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	 Toward solving some of the problems of low precision, poor stability, and complex calculation 
in the simultaneous localization and mapping (SLAM) of mobile robots, an improved cubature 
Kalman filter SLAM (ICKF-SLAM) algorithm based on the cubature Kalman filter SLAM 
(CKF-SLAM) algorithm is proposed. Firstly, the error covariance matrix of the state vector is 
obtained through the motion model and observation model of the mobile robot. Then, the 
information matrix is obtained by the inverse operation, and the information state vector is 
updated in the prediction and update phases. The proposed method reduces the computational 
complexity and improves the accuracy of the algorithm. Simulation results show that compared 
with CKF-SLAM, the root mean square error of ICKF-SLAM is reduced by 11.8%. 

1.	 Introduction

	 With the development of computer and mechanical technology, mobile robots are expected to 
replace humans in many areas. In an environment with insufficient information or with dynamic 
changes, vehicles or mobile robots can sense the environment through sensors, adjust their 
behaviors and actions, and complete tasks independently. The robots automatically obtain 
environmental information about the area of operation through sensors, locate their own 
positions, construct environmental models, and realize path planning. The simultaneous 
localization and mapping (SLAM) problem can be described as follows:(1) in an unknown 
environment, without prior knowledge, a mobile robot starts to move from an unknown position, 
locates itself during the process of moving, and draws an incremental map. The purpose of 
SLAM is to obtain the probability distributions of landmarks and the robot pose in an uncertain 
environment with sensor noise.
	 The Kalman filter (KF) is an algorithm that can estimate the state of a dynamic system given 
measurements observed over time. In many studies, the KF has been used to estimate the 
attitude of mobile robots and features of the local environment.(2,3) Smith and Cheeseman 
proposed an extended Kalman filter-based SLAM (EKF-SLAM) algorithm, but it has some 
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problems, such as complex calculation, low filtering accuracy, poor data association, and 
orientation error.(4) Julier and Uhlmann proposed an unscented Kalman filter (UKF) SLAM 
algorithm, which improves the estimation accuracy and computational efficiency compared with 
EKF-SLAM,(5) but it is only suitable for low-dimensional (n ≤ 3) nonlinear systems. In the 
estimation process of high-dimensional systems, there will be a large error, and the adjustment 
of parameters will lead to inflexibility of the algorithm. A new SLAM algorithm based on a 
cubature Kalman filter (CKF-SLAM) was proposed without considering the evaluation of 
Jacobians during the prediction and update phases.(6) However, the complete noise distribution 
features must be known in order to obtain good results. 
	 A double-layer CKF-SLAM algorithm was also proposed, where the inner CKF is used to 
calculate the prediction state of the next time, and the outer CKF is used to update the prediction 
state to obtain more accurate estimation, but this algorithm has the disadvantage of a large 
computational load.(7) It is difficult for a mobile robot to obtain the statistical parameters of its 
motion accurately due its mobility. A statistical feature estimation method was also proposed for 
an environment in which the statistical parameters of the noise are unknown.(8) In nonlinear 
systems, owing to the influence of time-varying observation noise, especially heavy-tailed 
noise, the traditional filtering algorithm easily diverges. The cubature integral method is used to 
solve this problem effectively.(9) Although the positioning accuracy is improved with this 
method, there are still some problems such as numerical instability.(10) To overcome the problems 
of mutation of the target state and an unknown noise covariance matrix, which reduce the 
performance of the traditional Gaussian approximation nonlinear filter, Wang et al. proposed a 
method based on a Bayesian strong tracking interpolation CKF (VB-STICKF), using an 
interpolation method to calculate the volume. Although this method has good performance for a 
moving target, it has high computational complexity.(11)

	 To overcome the shortcomings of the above algorithms, we proposed an improved cubature 
Kalman filter (ICKF) algorithm, which takes the inverse of the covariance matrix to obtain the 
information matrix, then updates the information state vector in the prediction and update 
phases. The proposed method extends the application range of the CKF and avoids the 
calculation of the measurement covariance matrix and Kalman gain in the algorithm update 
phase, resulting in higher estimation accuracy. The average error is decreased by 11.8% 
compared with that of the CKF. 
	 The main contents of this paper are as follows. The SLAM model and the related CKF are 
introduced in Sects. 2 and 3, respectively. In Sect. 4, the proposed ICKF algorithm is discussed. 
The performances of different algorithms are evaluated through simulation in Sect. 5. Finally, 
conclusions are drawn in Sect. 6.

2.	 SLAM

2.1	 SLAM model

	 We suppose that a mobile robot moves in an unknown environment and uses its sensors to 
observe some unknown landmarks, as shown in Fig. 1,(12) where xk is the pose state vector of the 
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mobile robot, uk is the control vector that drives the mobile robot state from time k − 1 to time k, 
mi is the position state vector of the ith static environment feature, and zi,k is the vector with the 
ith static environmental feature observed by the mobile robot at time k.

2.2	 SLAM probability model

	 The SLAM problem can be described as using the joint probability distribution of the robot 
pose and the position at time k to observe the probability distribution of the historical information 
Z0,k and control the input historical information U0,k and the initial pose.(13)

	 0, 0, 0( , | , , )k k kP x m Z U x 	 (1)

Here, { } { }0, 0 1 0, -1, , ..., ,k k k kX x x x X x= = is the historical information of the pose state of the 
robot, { } { }0, 0 1 0, 1, , ..., ,k k k kU u u u U u−= = is the historical information of the control input, 

{ } { }0, 0 1 0, 1, , ..., ,k k k kZ z z z Z z−= =  is the set of all observations, and { }1 2, , ..., nm m m m=  is the 
set of all landmarks.
	 The joint state probability distribution at time k can be calculated using the Bayesian theorem, 
considering the joint state probability distribution at time k − 1 of 1 0, 1 0, 1( , | , )k k kP x m Z U− − − , the 
observation vector zk, and the control input vector uk at time k. 

3.	 CKF

	 Owing to the drift error of the robot and the uncertainty of the motion state and the 
environment, the system model and noise are often unknown. The states and parameters of the 
system must be estimated by a suboptimal approximation method, such as the EKF, particle 
filter (PF), or UKF. The CKF is an advanced suboptimal filter method proposed by Haykin and 
Arasaratnam, which is robust against divergence in high-dimensional nonlinear systems.(14) It is 

Fig. 1.	 SLAM model.
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based on the cubature criterion and can obtain integral calculation results with high 
computational efficiency and numerical precision.(15) The key concept of the CKF is to select 2n 
(n represents the corresponding state dimension) equal-weight cubature points ( , )i iξ ω  to 
calculate the Gaussian weighted integral through the third-order spherical radial cubature 
rule.(16)

3.1	 Cubature points

	 A high-dimensional integral can usually be expressed as

	 ( ) ( )exp( )n
T

R
I f f x xx dx= −∫ ,	 (2)

where f(∙) is a function and Rn represents an integrable space. In general, it is difficult to obtain 
the analytical solution of Eq. (2), and an approximate solution needs to be obtained by numerical 
integration, which can be approximated by the third-order spherical radial cubature rule(16)

	
1

( ) ( )
m

i i
i

I f fω ξ
=

=∑ .	 (3)

	 Julier et al. proposed a CKF nonlinear Gaussian filter based on a spherical radial criterion to 
select the above cubature point set ( , )i iω ξ ,(17) which can be expressed as 

	

2 [1] ,
2

1 , ( 1, 2, ..., 2 ),
2

i i

i

n

i n
n


=


 = =

ξ

ω
	 (4)

where [1]i represents the corresponding ith column element in the set [1].

3.2	 Calculation procedures of the CKF algorithm 

	 When the state posterior density function 1 1 1| 1 1| 1ˆ( | ) ( | )k k k k k kp x D N x P− − − − − −=  at time k − 1 is 
given, the state posterior density function | |ˆ( | ) ( | )k k k k k kp x D N x P=  at time k can be obtained. 
The procedures of the CKF are shown in Fig. 2, which mainly consist of two steps: the prediction 
phase and the update phase.

Step 1. Predict phase
	 By Cholesky decomposition of the error covariance matrix Pk−1|k−1, we obtain

	 1| 1 1| 1 1| 1
T

k k k k k kP S S− − − − − −= .	 (5)
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	 Cubature points (i = 1, 2, ..., 2n) are calculated by

	 , 1 1 1 1 1 1ˆii k k k k k kX S xξ− − − − − −= + .	 (6)

where iξ  is obtained using Eqs. (3) and (4).
	 The propagation cubature points are 

	 ( )*
1, 1 , 1 1, ki k k i k kX f X u −− − −= .	 (7)

	 The predicted state at time k is

	
2

*
1 , 1

1

1ˆ
2

n

k k i k k
i

x X
n− −

=
= ∑ .	 (8)

	 The covariance matrix for the state predicted error at time k is

	
2

* *
11 , 1 , 1 1 1

1

1 ˆ̂
2

n
T T

kk k i k k i k k k k k k
i

P X X x x Q
n −− − − − −

=
= − +∑

2
* *

11 , 1 , 1 1 1
1

1 ˆ
2

n
T T

kk k i k k i k k k k k k
i

P X X x x Q
n −− − − − −

=
= − +∑ .	 (9)

  Fig. 2.	 Procedures of the CKF algorithm.
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Step 2. Update phase
	 Let Pk|k−1 be the covariance matrix of the state predicted error at time k. By Cholesky 
decomposition of Pk|k−1, we obtain

	 | 1 | 1 | 1
T

k k k k k kP S S− − −= .	 (10)

	 Cubature points (i = 1, 2, ..., 2n) can be calculated as 

	 | 1, 1 1ˆk k ii k k k kX S xξ−− −= + .	 (11)

	 The propagation cubature points (i = 1, 2, ..., 2n) after observation are

	 1, 1 , 1( , )ki k k i k kZ h X u −− −= .	 (12)

	 The updated prediction at time k is

	
2

, 1 , 1
1

1ˆ
2

n

i k k i k k
i

z Z
n− −

=
= ∑ .	 (13)

	 The updated covariance matrix at time k is

	
2

, 1 , 1 , 1 1 1
1

ˆ̂
n

T T
izz k k i k k i k k k k k k

i
P Z Z z zω− − − − −

=
= −∑

2

, 1 , 1 , 1 1 1
1

ˆ
n

T T
izz k k i k k i k k k k k k

i
P Z Z z zω− − − − −

=
= −∑ .	 (14)

	 The cross-correlation covariance matrix at time k is

	
2

, 1 , 1 , 1 1 1
1

ˆ ˆ
n

T T
ixz k k i k k i k k k k k k

i
P X Z x zω− − − − −

=
= −∑ .	 (15)

	 The Kalman gain can be obtained as

	 1
, 1 , 1k xz k k zz k kW P P−

− −= .	 (16)

	 The estimated state at time k is

	 ( )1 1ˆ̂ ˆk kk k k k k kx x W z z− −= + −( )1 1ˆ ˆk kk k k k k kx x W z z− −= + − .	 (17)
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	 The estimated value of the state error covariance matrix at time k is

	 , 11
T

k zz k k kk k k kP P W P W−−= − .	 (18)

4.	 ICKF and SLAM

4.1	 ICKF 

	 For a linear Gaussian system, the distributed Kalman filter (DKF) algorithm was first 
proposed by Olfati-Saber,(18) which combines the average consistency strategy with the KF 
algorithm. Its basic idea is to use the inverse of the covariance matrix to represent the KF 
equivalently. Since the CKF algorithm is the optimal approximate solution of the nonlinear 
Gaussian filter, to improve its performance, an ICKF algorithm is proposed by using the 
information state vector and information matrix(19) as the inverse of the state vector and the 
inverse of the error covariance matrix of the CKF, respectively, in the predict and update phases. 
	 We first define the information matrix Bk|k and the information state vector |k̂ kb  as

	 1( )k k k kB P −= ,	 (19)

	 1
| |

ˆ ˆ̂( ) k k k kk k k k k kb P x B x−= =1
| |

ˆ ˆ( ) k k k kk k k k k kb P x B x−= = .	 (20)

	 The algorithm steps of the ICKF are as follows. 

Step 1. Prediction phase
	 Similar to the CKF, after obtaining 1ˆk kx −  (state prediction at time k) and the associated 
covariance matrix Pk|k−1，the information matrix Bk|k and information state vector |k̂ kb  can be 
obtained as

	
2

1 * *
11 1 , 1 , 1 1 1

1

1 ˆ̂( )
2

n
T T

kk k k k i k k i k k k k k k
i

B P X X x x Q
n

−
−− − − − − −

=

 
= = − + 

  
∑
2

1 * *
11 1 , 1 , 1 1 1

1

1 ˆ( )
2

n
T T

kk k k k i k k i k k k k k k
i

B P X X x x Q
n

−
−− − − − − −

=

 
= = − + 

  
∑ ,	 (21)

	
2

*
1 1 1 1 , 1 1

1

1ˆ ˆ
2

n

k k k k k k k k i k k
i

b B x B X
n− − − − − −

=
= = ∑ .	 (22)

Step 2. Update phase
	 Similar to the CKF, the innovation εk can be obtained as 

	 1ˆk k ik kZ zε −= − .	 (23)
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	 The contribution of local information can be obtained as

	
1

1 ˆ( )
k kk k k ki H R H xε

−

−  = +  
.	 (24)

	 The associated information matrix can be calculated as(7)

	 1( ) T
k k kI H R H−= .	 (25)

where 
1

1 1
, 1( )

k kk xz k kH P P R
−

− −
−= . 

	 The update information state vector is

	 1
ˆ̂

kk k k kb b i−= +1
ˆ

kk k k kb b i−= + .	 (26)

	 The information matrix is 

	 1 kk k k kB B I−= + .	 (27)

	 The state covariance matrix is

	 1( )k k k kP B −= .	 (28)

	 Finally, the estimated state can be calculated as 

	 |
ˆˆ k kk k k kx P b= .	 (29)

4.2	 ICKF-SLAM 

	 In this section, we propose the ICKF-SLAM algorithm by using the ideas of the ICKF in 
Sect. 4.1. Given the observation information { }( 1)

1 1, k
k i i iD u z −
− == , which represents the historical 

information of the input and measurement pair at time k − 1, the state posterior probability 
density function P(xk−1|Dk−1) and the state transition probability P(xk|xk−1, uk−1) can be obtained. 
The steps of the ICKF-SLAM are shown in Table 1.

5.	 Experiments and Evaluation

5.1	 System model

	 In our experiments, the motion model describes how the pose state (xk, yk, θk)T of the mobile 
robot changes with time under the influence of control input uk and noise interference vk. The 
motion model is
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1 1

1 1

1

cos( ),
sin( ),
sin( ) .

k k k k k

k k k k k

k k k
k

x x V T G
y y V T G

V T G
WB

θ
θ

θ
θ

− −

− −

−

= + ⋅∆ ⋅ +
 = + ⋅∆ ⋅ +


+ ⋅∆ ⋅ =

	 (30)

	 The observation model describes the relationship between the position state of the 
environmental features observed by the sensor and the global pose coordinates of the robot. A 
polar observation coordinate system is used in this experiment, so the observation z is the polar 
distance ρ and direction angle φ of an observed environmental feature relative to the robot. The 
observation model is

	

2 2( ) ( )

arctan

k i k i
k

k kk i
k k

k i

x x y y
z wy y

x x

ρ
ϕ θ

 − + −   
= = +−   

−   − 

,	 (31)

Table 1
Steps of the ICKF-SLAM algorithm.

Input:	 { } )( 1
1 1

, k
k i i i

D u z −
− =
= , 0 0x̂ , 0 0P

Output:	 ,
xm
k newX

for k = 1, 2, ..., N do

1:	 ( )| 1 1 1 1 1| 1 1| 1 1ˆ̂ ( , ) ; ,nxk k k k k k k k k kR
x f x u N x x P dx− − − − − − − − −= ∫

2:	 ( )| 1 1 1 1 1 1 1| 1 1| 1 1 | 1 | 1 1ˆ̂̂( , ) ( , ) ; ,nx
T T

k k k k k k k k k k k k k k k k kR
P f x u f x u N x x P dx x x Q− − − − − − − − − − − − − −= − +∫

3:	 ( ) 1

1 1k k k kB P
−

− −=

4:	 1 1 1
ˆ ˆk k k k k kb B x− − −=

5:	 ( )| 1 | 1ˆ( , ) ( , ) ; ,nxk k k k k k k k k k kR
h x u h x u N x x P dxε − −= − ∫

6:	 ( ), | 1 | 1 | 1 | 1 | 1ˆ̂ ˆ( , ) ; ,nx
T T

xz k k k k k k k k k k k k k k kR
P x h x u N x x P dx x z− − − − −= −∫ 	

7:	 1 1 1
| 1 , | 1 , | 1 | 1( )T

k k k xz k k k xz k k k kI P P R P P− − −
− − − −=

	
1 1 1

| 1 , | 1 , | 1 | 1 | 1ˆ( )T
k k k xz k k k k xz k k k k k ki P P R P P xε− − −

− − − − − = +  	

8:	 1
ˆ̂

kk k k kb b i−= +

	 1 kk k k kB B I−= + 	

9:	 1( )k k k kP B −= 	

10:	 ( ) 1
| | |

ˆ̂ˆ xm
k k k k k kk k k kX B b P b

−
= =

11:	 for all observed features , ,k i k kz ρ ϕ =    do

12:	 , ,

cos( )
( , )

sin( )
k k k knew

i k k k i k
k k k k

x
m g x z w

y
ρ ϕ θ
ρ ϕ θ

+ ⋅ + 
= = + + ⋅ + 

13:	 1 2 ,, ,...,
T

k n km m m m =  
14:	 end for

15:	
1

, 1
,

,

kxm
kxm T

k new knew
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i k

x
X

X m
m

m

−

−

 
   = =        

16:	 end for
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where wk is the observation noise, which is used to describe the measurement noise and model 
error. (xi, yi) are the global position coordinates of the ith observed environmental feature. 

5.2	 Experimental parameters

	 Our experiment was carried out in an outdoor area of 250 × 200 m2 with an ideal moving 
path and 135 landmarks. Starting from (0, 0), a mobile robot moves counterclockwise along the 
ideal moving path.
	 The pose of the robot can be described by a three-dimensional state vector (x, y, θ)T, which 
includes its position (x, y) and attitude angle θ in the global coordinate system. The attitude angle 
θ represents the movement direction of the robot, which is positive in the counterclockwise 
direction and negative in the clockwise direction, and its range is −180–+180°.
	 The initial state value of the robot is [0, 0, 0]T, with initial speed V = 3 m/s, initial steering 
angle G = 0°, maximum steering angle GM = 30°, maximum angular speed GR = 20 °/s, and 
wheelbase WB = 4 m.
	 Other parameters include the system sampling time ∆T = 0.025 s, speed error σv = 0.3 m/s, 

steering angle error σg = 3 °/s, system noise 

2

2

0.3 0

30
180

Q π

 
 

=   
  

  

, observation noise
2

2

0.1 0

0
180

R π

 
 

=   
  

  

, a sensor sampling time of 0.2 s, and a maximum sensing distance of 30 m.

5.3	 Simulation results

	 Using the experimental parameters in Sect. 5.2, we carried out 50 Monte Carlo simulation 
experiments on three SLAM algorithms, UKF-SLAM,(5) CKF-SLAM,(19) and ICKF-SLAM, 
taking the mean value of all the experiments as the final result. Figure 3 shows the simulation 
trajectories of ICKF-SLAM. Figure 4 shows the trajectories of the three SLAM algorithms, and 
Fig. 5 is a local zoom of Fig. 4 with x ranging from 60 to 80 m and y ranging from 0 to 60 m.

5.3.1	 Analysis of estimation errors

	 Figures 6 and 7 show the estimation error of the three SLAM algorithms in the x- and 
y-directions, respectively. We first analyze the stability of these algorithms. For the x-direction 
in Fig. 6, the stability is greatest for ICKF-SLAM and the error is less than 2 m, whereas the 
errors of CKF-SLAM and UKF-SLAM are less than 3.5 m, and UKF-SLAM has slightly better 
stability than CKF-SLAM. For the y-direction in Fig. 7, UKF-SLAM has the lowest stability, 
and the error is less than 3 m; the stabilities of ICKF-SLAM and CKF-SLAM are almost the 
same, and the error is less than 2.5 m.
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	 Next, we analyze the estimated accuracy of these algorithms. It can be seen from Fig. 6 that 
the estimation error in the x-direction increases for these three algorithms from 6000 to 9000 
steps, and Fig. 7 shows that the estimation error in the y-direction increases from 4000 to 9000 
steps. ICKF-SLAM has the least estimation error in the x-direction, and its estimation error in 
the y-direction is between those of the other two algorithms. Although the estimation accuracy 
of UKF-SLAM in the x-direction is slightly better than that of CKF-SLAM in Fig. 6, its 
estimation accuracy is lowest in the y-direction in Fig. 7. In general, the error of UKF-SLAM is 
the largest, and ICKF-SLAM has the best performance in terms of both accuracy and numerical 
stability. 

Fig. 4.	 (Color online) Trajectories of three SLAM 
algorithms.

Fig. 5.	 (Color online) Enlargement of part of Fig. 4.

Fig. 3.	 (Color online) Trajectories of ICKF-SLAM.
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5.3.2	 Analysis of RMSE and average running time

	 Equations (32) and (33) represent the average running time of the algorithm and the estimated 
RMSE.

	
1

1 N

i
i

T t
N =

= ∑ 	 (32)

 Fig. 7.	 (Color online) Estimation error in y-direction.

Fig. 6.	 (Color online) Estimation error in x-direction.
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1

2 2 2

1

1 ˆ̂(( ) ( ) )
n

k k k k k
i

RMSE x x y y
n =

= − −∑ +
1

2 2 2

1

1 ˆ(( ) ( ) )
step

k k k k k
i

RMSE x x y y
n =

= − −∑ + 	 (33)

Here, T is the average time, ti is the running time of step i, N is the total number of steps, and 
(xk, yk, θk) and ˆˆ̂( , , )k k kx y θ̂ˆ( , , )k k kx y θ  represent the real and estimated values at time k, respectively, 
including the position and pose of the mobile robot. In this experiment, N = 50, n = 8780, and the 
RMSE and average time of the three algorithms are listed in Table 2. The data in the table show 
that the RMSE estimated by ICKF-SLAM is the smallest and the RMSE estimated by UKF-
SLAM is the largest. UKF-SLAM has the longest running time because the UKF adopts 
2n + 1 sampling points, whereas ICKF-SLAM and CKF-SLAM both adopt 2n cubature points, 
so the average difference between the running times of CKF-SLAM and ICKF-SLAM is small.

5.3.3	 Consistency analysis

	 We use the normalized estimated error squared (NEES) shown in Eq. (34) to test the 
consistency of the SLAM algorithms. When n experiments are carried out, the n-average NEES 
(mean NEES, MNEES) shown in Eq. (35) is needed for consistency analysis. 

	 1
| | |

T T
k k k k k k kNEES x P xε −= =  	 (34)

	
1

1 N

i
i

MNEES NEES
N =

= ∑ 	 (35)

	 The SLAM algorithm must meet the consistency requirement

	 2
, ,1

1
N dMNEES

N αχ −≤ ,	 (36)

where |k kx  represents the estimation error at time k and Pk|k represents the covariance matrix of 
the estimated error. The system noise has an approximately Gaussian distribution, εk has a χ2 
distribution with d degrees of freedom, where d = dim(xk), and α represents the level of 
significance. In our experiment, we set N = 50, d = 3, and α = 0.05, and obtain

Table 2
Running time and RMSE of different algorithms.
Algorithm Time (s) RMSE (m)
UKF-SLAM 315.959 1.6556
CKF-SLAM 203.336 1.4218
ICKF-SLAM 213.693 1.2542
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	 2
50,3,0.95 179.5806NEES χ= = ,	 (37)

	 2
50,3,0.95

1 3.592
50

MNEES χ= ≈ .	 (38)

	 Figure 8 shows the variation of MNEES for UKF-SLAM, CKF-SLAM, and ICKF-SLAM 
with the number of running steps. From Fig. 8, we can see that ICKF-SLAM has the greatest 
consistency among the three algorithms.  

6.	 Conclusions

	 In this paper, we proposed an improved SLAM algorithm based on the CKF that uses the 
inverse operation of the state vector and the covariance matrix instead of the operation of the 
covariance matrix in the update phase of the algorithm. The proposed algorithm avoids the 
calculation of the Kalman gain and improves the algorithm accuracy. The consistency of the 
algorithm was verified by analysis.
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