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 Esophageal and gastric cancers are common malignant tumors. In medicine, it is difficult to 
differentiate the sickness symptoms of esophageal adenocarcinoma (EAC), esophageal 
squamous cell carcinoma (ESCC), and stomach adenocarcinoma (SAC). In particular, the 
molecular characteristics of EAC and SAC are very similar, which makes them difficult to 
distinguish. Information collected by sensors can be analyzed by machine learning. In this 
study, we used cancer data published in Nature in 2017, which were downloaded from cBioPortal, 
to classify the three types of cancer by five machine learning algorithms, and we compared the 
classification effects for different models by calculating confusion matrices. According to the 
research data in this paper, the random forest (RF) model is the best of the five machine learning 
classification models for the overall classification effect of the three types of cancer. More 
specifically, the classification effect of this model is the best for EAC, whereas the classification 
effect for ESCC is not ideal. The classification based on the RF model can effectively enhance 
the differentiation between the symptoms of EAC, SAC, and ESCC, enabling cancer patients to 
receive more accurate treatment and have an improved prognosis.

1. Introduction

 Esophageal cancer is a common malignant tumor, and its morbidity and mortality rank eighth 
and fifth out of all malignant tumors, whereas the morbidity and mortality of gastric cancer rank 
fifth and third out of all malignant tumors, respectively. Esophageal carcinoma is histologically 
divided into esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma 
(ESCC).(1) In recent decades, the morbidity of esophageal cancer in Western countries has 
increased several times, the five-year survival rate is in the range of 12–20%,(2,3) and esophageal 
cancer has caused more than 400000 deaths worldwide every year.(4) Esophageal cancer mainly 
occurs in the lower esophagus and is associated with obesity, gastric reflux, and Barrett’s 
esophagus. By analyzing the molecular characteristics of patients with esophageal and gastric 
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cancers, it was found that EAC and stomach adenocarcinoma (SAC) have very similar unstable 
chromosomal variations, which indicate that these cancers can be considered a single disease 
entity.(5) The increases in the morbidities of EAC and proximal stomach cancer are 
synchronous.(6) The boundaries between SAC and EAC and the classification of adenocarcinoma 
that crosses the gastroesophageal junction are still indistinct, and there are also many disputes 
about the practicability of histological features.(7–9)

 Given the uncertainties of the boundaries between EAC and SAC, by analyzing the EAC, 
ESCC, head and neck squamous cell carcinoma (HNSCC), and SAC, it has been found that the 
symptoms of ESCC are similar to those of HNSCC, and the symptoms of EAC are similar to 
those of SAC. The distinction between ESCC and EAC has not only known histopathological 
and epidemiological characteristics but also known molecular characteristics. Many methods in 
machine learning can provide the importance of independent variables in a classification and 
their influence on classified dependent variables, and be used to evaluate the relationship 
between independent variables and classified dependent variables. These results are more 
objective and reasonable than the logistic regression model in the interpretation of coefficients. 
Machine learning can also combine different competing models to produce more accurate 
predictions than a single model. At present, there are many sensors collecting data, and there is 
useful information in these data. By combining these data processing and model training in 
machine learning, complex tasks can be solved. Until now, very few studies have investigated 
the use of machine learning classification to distinguish the symptoms of SAC, ESCC, and EAC. 
Thus, we investigated the use of machine learning algorithms to classify the different cancer 
types, and confusion matrices were investigated to measure and compare the classification 
effects of different models. The effects of important variables on the different cancer types were 
identified, which could promote better classification of these cancers and the emergence of new 
therapies.

2. Subjects and Methods

2.1 Study subjects

 In this study, all the used cancer data, which were published in Nature in 2017, were 
downloaded from cBioPortal. The data include the clinicopathological and molecular 
characteristics of 90 cases of ESCC, 79 cases of EAC, 388 cases of SAC, and two cases of 
esophageal gastric cancer. These cancer data were obtained after processing fresh frozen tumor 
samples, which were obtained from multiple countries with informed consent and approval by 
the local institutional review board.

2.2 Clinical measurements and genetic assessments

 Germline deoxyribonucleic acid (DNA) was extracted from blood or nonmalignant 
esophageal mucosa in these data samples, and complete exon sequencing, analysis of single-
nucleotide polymorphism (SNP) array, evaluation of somatic copy-number alterations (SCNAs), 
analysis of DNA methylation, and mRNA and microRNA sequencing were conducted.
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2.3 Statistical analysis

 In this paper, there were 559 samples with 103 variables in total, including clinical pathology, 
histopathology, and molecular characteristics. After deleting the variables with missing rates 
greater than 60%, the remaining 75 variables were imputed. Many variables existed in a variety 
of forms and had the same missing information, so five imputation methods were chosen: 
missForest, k neighborhood, center interpolation, classification regression tree, and random 
forest (RF). Finally, we chose missForest as the base algorithm because it yielded the best 
results. Although many packages can be used to impute missing values, they usually do not 
recognize categorical variables, whereas missForest can handle missing values from continuous 
variables and categorical variables.
 All the classifications were performed using the imputed values. Because there were only 
two cases of esophageal gastric cancer, this category was not suitable for classification and was 
deleted. The classification of ESCC, EAC, and SAC was performed on the remaining 557 
samples. The data were divided into a training set and a test set, with 70% of the data randomly 
selected as the training set and 30% as the test set. Cancers were classified using a variety of 
machine learning methods, such as traditional decision trees, conditional inference trees, 
bagging, AdaBoost, and RF. The misclassification rate, accuracy rate, precision rate, and recall 
rate of the classification methods were calculated using the confusion matrix to evaluate the 
different classification methods. All statistical analyses were performed with R software (version 
3.5.3).

2.3.1 Decision tree model

 The decision tree model is an easy-to-use and nonparametric classifier that classifies 
instances based on variable characteristics. The structure is tree-shaped, composed of nodes and 
directed edges, and does not require any priori assumptions on the data. For the decision tree 
model, its calculation speed is high, its measured results are easy to interpret, and its robustness 
is strong. Based on the ID3 algorithm and the C4.5 algorithm, the main characteristics of 
decision tree learning are feature selection, decision tree generation, and branch reduction. 
When learning the training set samples, the decision tree model is constructed according to the 
minimum loss function, and a set of test data can be classified with the decision tree model. An 
important concept in the decision tree algorithm is entropy, which is a measured result of the 
uncertainty of random variables. If we let X be a discrete random variable with a finite number 
of values, the probability distribution can be expressed as

 ( ) , 1,2,...,i iP X x p i n= = = . (1)

 Then, the entropy of X is defined as
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 The greater the entropy is, the greater the uncertainty of the random variables. The 
conditional entropy H(Y|X) represents the uncertainty of random variable Y under the condition 
that random variable X is known. This is the mathematical expectation of the entropy of the 
conditional probability distribution given the conditions for X, i.e.,
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 The information gain represents the information of a known feature X, leading to the degree 
of information uncertainty reduction of Y. The information gain of feature A for the training data 
set D is g(D, A), which is the difference between the empirical entropy H(D) of D and the 
empirical conditional entropy H(D|A) for the given condition of feature A, that is,

 ( , ) ( ) ( )g D A H D H D A= − . (4)

 The decision tree model applies the information gain criteria to select the features, solves the 
information gain of various schemes under different conditions by means of diagrams, and then 
makes decisions through comparison processes. Features with large information gains have 
stronger classification capabilities.

2.3.2 Bagging model

 Bagging, which is also known as bootstrap aggregating, is an integration technique that 
trains classifiers by selecting S new datasets from the original dataset, and the observations in 
these new datasets are selected without replacement. The trained classifiers are used to classify 
the new samples, and then the results of the classification of all classifiers are counted, and the 
most frequent category is the final tag.
 The input of the sample can be set as D = {(x1, y1), (x2, y2), …, (xm, ym)}, the number of 
iterations of the weak classifier can be represented by T, and the output is the final strong 
classifier f(x).
(1) For t = 1, 2, ..., T,

(a) t are the random samples of m observations, which are collected from the training set to 
obtain a sampling set Dt containing m samples.

(b) The tth weak learner is trained with sampling set Dt.
(2) The category with the most votes cast by the T weak classifier is the one we finally choose.
 Bagging classification is a particularly effective technology when learning is unstable and 
tends to overfit, i.e., small changes in training data lead to significant changes in the predicted 
output. Models prone to overfitting do not generalize well outside the training data. Bagging 
works well with high-variance models, such as decision trees, and when it is used with low-
variance models, such as linear regression, it does not significantly affect the learning process. It 
effectively reduces the variance by clustering together individuals, which are composed of 
different statistical attributes (such as different standard deviation means, etc.). The number of 
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basic learners to be selected depends on the characteristics of the data set. Bagging can be 
executed in parallel to check for excessive computing resources, which is a major advantage, and 
it is a common algorithm booster used in various fields.

2.3.3 Adaptive boosting model

 Adaptive boosting (abbreviated as AdaBoost) is a common boosting and iterative algorithm, 
and its basic learner is the classification tree. Each iteration can generate a new classifier on the 
training set, then the classifier is used to classify all the samples to recognize the importance of 
each sample. Specifically, the algorithm assigns a weight to each training sample, and each 
sample is labeled with a new classifier after training. If the focal point of a sample has been 
classified correctly, its weight will be reduced. If the focal point of a sample has not been 
classified correctly, its weight will be increased. The larger the weight is, the higher the 
proportion of samples will be in the next training iteration; that is, these points with high error 
rates will receive more attention in subsequent training iterations. The iteration process lasts 
until the error rate is small enough or a certain number of iterations is reached.
 Assuming that the sample is (X1, Y1), (X2, Y2), …,(Xn, Yn), to simplify the description, the 
dependent variable is assumed to be a binary variable { }0, 1Y ∈ . The concrete steps of the 
AdaBoost algorithm are as follows. (1) Select the initial self-service sampling weight as 

[0] 1 /iw n=  (i = 1, …, n) for the observation point, and set m = 0. (2) Increase m by 1, then use the 
classification tree to fit the weighted sampling, with weight w[m−1] used to generate classifier 

[ ]ˆ ( )mg ⋅ . (3) Calculate the weighted misjudgment rate in the sample as follows:
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then update the weights as
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 Steps (2) and (3) are repeated until the predetermined number of iterations is reached. Thus, a 
combinatorial classifier classified by weighted votes is established as

 [ ] [ ]
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 AdaBoost can be used to improve the performance of any machine learning algorithm, and it 
is most suitable for algorithms with poor learning ability. To improve the detection accuracy, 
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AdaBoost requires a large set of training samples, each training of a weak classifier requires a 
sample, and each sample has many characteristics. Therefore, the number of calculations 
required to obtain optimal weak classifiers from a large number of features through training is 
huge.

2.3.4 RF model

 An RF classifier contains multiple decision trees, and the output category is determined by 
the mode of the category output by an individual tree. The RF is composed of multiple decision 
trees, and there is no correlation between each decision tree in the forest. The final output of the 
model is determined by each decision tree in the forest. When classification problems are 
handled, the final category of each decision tree in the forest is given for the test samples. 
Finally, the output category of each decision tree in the forest is comprehensively considered, 
and the categories of test samples are determined by voting.
 To evaluate the role of each variable in the classification model, an RF classifier gives the 
importance score of each variable. In an RF classifier, each node is segmented using the best 
node in a randomly selected set of sub-predictors for that node. Compared with other classifiers, 
this somewhat counterintuitive strategy performs very well in each form and is robust to 
overfitting. In addition, an RF classifier is very friendly because it has only two parameters (the 
number of variables in the random children of each node and the number of trees in the forest) 
and is usually not very sensitive to their values.

3. Results

3.1	 Classification	results	for	different	classification	models

 In total, 34 clinical pathological variables and molecular variables were selected for the 
exploration of cancer classification models, and the cancer classification results for different 
classification models were analyzed. The data were divided into training and test sets; 70% of 
samples were randomly selected as the training set and the remaining 30% of samples were used 
as the test set. The classification results obtained by the training set for different models were 
analyzed.

3.1.1	 Classification	results	for	decision	tree	model

3.1.1.1	 Classic	decision	tree	classification	results

 The classic decision tree algorithm usually involves an oversized tree, which leads to 
overfitting and poor classification performance for units outside the training set. Therefore, ten-
fold cross-validation is used to select the tree with the smallest prediction error. Table 1 shows 
the complexity parameter (CP) values, which are used to help set the size of the final tree by 
imposing a penalty on an oversized tree. The size of the tree is the number of branches (nsplit), 
and a tree with n branches will have n + 1 terminal nodes. rel error is the error corresponding to 
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various trees in the training set, the cross-validation error (xerror) is based on the tenfold cross-
validation error from the training sample, and xstd is the standard deviation of the cross-
validation error.
 Figure 1 shows the relationship between the cross-validation error and the CP value. For all 
trees where the cross-validation error is within one standard deviation of the minimum cross-
validation error, the smallest tree will be the best tree. Figure 1 shows that the optimal tree 
corresponds to three partitions. Table 1 shows that the CP value corresponding to the three 
partitions was 0.0714, and the most important branch was cut off according to the CP value by 
using the prune function.
 Figure 2 shows the pruned classic decision tree with the ideal size used to predict cancer 
types. When Mutation_Count was larger than 158, the type of cancer was EAC, indicating that 
Mutation_Count can be used as a significant indicator to distinguish between SAC and EAC. 

Table 1 
CP values.

CP nsplit rel error xerror xstd
1 0.11160714 0 1.0000000 1.0000000 1.0000000
2 0.08035714 2 0.7767857 0.9464286 0.07840673
3 0.07142857 5 0.5357143 0.7321429 0.07182627
4 0.06250000 6 0.4642857 0.6964286 0.07050740
5 0.02678571 7 0.4017857 0.6696429 0.06947085
6 0.01785714 9 0.3482143 0.6696429 0.06947085
7 0.01000000 12 0.2946429 0.6607143 0.06911596

Fig. 1. CP and cross-validation errors. Fig. 2. Pruned classic decision tree used to predict 
cancer types.
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However, Country and Diagnosis_Age can be used as indicators for distinguishing between 
ESCC and SAC, which could help in the prediction of cancer types and facilitate subsequent 
targeted treatments.

3.1.1.2	 Classification	results	for	conditional	inference	tree

 A variant of the traditional decision tree is a conditional inference tree, which is similar to a 
traditional decision tree, but the selections of variables and partitions are based on significance 
testing, pruning is not necessary, and the generation process is more automated. Figure 3 shows 
a conditional inference tree in which the shaded area in each node represents (from left to right) 
the proportions of ESSC, EAC, and SAC. The object attributes in the conditional inference tree 
were Country, Anatomic_Site, TP53_Mutate, Lymphocyte_Infiltration, Diagnosis_Age, and 
Histologic_Grade.

3.1.2	 Classification	results	for	bagging	model

 It can be seen from Fig. 4 that Anatomic_Site, Country, Genome_Altered, Diagnosis_Age, 
Mutation_Count, and Histologic_Grade were the most important variables in the bagging model, 
similar to the results obtained from the decision tree (Anatomic_Site, Country, Diagnosis_Age, 
and Histologic_Grade).

Fig. 3. Conditional inference tree classification of cancer types.
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3.1.3	 Classification	results	for	an	AdaBoost	model

 As shown in Fig. 5, Anatomic_Site, Country, Diagnosis_Age, Genome_Altered, 
Lymphocyte_Infiltration, and Mutation_Count were the most important variables for the 
classification of the AdaBoost model, similar to the results obtained for the decision tree model 
(Anatomic_Site, Country, Diagnosis_Age, and Lymphocyte_Infiltration).

3.1.4	 Classification	results	for	RF	model

 It can be seen from Fig. 6 that Anatomic_Site, Country, Histologic_Grade, Lymphocyte_
Infiltration, Genome_Altered, and Mutation_Rate were important variables in the RF model, 
which were the same as the most important variables in the decision tree model and the bagging 
and AdaBoost models. This finding shows that Anatomic_Site, Country, and Genome_Altered 
were the most important indicators in distinguishing classification models and are an important 
basis for classifying cancer types.

3.2	 Computation	of	confusion	matrix	and	comparison	of	classification	results	for	different	
classification	models

 There are several methods for evaluating classification models: confusion matrices, which 
include gain charts, lift charts, KS charts, and receiver operating characteristic curves. The data 
were divided into a training set and a test set, with 70% of the data randomly selected as the 
training set and 30% selected as the test set for comparison. We used the confusion matrix of the 
training set to determine the best classification method, and the accuracy, precision, and recall 
rates were calculated using the obfuscation matrix. The accuracy rate is the proportion of all 
correct predictions (positive and negative), the precision rate is the proportion of correct 

Fig. 4. Variable importance map for the classification with the bagging model.
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predictions that are positive to the total number of predictions that are positive, and the recall 
rate is the percentage of all positive predictions that are correct.
 The confusion matrices for the classical decision tree model, conditional inference tree 
model, bagging model, AdaBoost model, and RF model for the test set are shown in Table 2. 
From each confusion matrix, we can calculate the accuracy rates, precision rates, and recall rates 
for classification models for the test set, and the results are shown in Table 3.
 According to Table 2, the error rates of the classical decision tree model, conditional inference 
tree model, bagging model, AdaBoost model, and RF model were 21.40, 19.00, 15.40, 12.5, and 
11.30%, respectively. From these results, the RF model has the best classification effect, followed 
by the AdaBoost model, bagging model, and conditional inference tree model, while the decision 
tree model has the lowest classification effect. As can be seen from Table 3, both the precision 
and recall rates of all classification models for ESCC were low, and the classification effect of 

Fig. 5. Variable importance map for the classification with the AdaBoost model.

Fig. 6. Variable importance map for the classification with the RF model.
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the model for ESCC was inadequate, whereas the classification effect for EAC was the best. 
However, for the RF model, the classification effect for SAC was the best, and the recall rates for 
ESCC and EAC were the lowest at 78.79 and 62.5%, respectively. The comprehensive 
comparison showed that the RF model had the highest effect.
 For the data set we studied, by analyzing the confusion matrix for different classification 
methods, we found that the RF model has the best effect in predicting EAC because it has the 
highest results for the classification of accuracy, precision, and recall rates. Other classification 
methods have the best correct discrimination for EAC, indicating that it is easily distinguished 
from the other two cancers.
 In this paper, the categorical variables of cancer include clinicopathological characteristics, 
demographic characteristics, and molecular characteristics, and the variables are mainly 

Table 2
 Confusion matrices for the classification models for the test set.

Classical decision tree model Conditional inference tree model
Actual \ Predicted EAC ESCC SAC EAC ESCC SAC
EAC 27 0 6 32 0 1
ESCC 0 18 6 0 8 16
SAC 5 19 87 8 7 96

Bagging model AdaBoost model
Actual \ Predicted EAC ESCC SAC EAC ESCC SAC
EAC 29 0 4 30 0 3
ESCC 0 17 7 0 18 6
SAC 4 11 96 5 7 99

RF model
Actual \ Predicted EAC ESCC SAC
EAC 26 0 7
ESCC 0 15 9
SAC 1 2 108

Table 3
Evaluation index for classification models for the test set.

Classical decision tree model Conditional inference tree model
Evaluation index EAC (%) ESCC (%) SAC (%) EAC (%) ESCC (%) SAC (%)
Accuracy rate 93.45 85.12 78.57 94.64 86.31 80.95
Precision rate 84.38 48.65 87.88 80.00 53.30 85.00
Recall rate 81.82 75.00 78.38 96.97 33.33 86.49

Bagging model AdaBoost model
Evaluation index EAC (%) ESCC (%) SAC (%) EAC (%) ESCC (%) SAC (%)
Accuracy rate 95.24 89.29 84.52 95.24 92.23 87.50
Precision rate 87.88 70.83 89.72 85.71 72 91.67
Recall rate 87.88 70.83 86.49 90.91 75 89.12

RF model
Evaluation index EAC (%) ESCC (%) SAC (%)
Accuracy rate 95.24 93.45 88.69
Precision rate 96.30 88.24 87.10
Recall rate 78.79 62.5 97.30
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discrete, although some are continuous. The above models can deal with both continuous and 
discrete data effectively. Overfitting easily occurs in the decision tree model, but we avoid this 
problem by pruning. However, the classification accuracy of the decision tree model is inferior 
to those of the other models. AdaBoost improved the performance through boosting, in which it 
is unnecessary to screen features and overfitting occurs, making AdaBoost suitable for cases 
with more complex data types in this paper. RF is modified by bagging and is not prone to 
overfitting, because the training samples do not account for all the samples. When dealing with 
classification imbalances, RF can also provide an effective method to balance the error of the 
data set, giving it a better classification effect than the other classification algorithms.

3.3	 Classification	of	cancers	for	RF	model	

 By analyzing the confusion matrix, it is concluded that the RF model can classify the cancer 
data better than the other models. Next, we use the RF model to classify cancer types and 
analyze the classification results, and the confusion matrix and error for the RF model are 
presented in Table 4. For the RF classification, the error rate in classifying the three cancers is 
very low, especially for SAC.
 The Gini index (Gini inequality) indicates the probability that a randomly selected sample 
will be split in the sample set. The smaller the Gini index is, the smaller the probability that the 
selected sample in the set will be split, that is, the higher the purity of the set, and the higher the 
Gini index is, the less pure the set. The Gini index is equal to the probability of a sample being 
selected multiplied by the probability of the sample being misclassified:

 2

1 1
( ) (1 ) 1 .

K K

k k k
k k

Gini p p p p
= =

= − = −∑ ∑  (8)

 Figure 7 shows accurate measurements of the importance of each variable obtained by using 
the three levels of the dependent variables (cancer types) and the effect of the variables on the 
prediction accuracies of all cancer types and the Gini index. The larger the number of chaotic 
categories contained in the population, the larger the Gini index will be (similar to the concept of 
entropy). For a certain node, the lower the entropy is, the purer it will be, and the smaller the 
Gini index is, the purer the Gini index will be. Thus, the purer the node is, the more it can 
determine which type it belongs to, and the more ideal the result is. As shown in Fig. 7, for the 
RF model, the variables with the highest importance for EAC were Anatomic_Site, Country, 

Table 4
Confusion matrix and error for the RF model for the test set.

Actual Predicted Class errorEAC ESCC SAC
EAC 64 0 15 0.189
ESCC 0 55 35 0.389
SAC 6 6 376 0.031
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Mutation_Rate, Mutation_Count, Genome_Altered, and Histologic_Grade. The variables that 
were most important for ESCC were Anatomic_Site, Country, TP53_Mutate, Lymphocyte_
Infiltration, Diagnosis_Age, and Genome_Altered.
 The variables that were most important for SAC were Mutation_Count, Mutation_Rate, 
Country, Histologic_Grade, Genome_Altered, and Lymphocyte_Infiltration. The variables with 
the most precise measures that affect the accuracy of prediction of all cancer types were 
Anatomic_Site, Country, Mutation_Count, Mutation_Rate, Histologic_Grade, and Genome_
Altered. The variables with the highest prediction accuracy for all cancer types based on the 
Gini index were Country, Anatomic_Site, Mutation_Count, Mutation_Rate, Genome_Altered, 
and Diagnosis_Age. In summary, for the RF classification method, the most important target 
attributes for the classification of EAC, ESCC, and SAC were Country and Genome Altered.

4. Discussion

 In a previous study, the molecular characteristics of the histological subtypes of EAC and 
ESCC were different across all detection platforms.(5) The similarity between ESCC and 
HNSCC is greater than that between ESCC and EAC. Therefore, in classification by machine 
learning, ESCC and EAC are the easiest to distinguish. Previous studies found that the similarity 
between EAC and SAC is higher than that between EAC and ESCC. However, according to the 

Fig. 7. Variable importance maps of different measures for the classification with the RF model. 
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model in which EAC is derived from Barrett’s esophagus rather than the stomach, Barrett’s 
esophagus and EAC may be derived from proximal gastric cells or the embryonic residual cell 
population of the gastroesophageal junction, and EAC is considered to be separate from 
SAC.(10,11) However, since the molecular characteristics of EAC and chromosomal instability 
(CIN) gastric cancer are similar, we may not be able to completely distinguish them from CIN 
gastric cancer by relying solely on molecular analysis. Therefore, it is necessary to analyze both 
the clinical and pathological characteristics and the molecular characteristics and to use a 
machine learning method to classify them.

5. Conclusions

 The information collected by sensors can be analyzed by machine learning. Machine learning 
has the advantages of high classification accuracy, fast calculation, and strong learning ability. 
By analyzing the data, reliable conclusions can be obtained. The combination of sensors and 
machine learning has certain practicability in many fields; the more data collected by the 
sensors in the future, the more machine learning algorithms can be optimized, thereby 
improving the accuracy of the analysis results.
 In this paper, the decision tree, bagging, AdaBoost, and RF machine learning classification 
algorithms were used to classify three types of cancer, and the importance of variables for the 
different classification models was analyzed. The classification results showed that all models 
were the least effective and had the lowest precision in the classification of ESCC. Country and 
Anatomic_Site were the most important variables for the different classification methods, 
indicating that they are very important for differentiating between cancer types. To verify the 
classification effects of the different classification models, confusion matrices were used to 
evaluate the models, and the classification results of the RF model were found to be the best. In 
this paper, we studied an unbalanced data set, for which the RF model can provide an effective 
method to balance errors in the data set. If a large part of a feature is lost, the RF algorithm can 
still maintain accuracy. The RF algorithm has strong anti-interference ability and anti-overfitting 
ability, resulting in its high classification performance in this study. However, in this paper, we 
only classified EAC, ESCC, and SAC, and no studies have yet focused on differentiating 
between other cancer types using machine learning classification algorithms. Because ESCC is 
not easy to distinguish from other squamous cell carcinomas, such as those of the head and neck, 
which have high similarity to ESCC, through general medical means, further studies are 
necessary. Classification based on the RF model can effectively improve the differentiation 
between EAC and SAC, enabling cancer patients to receive more accurate treatments and have 
an improved prognosis.
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