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 The multiplicative degree-Kirchhoff index of a connected graph is defined as the sum of the 
product of the resistance distances between all pairs of points and the degrees of corresponding 
point pairs in the graph. In this paper, we propose an exact formula to compute the expected 
value of the multiplicative degree-Kirchhoff index of a random polyphenyl chain. Furthermore 
its asymptotic property is also considered.

1. Introduction

 Polyphenyls and their derivatives, which are used in heat exchangers, drug synthesis, organic 
synthesis, and so on, have attracted the attention of researchers in various fields for many years. 
Spiro-based compounds are a very important class of cycloalkanes in organic chemistry. The 
function of a spiro union is to form a linkage between two rings in spiro compounds, which 
consists of a single atom common to both rings. A free spiro union forms a linkage, which is the 
only direct union between the rings. In the past, when chemists wanted to determine the 
relationship between the properties of a compound and its molecular structure, it was necessary 
to perform many experiments and obtain a large amount of data.(1) By using the spiro union 
compounds, materials, drugs, crystals, and compounds can be represented by graph structures 
called molecular graphs. Also, conducting polymers, such as polythiophene (PTh), polyaniline 
(Pani), polypyrrole (PPy), and their derivatives, have been used as the active layers of different 
gas sensors since the early 1980s.(2) The thermal and chemical stabilities of conducting polymers 
under ambient conditions have enhanced their utilization as active sensing layers deposited by 
either an in situ electrochemical reaction or a chemical reaction on an electrode or an electrode 
array. Therefore, conducting polymers can be used to fabricate gas sensor devices, which 
respond to and/or detect particular toxic gases and volatile organic compounds (VOCs). These 
devices are also used as ion-trapping devices at ambient temperature for quality control in 
production and for environmental remediation.(2,3) When conducting polymers are used in 
different sensor devices, their resistance is an important factor affecting their sensitivity. 
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 Resistance distance is a distance function on a graph introduced by Klein and Randic, which 
is based on the theory of electrical networks. They found that a graphical distance can be used to 
indicate the effective resistance between pairs of vertices.(4,5) In recent years, resistance distance 
has been widely used in random walk, electronic engineering, complex network, and chemical 
graph theory, and is attracting the attention of many scholars worldwide.(6–10) The effective 
resistance between two nodes in an electrical network corresponds to the resistance distance 
r(vi, vj) between two vertices of a graph. Let G be a graph with vertex set {v1, v2, ..., vn}. The 
corresponding electrical network is obtained by replacing each edge of the graph with a fixed 
resistance (unit resistance). In the past, many researchers used the mathematical literature to 
study and calculate the resistance distance. Also, many studies were carried out to compute 
Kirchhoff indexes of specific classes of graphs, or to find bounds for Kirchhoff indexes of 
graphs and to characterize extremal graphs. For example, bicyclic and unicyclic graphs with 
extremal Kirchhoff indexes are characterized to obtain sharp bounds for Kirchhoff indexes of 
specific graphs. Throughout this study, we used a graph to model the molecular structure, in 
which each edge denotes a chemical bond and each vertex expresses an atom between two 
atoms. 

2.	 Exact	Definition	of	Multiplicative	Degree-Kirchhoff	Index

 The multiplicative degree-Kirchhoff index of a connected graph is defined as the sum of the 
product of the resistance distances between all pairs of points and the degrees of corresponding 
point pairs in the graph.(7)

 *
*

1 1 1 1

1 1( ) ( , ) ( , ) ( )
2 2

n n n

i j i j i j i j iD
i j n i j i

Kf G d d r v v d d r v v R v G
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Here, * 1( ) ( , )i
n

i j i jD jR v G d d r v v
=

=∑ . In this definition, r(vi, vj) = 0.
 The multiplicative degree-Kirchhoff index is an important topological index (invariant) of a 
graph, which is generated from the molecular structure and is a way of numerizing the molecular 
structure. It also reflects the structural characteristics of the compound. Polyphenyls are a type 
of macrocyclic aromatic hydrocarbon, which have attracted the attention of many chemists.(11–13) 
Polyphenyl molecular graphs (or more precisely, graphs representing the carbon atoms) are 
called polyphenyl systems. If each vertex of a polyphenyl system lies in a hexagon and the graph 
obtained by contracting every hexagon to a vertex in the polyphenyl system is a path, we call 
this system a polyphenyl chain. Figure 1 shows the unique polyphenyl chains for n = 1, 2 and all 
the polyphenyl chains for n = 3, 4.
 More generally, a polyphenyl chain PPCn with n hexagons is regarded as a polyphenyl chain 
with n − 1 hexagons by adding a cutting edge to a new hexagon, as shown in Fig. 2.(1)

 For n ≥ 3, the terminal hexagon can be attached in three ways, and the three local 
arrangements are denoted as PP 1

1
nC + , PP 1

2nC + , and PP 1
3nC + , as shown in Fig. 3.(1)

 A random polyphenyl chain PPC(n, p1, p2) with n hexagons is obtained by the stepwise 
addition of terminal hexagons. At each step (k = 3, 4, ..., n), a random selection is made from one 
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Fig. 2. Polyphenyl chain PPCn with n hexagons.

Fig. 3. Three local arrangements of polyphenyl chains.

Fig. 1. Polyphenyl chains.

PP 1
1
nC + PP 1

2
nC + PP 1

3
nC +
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of the three possible constructions: (1) PPCk−1 → PP 1
kC  with probability p1, (2) PPCk−1 → PP 2

kC  
with probability p2, and (3) PPCk−1 → PP 3

kC  with probability p3 = 1 − p1 − p2. The important 
novelty of this study is we assume that probabilities p1 and p2 are constants and invariant with 
the step parameter k. For a random polyphenyl chain PPC(n, p1, p2), the multiplicative degree-
Kirchhoff index Kf*(PPC(n, p1, p2)) is a random variable. Therefore, we propose an exact 
formula for its expected value E(Kf*(PPC(n, p1, p2))).

3.	 Main	Result

Theorem	1:	For n ≥ 1, we have 

 

1
*

1 2 1 2

2
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1 2
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n p p
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 (2)

Proof: As described above, the polyphenyl chain PPCn is obtained by attaching PPCn−1 to a new 
terminal hexagon by a cutting edge, as shown in Fig. 2. If the terminal hexagon is spanned by 
vertices x1, x2, ..., and x6, then the new edge is denoted as un−1x1, as shown in Fig. 2. Note that 

1.
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Thus, we have 6
3 31 ( , ) 26j jj d d r x x

=
=∑ .
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Also, we have 
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By symmetry, we have
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2. PPCn−1 has 6(n − 1) vertices.

3. 1,nv PPC −∀ ∈
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The product of degree x1 in PPCn is denoted by * 1( )nDR x PPC , and we have
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Similarly,
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Then,

 *
* *

1
13 74 52( ) ( ) ( ) (14 2) 73
3 3 6n n n nDKf PPC Kf PPC R u PPC n+ = + + ⋅ − + + . (16)

 For a random polyphenyl chain *1 2 1 2( , , ), ( ( , , )nDPPC n p p R u PPC n p p  is a random variable, 
and we denote its expected value by * 1 2( ( ( , , )))n nDU E R u PPC n p p= . There are three cases to 
consider:
 Case 1. 1

1n nPPC PPC +→ . In this case, un coincides with the vertex labeled x3 or x5. 
Consequently, * 1 2( ( , , )nDR u PPC n p p  is given by Eq. (11) or (13).
 Case 2. 2

1n nPPC PPC +→ . In this case, un coincides with the vertex labeled x2 or x6. 
Consequently, * 1 2( ( , , )nDR u PPC n p p  is given by Eq. (10) or (14).
 Case 3. 3

1n nPPC PPC +→ . In this case, un coincides with the vertex labeled x4. Consequently, 
* 1 2( ( , , )nDR u PPC n p p  is given by Eq. (12).

 Since the above three cases occur in random polyphenyl chains with probabilities p1, p2, and 
1 − p1 − p2, respectively, we immediately obtain the following result:
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 By applying the properties of mathematical expectation to the above equation and noting that 
E(Un) = Un, we obtain
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 This equation is easily transformed into
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 Using the above recurrence relation and the boundary condition, we obtain the value of Un. 

Denoting 1 2 1 2
14 56 16170 , 5 20
3 3 3

a p p b p p= − − = + − , we have 
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 By subtracting Eq. (22) from Eq. (21), we obtain 
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 Noting that 1 2 1 2
14 56 16170 , 5 20
3 3 3

a p p b p p= − − = + − , from Eq. (25), we obtain
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 The boundary condition is *
1 2

52 2( ( (1, , ))) 73 81
6 3

E Kf PPC p p = + = , and using the above 
recurrence relation and the boundary condition, we have
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  − + − −  
  

+ −
− + − +

+ − + −

2

1 2

518 ( 2)
3

13 484( 1) .(57 228 826)
3 3

n n

n p p

  + −  
 + − + − −  

 (28)

 Finally, we point out the asymptotic property of E(Kf*(PPC(n, p1, p2))), which is 

 * 2
1 2 1 2

13 518( ( ( , , ))) ( )(105 7 28 )
3 3

E Kf PPC n p p n np p  →∞− − +  
 . (29)
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4.	 Conclusions

 The Kirchhoff index is not only an important invariant number characterizing bicyclic and 
unicyclic graphs, but is also an important means of describing molecular structures in chemistry. 
The Kirchhoff index also has important applications in the quantitative structure–activity 
relationships and quantitative structure–property relationships. It is very difficult to compute the 
Kirchhoff index from the computational complexity of the graph, and it is also difficult to obtain 
a specific formula for calculating the multiplicative degree-Kirchhoff index of a general graph. 
Therefore, the problem of finding the Kirchhoff index for some special graphs has attracted the 
widespread attention of researchers. In this study, we used the digital features of random 
variables and the methods and technologies of algebra to obtain the multiplicative degree-
Kirchhoff index of a random polyphenyl chain. We also consider that the development potential 
nature of the Kirchhoff index in physics, chemistry, and other fields will have further 
applications. 
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