowledge distillation (KD).(11) A model with high computational 
complexity, low power consumption, and a small number of parameters is compressed as much 
as possible without affecting the accuracy rate (ACC).(12–14) However, a DNN still cannot explain 
the reasons behind its decisions and actions to humans. This problem is solved by AI-related 
technology, which provides transparent information features and produces explainable AI (XAI) 
models, thus gaining the trust and confidence of users.
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	 Given the above problems, we propose a lightweight and explainable machine learning (ML) 
technology for a coffee bean quality assurance system that detects defective coffee beans. The 
proposed architecture adopts the KD method to simplify the redundant operation of the CNN 
and the local explainable model-agnostic explanation method (LIME) to approximate the 
regional target black-box model. The new architecture is expected to predict the output, which 
helps build a basic explainable DNN model. The architecture is expected to have a high 
recognition rate, low complexity, and low power consumption, and can explain the judgment 
criteria for predictions.

2.	 Related Research

2.1	 Residual network (ResNet)

	 Increasing the number of layers in a CNN yields gradient disappearance and degradation 
problems in training. The degradation problem comes from the fact that the gradient cannot be 
transmitted backward, which results in error accumulation, a saturation of the network accuracy, 
and performance degradation. A residual neural network (ResNet) is modified on the basis of 
VGG19 (Visual Geometry Group network 19).(15) The residual unit is established through a 
short-circuit connection mechanism, as shown in Fig. 1. The residual learning mechanism 
established by ResNet enables deep CNN models with a residual unit structure formed by 
several stacking hidden layers to be trained easily. When the input is x, the learned feature is 
denoted as H(x) and the learned residual is denoted as F(x) = H(x) – x. When the residual is 0, the 
accumulation layer only performs identity mapping. The network performance does not decrease 
with increasing depth. In a real application, the residual will not be 0, which means that the 
stacked layers learn new features, improving the performance of the network.

2.2	 Compression of complex models based on KD

	 KD is an effective model compression method. It uses the trained complex teacher model to 
train a small student model. Training the student model as much as possible while maintaining 
the performance of the teacher model allows its deployment on mobile devices or embedded 
platforms that have limited computing resources.(12) The method uses a softened softmax 

Fig. 1.	 (Color online) Residual blocks.
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probability distribution to achieve model compression, which is appropriate for training a 
streamlined image classification network. For an image dataset, xi is the input image, yi is the 
standard addition category (i = 1, 2, …, n), t is the teacher model, and Pt = softmax(zt/T) is the 
predicted output probability, where zt is the input of the softmax layer and T is the temperature 
parameter. Similarly, we define Ps = softmax(zs/T) for a student model. The softmax function is 
defined as 
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where Pi represents the output probability of the ith category and zi and zj are the inputs of the 
softmax layer. T = 1 corresponds to a general softmax conversion. The probability distribution of 
the predicted results among the categories is the probability of extreme values. That is, the 
probabilities of the correct category and all other categories are close to 1 and 0, respectively. 
However, the probability distribution generated by the softmax function is flatter and softer for 
T > 1 than for T = 1 and provides more implicit information. The degree of similarity between 
each category is known when the training process of the model adds more judgment conditions. 
The student model learns in accordance with the loss function 

	 L = α · Lhard + (1 – α) · Lsoft,	 (2)

where Lhard is a typical cross-entropy loss function (i.e., T = 1) in classification problems, Lsoft is 
a soft cross-entropy loss function predicted by the teacher model, and α is a weighting factor that 
balances these two cross-entropy loss functions. Figure 2 shows a schematic diagram of KD.

2.3	 Explainable neural network model

	 LIME uses a linear model to locally approximate the prediction results of the target black-box 
model.(10) It detects changes in the output of the black-box model by slightly perturbing the local 

Fig. 2.	 (Color online) Operating mechanism of KD.
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features of the input to determine which features in the training data play the most critical role in 
decision-making and training the explainable model. However, the model is a local approximation 
of the black-box model rather than a global approximation. For a complex classification model f, 
LIME finds an explainable model g to explain why an input sample is classified into the category 
predicted by f. Assuming that the loss function of a simply explainable model ξ used to 
approximate f is L, then 

ixπ  is the kernel function for calculating the similarity. Ω(g) is the 
complexity of the explainable model g. G represents all possible interpretation models, then the 
problem of interpreting the model ξ to explain f(xi) can be transformed into an optimization 
problem. We compare the approximation of the simple model g and the original model f by 
minimizing the loss function as shown in Eq. (3).

	 ( , , ) ( )( ) arg mini ix
g G

L f g gxξ
∈

π +Ω =   	 (3)

	 By image recognition, the disturbance to the input image can be understood. For example, the 
effect of the model on the image recognition is observed after covering several image blocks. On 
this basis, a simple linear regression model is established, which is used to explain the prediction 
results to clarify which segmentation images determine the output of the classification model.

3.	 Architecture of DNN

	 There are three models: a complex deep model for training, a lightweight model, and a model 
for explaining the classification decision of coffee beans. 

3.1	 Complex model for training based on ResNet-18

	 We first use ResNet-18 to train the coffee bean quality inspection model. The main purpose 
of training is to achieve high accuracy, and factors such as complexity and power consumption 
are not considered. ResNet-18 consists of a root block and stacks 1–4. Each stack is formed by 
superimposing two residual blocks, and all residual blocks use a 3×3 filter with two convolutional 
layers. Each layer in stacks 1, 2, 3, and 4 has 64, 128, 256, and 512 convolution kernels, 
respectively. ResNet-18 is connected to a global average pooling layer instead of a fully 
connected layer for comparison with a traditional classification network (Fig. 3).

3.2	 Lightweight student model with KD

	 To construct a lightweight model, we propose a model based on a depthwise separable 
convolution algorithm(15) as the student model of KD. The trained ResNet-18 architecture is the 
teacher model, so the student model learns KD, as shown in Fig. 4. The student model avoids the 
computational complexity of the CNN algorithm and has fewer parameters. The model 
architecture in this work is based on a depthwise separable convolution algorithm, as shown in 
Fig. 5.



2304	 Sensors and Materials, Vol. 33, No. 7 (2021)

Fig. 3.	 (Color online) ResNet-18 architecture.

Fig. 4.	 (Color online) Lightweight CNN.

Fig. 5.	 (Color online) Proposed lightweight model based on depthwise separable convolution algorithm.
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3.3	 Neural network architecture based on LIME

	 The coffee bean image classifier decomposes an original input image into explainable local 
features, as shown in Fig. 6. Then, the input variables are disturbed by covering some parts with 
gray blocks. Different disturbance settings result in different probabilities of the classifier that 
predicts the image in the target category. On this basis, a linear regression model based on the 
locally weighted dataset is obtained. Finally, the feature with the highest positive weight is used 
to interpret the results of the model to understand why the model makes such a judgment, as 
shown in Fig. 7.

4.	 Results and Discussion

4.1	 Dataset

	 An open-source dataset of coffee bean images was used for testing.(17) The dataset contains 
4626 images of green coffee beans under the same light source, among which there are 2150 and 
2476 images of good and defective beans, respectively. In the experiment, the dataset was 
divided into a training set of 4000 images and a testing set of 626 images.

Fig. 6.	 (Color online) Coffee bean image decomposed into explainable local features: (a) original raw bean image 
and (b) segmented image.

Fig. 7.	 (Color online) Linear regression model and the feature with the highest positive weight for XAI.

(a) (b)
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4.2	 Training performance and accuracy

	 ResNet-18 constructed a large complex model, that is, the teacher model. The depthwise 
separable convolution algorithm was used for a lightweight student model that is similar to the 
VGG16 architecture. The ResNet-18 model was trained by switching from the adaptive moment 
estimation (ADAM) optimizer to the stochastic gradient descent (SGD) training method.(18) 
First, the ADAM optimizer was used as the optimizer with a learning rate (lr) of 0.1 for training. 
When the accuracy of the training set reached 95%, the ADAM optimizer was replaced with the 
SGD method. The accuracy of the ResNet-18 model reached about 93% in the testing set for lr of 
0.01 and momentum of 0.002.
	 In the experiment, the student model was trained on the basis of KD where the training 
method of SWATS was used and the optimizer was changed to SGDM when the accuracy of the 
training dataset reached 95%. The accuracy of the training set reached 79% for lr of 0.01 and 
momentum of 0.002, as shown in Fig. 8. The model converged quickly when using Adam, but 
the fluctuation range of the ACC and the loss of the testing set became large.
	 Next, the KD design method was used with ResNet-18 for the teacher model, with a distilled 
model used for training the student model. The SGDM was used as the optimizer to continue 
training. The accuracy of the lightweight model with KD reached 91%, which was a better 
performance than the training method with KD, as shown in Fig. 9. The accuracy of the training 
method in which the student model was trained from scratch for ACC was 79%, whereas that of 
the training method with the student model using KD for ACC was 91%. The student model 

Fig. 8.	 (Color online) Results of lightweight model training without KD.
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architecture used a quarter of the number of parameters as the ResNet-18 model, and its memory 
load was about 40 times less than that of ResNet-18, as shown in Table 1.

4.3	 Interpretability of the model

A.	Significance inspection of raw coffee bean images
	 Saliency maps show the important variables of a model. In the saliency maps in Fig. 10, light 
green spots show defective parts of coffee beans. Then, the loss function is identified by the 
proposed model that focuses on the different values of pixels in the images between defective 
and good coffee beans. 

B.	Explainable model
	 LIME establishes an explainable model based on the quality analysis of raw coffee beans. 
Figure 11(a) shows the result of the analysis of sour and moldy beans by LIME. The result shows 
that the parts in green focus on the shape and uneven color of the defective beans as these parts 
have a positive effect on correcting a prediction. The classification results of defective beans are 

Fig. 9.	 (Color online) Results of lightweight model training with KD.

Table 1
Model parameters and memory consumption.
Model Parameters Memory cost (kB)
ResNet-18 1104000 43000
Student model 256779 1023
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shown in Figs. 11(b) and 11(c). Figure 11(b) shows that the model focuses on the broken shapes to 
determine crushed beans. Figure 11(c) shows that the model judges beans to be black and moldy 
from the discolored parts. Good beans are represented as green parts, which have a positive 
impact on the prediction results and focus on uniform and light green parts of coffee beans. The 

Fig. 10.	 (Color online) Saliency maps of raw coffee beans produced by the proposed model.

(a)

(b)

Fig. 11.	 (Color online) Analysis results of coffee beans produced by the explainable model. (a) Sour, moldy beans. 
(b) Crushed beans and beans bitten by insects.
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white spots of the green beans adversely affect the accuracy of prediction. The model regards 
white spots as defects, as shown in Fig. 11(d). The colored parts contribute to improving the 
model. For example, the image enhancement of data with significant characteristics can help 
improve the model and increase the overall performance.

5.	 Conclusion

	 Even though great progress has been made in DL methods and their applications in the past 
ten years, DL does not provide sufficient reliability. As the complexity of a neural network 
increases, its inferential logic process becomes more difficult to understand. We combined DL 
and CV technology to establish a system for inspecting coffee bean quality and obtained a 
lightweight and explainable high-performance CNN model through KD and model compression. 
The proposed architecture accurately classifies the quality of coffee beans and allows 
understanding of the model’s feature marks of the image, which makes the information open and 
transparent.

Fig. 11.	 (Continued) (Color online) Analysis results of coffee beans produced by the explainable model. (c) Bad 
beans. (d) Good beans.

(c)

(d)
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