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	 We have studied the near-field measurement of periodic non-flat surfaces and compared the 
error between the near-field and far-field measurements. Using known boundary conditions and 
recorded scattering data, we derived a group of matrix functions that can be converted into an 
external problem, and then used the self-adaptive dynamic differential evolution (SADDE) 
method to recover the shape, periodic length, and dielectric constant of surfaces. We compared 
the search speed and stability of the surface reconstruction. The SADDE converges to the global 
extreme regardless of the initial guess. In a numerical simulation, even if the initial estimate was 
much larger than the true value, we could still find an accurate numerical solution and 
successfully reconstruct the surface shape function, period length, and relative dielectric 
constant. The simulation results show that the error in the near-field measurement is smaller than 
that in the far-field measurement. 

1.	 Introduction

	 Microwave imaging uses microwaves as a transmitted signal, raising the problem of 
electromagnetic backscattering. The principle is to irradiate a measured object with microwaves, 
then use the measured external scattering field to obtain the final target. Through effective 
calculations, the contour and dielectric constant of objects are calculated. Remote sensing based 
on electromagnetic inverse scattering is a measurement technique used in microwave imaging. 
This technology uses microwaves to illuminate the scattering, then the reflected field is sensed 
using an electromagnetic sensor. This method has been widely used in telemetry, imaging of 
buried objects, and non-destructive testing for many years.(1–5) Compared with other imaging 
technologies, the cost of equipment is lower, making this technology very valuable.
	 Owing to the rapid improvement of computer processor performance and the development of 
numerical methods, we can use a measured electromagnetic field to reconstruct the shape of a 
conductor or the dielectric constant of an object. Generally, a layered area is a rough surface 
rather than a plane surface in the real world,(6) so a non-flat plane is more realistic and more 
useful in practical applications. The surface to be reconstructed can be a perfect electric 
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conductor (PEC) medium with a curved surface or two dielectric media separated by an 
interface. There have been many studies on PEC surface imaging problems, most of which rely 
on iterative algorithms. In Ref. 7, a multi-event and multi-frequency method was used to study 
small disturbances in three-dimensional situations. In Ref. 8, the Dirichlet and Neumann 
boundary conditions for the electromagnetic integral equation were given. The imaging problem 
of separating the rough surfaces of two dielectric media is well established. For example, the 
inverse problem can be solved by a semi-analytical method with the help of a perturbation series 
method.(9) However, this approach can only be used for a small non-flat surface. In Ref. 10, the 
spectral expression for received scattered waves was used to reconstruct a lossy rough surface. 
However, this method is only effective for a slightly rough surface. The Kirsch–Kress method 
was proposed as an effective iterative method for a wide range of roughness.(11) The basic ideas 
introduced in Refs. 12 and 13 enable a very comprehensive numerical analysis of rough surfaces 
by an iterative algorithm. In addition, microwave imaging has also been used to image buried 
objects in recent years.(14,15) However, conjugate methods often become trapped at local extrema. 
In this paper, we compare the imaging of rough surfaces by near-field and far-field measurements 
using the self-adaptive dynamic differential evolution (SADDE) method. Our research is related 
to multivariate data analysis since many variables are involved. The rest of this paper is 
organized as follows: Sect. 2 covers the theoretical formulation and Sect. 3 introduces the 
SADDE method to solve the inverse scattering problem. Simulation results and conclusions are 
given in Sects. 4 and 5, respectively.

2.	 Theoretical Formulation

	 As shown in Fig. 1, electromagnetic waves illuminate two-dimensional periodic non-flat 
surfaces. Rough surfaces are separated by the half-space function y = f(x). The surface has a 
period of d in the X direction and infinity in the Z direction. The characteristics of the rough 
surface vary in the XY plane and the permittivity and permeability are represented by (ε0, μ0)  

Fig. 1.	 Electromagnetic waves illuminating a periodic rough surface.



Sensors and Materials, Vol. 33, No. 7 (2021)	 2335

and (ε1, μ1)  for the upper and lower surfaces, respectively. We assume a TM polarized uniform 
plane wave ejωt with time harmonics incident along the Z direction. The incident electric field is 
represented as follows by the electric field iE



 at the incident angle ϕ.

	 ( ) ( )0 sin cos
0 0 0, ˆ,jk x y

iE e z kx y φ φ ω ε µ− ⋅ − ⋅= =


	 (1)

By Maxwell’s equation for the electromagnetic field, we use the two-dimensional Green’s 
function to express the scattered field for region I as(16)
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The electric fields on the surface and in the normal direction of the surface are expressed as E0 
and n′, respectively.
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Here, Gi is the two-dimensional periodic Green’s function, ( ) ( ) ( ) ( )2 2(2)
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∑  is the second type of Hankel 
function, and ki is the wave number of the surface. The Green’s function in the spectral domain 
is rewritten as 
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Using Green’s identity and setting the observed point on the upper and lower surfaces, we 
obtained following set of integral formulas:
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Also, by setting the observed point on the lower and upper surfaces, we obtain the following 
equation:
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Using the boundary condition with continuous tangential fields, we describe the equations as 
follows:
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Substituting Eqs. (8) and (9) into Eqs. (6) and (7), respectively, gives
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	 The upper surface is obtained from the period, dielectric coefficient, and shape of the surface 
using Eqs. (2), (10), and (11).
	 When we use a numerical technique to handle imaging of the surfaces, Eqs. (2), (10), and (11) 
are converted into a matrix function by the method of moments. Then, through the point 
matching method, the impulse function is used as the basic function and the test function. 
Equations (10) and (11) are converted into the following matrix equations:

	 [ ] [ ] [ ] [ ] [ ] [ ]0 0 0 0 01 1 1 1
1
2N N N N Ni N N NE E G E G U

× × × × × ×
′= − + ,	 (12)
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Here, m and n are the indices for the observation and source, respectively. The forward scattering 
problem is solved by solving Eqs. (12) and (13) to obtain the matrices of [E0] and [U0]. The 
scattering field can be calculated using Eq. (2), with the following matrix representation:

	 [ ] [ ] [ ] [ ] [ ]0 0 0 01 1 1s M M N N M N NE G E G U
× × × × ×

′= − ,	 (16)

where M is the total number of observation points. The recorded point is set above the surface.

3.	 Inverse Scattering

	 We used Eqs. (10) and (11) to compute E0 and U0 from the estimated period length, dielectric 
coefficient, and shape function of the surface, then calculated the scattered field through Eq. (2). 
To monitor the iteration process, we define the objective function as

	

1
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where ( )cal
s mE r  is the optimized scattering field and ( )meas

s mE r  is the measured scattering field. 
A smaller OBJF indicates a better estimate.
	 SADDE is a modified version of the dynamic DDE. The SADDE algorithm adds a mechanism 
to dynamically change the adjustment factor during the search process. First, the algorithm 
initializes the population parameters randomly to compute the objective function. Second, we 
mutate the test vector according to the control vector and adjust the control vector for the next 
generation, and consider whether to use the crossover mechanism according to the preset 
probability. If we use this mechanism, the new crossover particle is compared with the previous 
target value, and then the global best particle is updated.
	 The flow of the SADDE method is shown in Fig. 2. The parameter vector is evolving in the 
gth generation and can be expressed as
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	 1 2 3 , , , ...,g
j j j j jDX x x x x =   , j = 1, 2, ..., Np,	 (18)

where Np is the total number of vectors and D is number of parameters in each vector. The 
mutation process is expressed as 

	 ( ) ( )1
1 2 1 2

g g g g g
j j best j r rV X F X X F X X+ = + ⋅ − + ⋅ − , 1 2 1 2  , 1, &pr r N r r ∈ ≠  ,	 (19)

where F1 and F2 are scaling factors. Next, for the given crossover rate, we use a crossover to find 
the new parameter vectors and we keep the best vector in the iterative process. The final best 
vector is the solution of the imaging problem.

4.	 Numerical Results

	 Consider a uniform plane wave with an amplitude of unity incident from above the surface 
with an incident angle of ϕ = 35° and a frequency of 3 GHz, that is, the wavelength is 0.1 m. The 
upper surface is air, that is, ε0 = 8.854 × 10−12 F/m, and the dielectric coefficient below the 
surface is ε1 = 2.56ε0. The period length is d = 0.083 m. The measuring points are arranged 

Fig. 2.	 Flow of the SADDE method.
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equidistantly on a straight line from x = −0.03 m to 0.03 m with nine measuring positions, as 
shown in Fig. 1.
	 In the following simulation, the number of terms Md used to expand the surface current in the 
forward scattering problem is 50. The calculated number of unknowns is Nf for the surface 
expanded by the Fourier function, with one unknown period length d and one unknown relative 
permittivity ε1. In other words, there are (Nf + 2) unknowns. The number of particles is 75 and 
the number of generations is 500. The shape of the non-flat surface function expanded by the 
Fourier series is

	
/2

/21 1

2 2( ) cos sin
2

f f
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n n
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Nx xF x a n a n
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Nf is 6 for the following simulation.
	 The errors for the dielectric constant, period length, and shape are computed using the 
following equations:
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Example 1 is a convex non-flat periodic surface with the shape function

	
2 6 4 6( ) 0.03cos 0.006cos 0.007sin 0.005sinx x x xF x
d d d d
π π π π       = + + +       

       
 .	 (24)

The surface reconstruction results for 10% noise are drawn in Fig. 3, where Figs. 3(a) and 3(b) 
show the results for near-field (y = 0.05 m) and far-field (y = 2 m) measurements, respectively. 
The reconstruction of the final generation in the near field almost fits the actual value, while that 
in the far field has some deviation from the actual value. Figure 4 shows a comparison of DP and 
DF for near-field and far-field measurements with 10% noise. The near field converges to the 
extreme values of DP and DF in about 200 generations as shown in Fig. 4(a). From Fig. 4(b), 
although the far-field part also converges, the convergence value is worse than that of the near-
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field measurement. DF and DEPS are plotted in Fig. 5 for 10% noise. It can be seen that the error 
value in the near field [Fig. 5(a)] is much smaller than that in the far field [Fig. 5(b)].
	 To test the robustness of the algorithm to noise, different noise levels were added in the 
scattered field. Figures 6(a) and 6(b) show a comparison of the results of near-field and far-field 
measurements, respectively, for 0.1, 1, and 10% noise levels. It can be seen that the near-field DF, 
DP, and DEPS are always better than the far-field values, so the near field has better robustness 
to noise.
	 The following concave surface is chosen for the second example:

	 2 6 4 6( ) 0.02cos 0.02cos 0.003sin 0.002sin .x x x xF x
d d d d
π π π π       = + + +       

       
	 (25)

Fig. 3.	 (Color online) (a) Reconstruction of the surfaces of the first example for near-field measurement. (b) 
Reconstruction of the surfaces of the first example for far-field measurement.

Fig. 4.	 (Color online) (a) DP and DF of the first example for near-field measurement. (b) DP and DF of the first 
example for far-field measurement.

(a) (b)

(a) (b)
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	 Figures 7(a) and 7(b) show a comparison of the results of reconstruction by near-field and far-
field measurements with 10% noise, respectively. It can be observed that even if there is a gap 
between the initial estimate and the correct value, good reconstruction results can still be 
obtained for near-field measurement by the SADDE method. It is clear that the reconstruction 
obtained by far-field measurement is inferior to that obtained by near-field measurement.
	 In the next example, the following shape function has multiple undulations:

	 4 4 6( ) 0.02cos 0.003sin 0.02sinx x xF x
d d d
π π π     = + +     

     
.	  (26)

	 Figure 8 is the surface reconstruction result. The shape for the near-field measurement is 
clearly better than that for the far-field measurement and almost coincides with the actual 

Fig. 5.	 (Color online) (a) DF and DEPS of the first example for near-field measurement. (b) DF and DEPS of the 
first example for far-field measurement.

Fig. 6.	 (Color online) (a) Error parameters versus noise level of example 1 for near-field measurement. (b) Error 
parameters versus noise level of example 1 for far-field measurement. 

(a) (b)

(a) (b)
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surface. The simulation results of the three examples show that our algorithm has good 
reconstruction results.

5.	 Conclusion

	 In this article, we discuss the application of inverse scattering to non-flat surfaces. Rigorous 
theories are used to derive nonlinear integral equations, then non-flat surface problems are 
transformed into optimization problems. To avoid the problem of easily falling into local 
minima, we use the SADDE method, and we successfully reconstructed surfaces with different 
shapes, period lengths, and dielectric constants by numerical simulations. 
	 The numerical simulations show that the SADDE method can find the best solution, 
confirming that this evolution method is suitable for complex optimization problems. From 
graphs showing the errors of the surface shape, period length, and dielectric constant, it is found 

Fig. 8.	 (Color online) (a) Reconstructed surfaces of example 3 for near-field measurement. (b) Reconstructed 
surfaces of example 3 for far-field measurement.

Fig. 7.	 (Color online) (a) Reconstructed surfaces of example 2 for near-field measurement. (b) Reconstructed 
surfaces of example 2 for far-field measurement.

(a) (b)

(a) (b)
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that the error is lower in near-field measurement than in far-field measurement. Effective 
reconstruction and robustness to noise were shown for not only the concave and convex surfaces 
but also surfaces with multiple undulations. Similarly, the reconstruction effect is better in the 
near field than in the far field for all surfaces.
	 The research reported in this paper still has a lot of room for development. It can be applied to 
multilayered spaces and buried objects. In addition, we only discuss the case of plane waves. It is 
possible to extend this method to cylindrical waves.
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