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	 In this paper, a simple user-aided, robust, and high-quality fast shadow removal method is 
proposed. Firstly, an instant learning method is used to remove the shadow of an image, guided 
by input from the user of two rough areas of shadow and lighting pixels from which the initial 
shadow mask for shadow removal is derived. Secondly, the detected shadow image is offset and 
corrected to eliminate the influence of ambient light by a simple input of a color sampling line 
indicating the rate of change of illumination of the shadow region, penumbra region, and 
luminance region pixels. Clustering and illumination estimation are then performed for the 
corrected images. Meanwhile, the shadow is removed by calculating the statistical distribution of 
the shadow-free regions, and the lighting is restored by estimating the illumination scaling 
factor. Finally, the energy function used for illumination optimization can perform smooth 
estimation and image enhancement of the area after shadow removal. Experiments show that our 
proposed algorithm can generate high-quality shadow-free images and deal with difficult scenes 
with various texture types and uneven shadows.

1.	 Introduction

	 Shadows are a common natural phenomenon and can be used to predict the shape and 
location of the object that produces the shadow, as well as the source and direction of light. 
However, shadows can cause many problems in the field of computer vision. For example, in 
intelligent vehicle systems, they greatly affect image segmentation and the accurate identification 
of vehicles, pedestrians, and road markings by vision sensors (cameras) mounted on a car. 
Shadow removal from images is an ill-posed mathematical problem, and it is difficult to remove 
shadows completely from images. As a hotspot in the field of computer vision, shadow removal 
is mainly divided into two sub-tasks: shadow detection and shadow removal. One of the 
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difficulties of light restoration in the textured area of a shadow surface is the variability of 
diverse shadow types.(1) In particular, the following four common attributes of shadows greatly 
increase the difficulty of shadow removal: rich texture features, high shadow softness, 
changeable shadow colors, and extreme broken shadows.
	 In response to the above-mentioned problems and challenges in shadow removal, methods to 
obtain high-quality shadow-free images have been proposed. However, it is always difficult to 
remove shadows completely, so most algorithms have been designed for one or more specific 
problems to improve the accuracy of shadow-free images. Similarly, by observing images with 
shadows, it has been found that the pixels of objects with the same material will form a color line 
in the RGB color space with a change of illumination.(2) By using this characteristic of the 
shadow image, a simple scribble color sampling line is designed to indicate the relationship 
between the illumination gradient of pixels in the shadow region and those in the lighting region 
for image offset correction, so as to eliminate possible artifacts in the penumbra region. Then, 
the shadow is removed and the lighting is restored using the statistics ratio of the shadow area. In 
addition, we use an energy function for illumination optimization to perform smooth estimation 
and enhancement of the image region after removing shadows. Through standard evaluation 
data, it is demonstrated quantitatively and qualitatively that this method is better than some 
state-of-the-art methods. In this paper, the proposed shadow removal algorithm is mainly applied 
to the processing of a single image.

2.	 Related Work

	 Shadow removal methods can be divided into automatic(3–8) and user-aided(1,9–15) methods. 
The difference between them is related to the initial detection of shadows, and the removal of 
image shadows after detection is an automatic task. In any case, shadow detection and removal 
are ill-posed problems and are difficult to implement reliably.
	 Early methods of automatic shadow removal included the use of internal images, a popular 
solution to this problem.(6) The decomposition of the internal image provides shadow and 
reflectance information, but such methods are unreliable and may result in excessive processing. 
Other methods detect shadows by learning the features of shadow regions.(7,8) However, shadow 
detection is often limited by the scope of training data, the edge detection, and the segmentation 
quality of image shadows. In addition, in recent years, shadow removal has mainly relied on the 
deep learning method of a convolutional neural network with end-to-end training. Learning 
mappings from paired shadows and the ground truth image is a new approach in image shadow 
removal.(3–5) Qu et al. developed three sub-networks to extract features from multiple views and 
embedded these sub-networks in the algorithm framework to remove shadows.(3) In Ref. 4, one 
conditional generation antagonistic network (CGAN) was used to detect shadows and another 
CGAN was used to remove shadows. However, such methods require a large number of high-
quality, paired data sets to be trained. Thus, a shortage of high-quality data sets is a major 
limitation in the development of in-depth learning methods. Later, Hu et al. examined the use of 
unpaired shadow image data sets to perform mask-shadow generation antagonistic network 
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(Mask-Shadow GAN) in-depth learning, which can achieve good shadow removal of visual 
effects.(5) Nevertheless, such antagonistic training still requires a large number of scene data sets 
for learning and training. Moreover, this algorithm is complex and time-consuming.
	 User-aided methods usually require different degrees of manual assistance and can obtain 
more precise shadow removal at the cost of requiring the user to detect some areas of shadow. 
Wu et al. asked users to confirm shadows and lighting pixels, excluding other uncertain areas.(9) 
Other methods required users to define the boundary of a shadow.(10,11) Shor and Lischinski only 
required a shadow pixel as the input, but there were limitations on other areas of the shadow 
surface, which were not detected in the image.(12) Arbel and Hel-Or required users to define 
many texture anchors.(13) In addition, the use of natural coatings for penumbra restoration will 
lead to penumbra artifacts in the final result of treatment.(14) Zhang et al. performed a simple 
user-aided method to indicate that there is a similar texture feature relationship between lighting 
pixels and shadow pixels.(15) However, while the user used the illumination factor to perform 
image extinction, the image processing results are sensitive to the user’s initial setting.
	 Until now, most shadow removal methods(7,11,12) have visually compared some specific 
shadow images, and only a few studies have performed a quantitative evaluation. These methods 
of image shadow removal lack high-quality ground truth data for comparison. Quantitative tests 
were carried out in Ref. 10, but the data used to obtain the test results were not disclosed. 
Guo et al. first disclosed the real data set of shadowless images they collected and then tested the 
data. In addition, this type of image data set is very difficult to collect and will be affected by 
many uncontrollable changes outdoors.(8) Because these changes affect shadow removal results, 
quantitative testing of such data may be difficult. Therefore, Han and Cosker extended the 
aforementioned data set according to the diversity of scenes (including four different categories: 
texture, softness, brokenness, and colorfulness), and presented new division rules.(1) This 
partition rule will be used to evaluate multiple shadow removal algorithms for selected images in 
this paper.
	 Traditional image features and models were used for shadow removal in early studies. In 
recent years, machine learning methods have been used to improve the accuracy of shadow 
removal. Our method combines both image features and machine learning methods for fast 
shadow removal. With the previous literature taken into account, our algorithm has three 
important contributions:
(1)	Powerful offset correction. The effect of using tone and contrast to restore brightness may 

cause inconsistencies in shadow correction areas. A robust and simple user-indicated color 
sampling line offset correction is used to correct artifacts.

(2)	Simple and robust image detection based on user inputs. The shadow detection in this paper 
only requires two simple marks made by the user to provide samples of lighting and shadow 
pixels. The method in this paper is different from previous methods that require more 
complex user inputs(9–11) or simpler inputs,(12) which often compromised the robustness and 
quality of shadow removal results.

(3)	Efficient shadow removal. The statistical distribution of the shadow-free area is introduced, 
and then the shadows are removed and lighting is restored. This method does not require 
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prior training, and can efficiently estimate lighting changes without complicated image 
training. Compared with some existing methods such as image models and deep learning, 
our method has certain advantages.

	 These contributions are expected to be very significant for the visual recognition field. 
Moreover, the validity of the proposed shadow removal algorithm was demonstrated in extensive 
repeated experiments.

3.	 Simple Interactive Shadow Removal Algorithm

	 In this section, we first briefly introduce the proposed algorithm, and then expand on the 
technical details of each part in the following sections (see Fig. 1).
(1)	Shadow detection (Sect. 3.2). The shadow image is first detected using the K-nearest neighbors 

(KNN) classifier, which is guided by two simple user scribbles [Fig. 1(b)]. Next, the detection 
image is binarized and classified. Then, Gaussian filtering is carried out on the binarized image. 

Fig. 1.	 (Color online) Shadow removal pipeline. (a) Original image; (b) shadow image and user scribbles indicating 
illuminated (red line) and shadowed (green line) pixels; (c) detected shadow mask; (d) clustering of original image; 
(e) initial luma estimation image; (f) shadow image and user-defined illumination gradient region (blue line); (g) 
corrected image; (h) image corrected by clustering; (i) image corrected by luma estimation; (j) initial shadowless 
image; (k) illumination-optimized shadowless image.
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Finally, an initial shadow mask is obtained by binarizing the filtered image [threshold size of 0.5, 
Fig. 1(c)].

(2)	Offset correction (Sect. 3.3). After obtaining the rough shadow mask, the gradient of the 
illumination factor is sampled by using the color sampling line perpendicular to the shadow 
boundary [Fig. 1(f)], and then the image is offset-corrected to eliminate the influence of ambient 
light [Fig. 1(g)].

(3)	Image clustering and illumination estimation (Sect. 3.4). Uniform sphere sampling is performed 
on the detected image and the offset-corrected image to construct a k-dimensional tree (KD-Tree) 
for clustering color sampling lines [Figs. 1(d) and 1(h)]. Then, the shadowless image [Fig. 1(j)] is 
obtained by removing the umbra and restoring the illumination of the image by estimating the 
illumination scaling factor [Figs. 1(e) and 1(i)].

(4)	Illumination optimization (Sect. 3.5). In the case without the introduction of artifacts, the shadow 
ratio is improved by using an energy function for illumination optimization so that most regions 
in the shadow area correspond to homologous material regions in the luminance area. Finally, the 
pixel scale factor used for restoring the illumination is used to perform local smoothing on the 
shadow-free image to achieve a consistent texture and illumination [Fig. 1(k)].

3.1	 Shadow image model

	 According to Ref. 16, an image Ic(x) can be expressed as the dot product of the illumination 
Lc(x) and reflectance Rc(x):

	 { }( ) ( ) ( ), , ,I x L x R x c R G Bc c c= ∈ .	 (1)

Lc(x) can be represented by the direct illumination ( )d
cL x  and ambient illumination ( )a

cL x , where c 
is the color channel of the color image. Shadows are cast when the direct illumination ( )d

cL x  in 
the scene is blocked by an object, and the illumination can be rewritten as

	
[ ]

( ) ( ) ( ) ( ),

( ) 0, 1 .

d a
c c cL x S x L x L x

S x

 = +


∈





	 (2)

	 The attenuation factors of direct illumination ( )S x  in the above formula can be expressed as

	 {  0,  ,
( )

1,  .
x shadow pixels

S x
x other pixels
∈

=
∈

 	 (3)

	 According to Ref. 17, the ambient illumination ( )a
cL x  in Eq. (2) can be expressed as an affine 

function of the offset. Thus, the illumination function Lc(x) can be transformed into the following 
affine function:
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	 ( ) ( ) ( ) ( ) ( ) , ,d a d
c c c cL x S x L x L x L x Rα α α  = + + − ∈   

 	 (4)

where α is the offset. The former term ( ) ( )d
cS x L xα + 

  in Eq. (4) represents the illumination 

change along the direction of direct illumination ( )d
cL x , whereas the latter term 

( ) ( )a d
c cL x L xα −   describes a certain offset α. Thus, the offset of the reflectance ( )cO xα  can be 

expressed as

	 ( ) ( ) ( ) ( )a dO x L x L x R xc c c c
α α= − 

  .	 (5)

Therefore, the shadow image can be simplified as follows using Eqs. (1), (2), and (5):

	
( ) (1 ) ( ) ( ) ( ),

( ) , 1 .
1

c c cI x S x R x O x

S x

αα

α
α

 = + +

  ∈  + 

	 (6)

where S(x) is the new illumination attenuation factor.
	 Three important results for the shadow image in the RGB color space can be obtained from 
Eq. (6). Firstly, if the reflectance Rc(x) is given, Eq. (6) is an affine function, and the image pixel 
will form a color line based on the change in direct illumination [see Fig. 2(a)]. Secondly, when 
the attenuation factor ( ) [ , ]S x ∈ −∞ +∞  is infinitely extended, the color sampling line will not 

(a) (b)

Fig. 2.	 (Color online) Shadow image (a) and shadowless image (b) and their corresponding RGB space 
distributions.
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intersect the origin unless the direct illumination ( )d
cL x  and ambient illumination ( )a

cL x  are in 
the same direction. Finally, because the color sampling lines are related to the reflectivity, when 
α is a constant value, no deviation can result in all the color sampling lines intersecting with the 
origin. Similar conclusions are drawn in Refs. 17 and 18.
	 From the shadow image model above, it can be seen that the color sampling lines provide 
some important clues about the illumination changes of objects of the same material. In addition, 
when the offset of all different color sampling lines is eliminated, the shadow ratio can be 
restored by changing the gradient area of the image to remove the shadow.

3.2	 Shadow detection

	 To remove the shadows, the shadows in the image should first be detected. Since we focus on 
the removal of shadows, we adopt the method in Ref. 1 to detect shadows. First, we need two 
rough user inputs to indicate the light and shadow pixels of the image [Fig. 1(b)]. The shadow 
pixels in the RGB color space in the logarithmic domain are used to train features and construct 
a KNN classifier (K = 3). The distance metric of the classifier is the Euclidean distance, and the 
classification metric is based on the principle of large numbers for closest-point tie-breaking. We 
choose the Gaussian kernel for spatial filtering (size 5, standard deviation 3) and apply it to the 
posterior probability image. Finally, a threshold of 0.5 is used to binarize the filtered image (as 
shown in Fig. 3) to obtain a rough shadow mask.
	 After obtaining the rough shadow mask, we use the gradient of the lighting factor S(x) of the 
sampling line perpendicular to the shadow boundary instead of dealing with time-consuming 
alignment samples and selected samples.(1) Similarly to in Ref. 19, we can obtain the initial 
penumbra area by sampling. Finally, as shown in Fig. 3, the scene is divided into the lit area (N), 
penumbra area (P), and umbra area (U).

Fig. 3.	 (Color online) First row: shadow images with user inputs. Second row: shadow masks obtained from image 
detection.

(a) (b) (c) (d)
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3.3	 Offset correction

	 In Refs. 20 and 21, fog lines were used for image defogging, and it was found that the pixels 
in the fog-free image formed color lines in the RGB space. These lines through the origin were 
derived from the objects within the shadow. When a haze scene appeared in an image, the color 
sampling line in the haze image no longer passed through the origin, i.e., the offset phenomenon 
occurred. Inspired by this, in Ref. 21, a line was set for each of these patches for use as a line 
relative to the origin of the deviation to estimate patches of reflectance. We propose a new 
algorithm for clearer image processing based on the nonlocal prior. Similarly, we found that the 
pixels of objects of the same material in the shadow image formed a color sampling line in the 
RGB spatial distribution with a change in illumination (Fig. 2). Therefore, an instant learning 
method that uses color sampling lines to indicate changes in shadow pixel illumination is 
proposed to perform offset correction.
	 First, the user manually selects an area with similar reflectance ugR  and a significant 
illumination gradient variation gu [e.g., Fig. 4(a)]. Then, principal component analysis is used to 
obtain the direction of the sampling line v of gu and compute the mean value pc of the area with 
the illumination gradient variation. The area of the sampling line Ic(gu) can be expressed as

	 ( ) ( )I g t g v pc u u c c≈ + ,	 (7)

where t(gu) is the independent variable of the sampling line.
	 As described by Eq. (6), different offsets α will cause different offsets. Therefore, when we 
eliminate the smallest offset, the change in the image pixel values will be minimal or the error is 
likely to be less. Therefore, the minimum offset ( )c uO gα perpendicular to the color sampling line 
is selected in this paper [e.g., Fig. 5(a)]:

	 ( ) ( ) ( ) uga d
c u c c c c c

c

p c
O g L x L x R p v

v
α α = − ≈ − 


 ,	 (8)

where  represents the dot product operation and  is the length operation of the vector.

(a) (b) (c) (d)
Fig. 4.	 (Color online) (a) Original image and user-defined illumination gradient area (blue line); (b) clustering of 
original image; (c) corrected image; (d) clustering of corrected image.
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	 Next, a rough offset-corrected image ( )cI x′  is obtained by eliminating the minimum offset 
( )c uO gα  [Fig. 5(c)]:

	 ( ) ( ) ( )c c c uI x I x O gα′ = −  .	 (9)

	 As mentioned above, through this correction of the sampling lines, the direct illumination is 
fixed globally. Thus, the direction between different pixels is determined by the pixel reflectance. 
Therefore, the minimum offset ( )cO xα  can be estimated as

	 ( ) ( )( ) ( ) ( )
( )u

c c
c c u c ug

cc

R x I x vO x O g O g
I x vR

α α α ′
= ≈

′
   .	 (10)

The final offset-corrected image [Figs. 4(c) and 5(d)] can be expressed as

	 ( ) ( ) ( ) (1 ) ( ) ( ) ( )d
c c c c cI x I x O x S x L x R xα α= − = +



 .	 (11)

3.4	 Image clustering and illumination estimation

	 In this section, all sample lines intersect at the origin after correction. The corrected image 
( )cI x  can be represented in spherical coordinates as

	 [ ]( ) ( ), ( ), ( )cI x d x x xθ ϕ= ,	 (12)

where d(x) is the distance ( )cI x  from the origin, and ( )xθ  and ( )xϕ  are the longitude and 
latitude in spherical coordinates, respectively.
	 For areas of the image surface with similar reflectance, a change in the attenuation factor S(x) 
of illumination only affects the distance d(x) and does not change the longitude and latitude in 

Fig. 5.	 (Color online) (a) Color sample line g with different offsets; (b) corrected different sample lines in RGB 
space; (c) corrected sampling lines 1–3; (d) eliminated offset in different sample lines.

(a) (b) (c) (d)
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spherical coordinates. This implies that our algorithm can obtain different sampling lines by 
clustering similar spherical coordinates. Next, uniform sphere sampling is used to construct a 
KD-Tree [Fig. 4(d)] to cluster sampling lines. Different clusters represent different surface 
materials.
	 For each given sampling line l(g), d(x) can be calculated using the pixel intensity as follows:

	 ( ) (1 ) ( ) ( ) ( )d g
cd x S x L x R xα= + ⊗ ,	 (13)

where ⊗  represents per-pixel multiplication.
	 In addition, when it is assumed that there are no shadow pixels at the most distant sampling 
lines, the value of the illuminance attenuation factor is 1. Then, the maximum distance dmax(x) of 
the sampling lines is

	 ( ) (1 ) ( ) ( )d g
max cd x L x R x= + ⊗α .	 (14)

	 By combining Eqs. (13) and (14), the illumination attenuation factor S(x) can be obtained as 
follows:

	 ( ) ( ) ( )maxS x d x d x= .	 (15)

From this, we can estimate the change in illumination of the image after correction (see Fig. 6).

3.5	 Shadow removal and illumination optimization

	 According to the offset correction and illumination estimation of the shadow image, our 
algorithm performs a shadow removal method to ensure global uniform illumination, which has 
better robustness in complex scenes. The formula used for shadow removal is as follows:

Fig. 6.	 (Color online) (a) Shadow image; (b) initial luma estimation image; (c) image corrected by the luma 
estimation.

(a) (b) (c)
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	 ( ) ( ) ( ) ( )f
c c cI x I x S x O xα= +




 .	 (16)

	 We remove the shadows according to the pixel illuminance ratio of each region of the more 
refined image. First, the umbra is removed by calculating the distribution of the umbra in the 
bright region:

	
( )

( ) ( ) ( ) ( )
( )

g
cf g g g

c c c cg
c

SD I N
I x I U E I U E I N

SD I U

       = − +        





  



,	 (17)

where g is the color sampling line index, E[.] is the average operator, SD[.] is the standard 
deviation operator, U represents the umbra area, and N represents the lighting area.
	 Equation (17) only calculates the illumination distribution of the umbra region and lighting 
region, ignoring the existence of the penumbra. Moreover, with the gradual change of lighting 
intensity, the penumbra mask cannot be restored in the same way as in the removal of the umbra 
area. Inspired by Refs. 12 and 22, we calculate the pixel value and illumination attenuation 
factor S(x) of the shadow-free region ( )f g

cI U  , and then estimate the proportion of shadow pixels 
to restore the illumination of the penumbra. First, we calculate the mean umbra ratio U

ck :

	 ( ) ( )U g f g
c c ck E I U I U =  

 .	 (18)

	 Then, the penumbra ratio is estimated by amplifying the umbra ratio through the illumination 
attenuation factor:

	
( ) ( )

(1 )
( ) ( )

g g
P U U
c c c g g

S P E S U
k k k

E S N E S U

 −  = + −
   −   

.	 (19)

	 Finally, using Eq. (19), we use the scale in the penumbra P
ck  to slowly transform the umbra 

ratio U
ck  to 1 when there is no shadow ratio. As a result, we obtain the following image with the 

penumbra removed:

	 ( ) ( ) ( )f g g g
c c cI P I P k P=  .	 (20)

	 After removing the shadow regions from the original shadow image, we run the above 
formula in MATLAB [Fig. 7(b)]. The figure clearly shows that artifacts appear in the shadow of 
the image, and the illumination of the penumbra area is not well recovered. The obtained 
shadow-free image is illuminated for optimization. Since most of the pixels in the shadow region 
of the image correspond to the pixels of similar materials in the bright region, most of the 
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shadow area can be removed using the above algorithm. At the same time, local smoothing is 
carried out for the area with changed illumination, so as to estimate the illumination in the other 
areas from the re-illuminated regions. Therefore, we refine the shadow ratio kc(x) by minimizing 
the following energy function:(23)

	
22

( )

( ) ( ) ( ) ( )arg min
( ) ( )( )c x

c c c c
S

k x x x y N

k x k x k x k y
I x I yx

λ
σ′ ∈

  ′ ′ ′− −
+   

−      
∑ ∑ ∑ ,	 (21)

where σs(x) is the standard deviation of S(x), which is computed from each sampling line, λ is 
used to balance the hand smoothing factor [the first term in Eq. (21)] and the smoothness term 
(second term) in the control data, and Nx is the size of each pixel x among its four nearest 
neighbors. After many experiments, we set λ = 0.001.
	 The final shadow-free image ( )f

cI x  can be represented as follows [see, e.g., Fig. 7(c)]:

	 ( ) ( ) ( ) ( )f
c c c cI x I x k x O xα′= + 

 .	 (22)

	 We summarize the main framework of the shadow removal method described in the previous 
section in Algorithm 1. The user inputs a portion of the region that indicates the lighting 
characteristics of the scene and a region (sampling line) with significant lighting changes. We 
use simple user scribbles to obtain high-quality shadowless images.

Algorithm 1
Shadow removal.
Input: original image;
Output: shadowless image; 
Shadow detection: use user scribbles and KNN classifier to detect shadow image;
Perform offset correction;
Calculate image clustering and illumination estimation;
Shadow removal:
for each color sample line do
Umbra removal: calculate the distribution of shadow pixels and nonshadow pixels to remove the umbra;
Penumbra removal: combine the umbra scale factors to remove the penumbra band;
end
Optimize the shadow through the energy function to obtain the final shadowless image.

(a) (b) (c)

Fig. 7.	 (Color online) (a) Original shadow image; (b) initial shadowless image with obvious artifact; (c) optimized 
shadowless image.
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Table 1
Shadow removal errors for test cases according to four attributes.

Degree
All pixel errors Shadow pixel errors

Guo 
et al.(8)

Zhang 
et al.(15)

Han and 
Cosker(1) Ours

Guo 
et al.(8)

Zhang 
et al.(15)

Han and 
Cosker(1) Ours

Texture

Weak 0.53(0.50) 0.35(0.17) 0.27(0.18) 0.24(0.17) 0.42(0.57) 0.15(0.19) 0.11(0.09) 0.09(0.10)
Medium 0.59(1.09) 0.39(0.25) 0.28(0.14) 0.23(0.09) 0.47(1.15) 0.26(0.24) 0.13(0.10) 0.10(0.08)
Strong 0.71(0.60) 0.58(0.38) 0.48(0.41) 0.41(0.27) 0.64(1.03) 0.37(0.48) 0.34(0.42) 0.22(0.19)
Mean 0.61(0.73) 0.44(0.27) 0.35(0.22) 0.29(0.18) 0.51(0.92) 0.26(0.37) 0.19(0.22) 0.14(0.12)

Softness

Weak 0.52(1.08) 0.37(0.24) 0.24(0.11) 0.22(0.10) 0.39(1.13) 0.24(0.42) 0.12(0.09) 0.08(0.07)
Medium 0.70(0.36) 0.40(0.20) 0.33(0.17) 0.31(0.17) 0.64(0.43) 0.25(0.26) 0.16(0.11) 0.13(0.11)
Strong 1.09(0.75) 0.69(0.49) 0.59(0.26) 0.47(0.25) 1.01(0.97) 0.49(0.62) 0.41(0.24) 0.26(0.18)
Mean 0.77(0.73) 0.48(0.31) 0.38(0.18) 0.33(0.13) 0.68(0.84) 0.33(0.43) 0.23(0.16) 0.16(0.12)

Brokenness

Weak 0.59(0.98) 0.37(0.23) 0.25(0.14) 0.24(0.12) 0.48(1.04) 0.24(0.40) 0.12(0.10) 0.10(0.09)
Medium 0.42(0.29) 0.43(0.22) 0.28(0.16) 0.27(0.15) 0.27(0.35) 0.27(0.27) 0.14(0.11) 0.14(0.11)
Strong 1.42(1.06) 1.07(0.47) 0.68(0.31) 0.65(0.27) 1.55(1.84) 0.88(0.72) 0.52(0.32) 0.36(0.26)
Mean 0.81(0.78) 0.63(0.31) 0.40(0.20) 0.39(0.18) 0.76(1.08) 0.46(0.46) 0.24(0.16) 0.19(0.15)

Colorfulness

Weak 0.48(0.64) 0.36(0.18) 0.24(0.11) 0.22(0.12) 0.36(0.78) 0.21(0.24) 0.11(0.09) 0.09(0.09)
Medium 1.67(2.29) 0.60(0.50) 0.48(0.18) 0.42(0.16) 1.56(2.07) 0.57(1.06) 0.24(0.14) 0.21(0.13)
Strong 1.20(0.99) 0.78(0.57) 0.56(0.31) 0.57(0.32) 1.34(2.33) 0.72(1.00) 0.46(0.48) 0.37(0.35)
Mean 1.12(1.31) 0.58(0.41) 0.43(0.20) 0.40(0.20) 1.09(1.73) 0.50(0.77) 0.27(0.23) 0.22(0.19)

Other 0.38(0.52) 0.35(0.16) 0.19(0.06) 0.19(0.08) 0.25(0.58) 0.16(0.22) 0.06(0.02) 0.07(0.04)

4.	 Experiment and Evaluation

4.1	 Quantitative assessment

	 In accordance with previous work,(1,12) we calculate the root mean square error (RMSE) per pixel 
between the image processed by our algorithm and the real shadow-free image. Then the RMSE 
between the real situation of the unshaded ground truth image and the original shadow image is 
computed. Finally, the two RMSE values are divided to quantitatively compare the effects of the 
algorithm proposed in this paper. The normalized calculation can clearly show the robustness of the 
method in this paper.
	 Table 1 gives quantitative results. We evaluate our method by comparing shadow removal from 
individual images in the public data sets provided by Refs. 1 and 24. The best score is given in bold. 
As shown in Table 1 and  Fig. 8, our approach is superior to previous methods in most cases,(1,8,15) 
especially for testing the complex texture and softness of shadows.

4.2	 Visual comparison

	 A visual comparison of a typical example of using the proposed shadow removal algorithm is 
shown in Fig. 8. In general, our approach yields higher quality and more aesthetically pleasing 
shadow removal results than methods that specifically target shadow boundary restoration. 
However, small artifacts sometimes occur when the shadow region is highly similar to the 
background. Figure 9 shows some of the difficult special cases, where there is a broken shadow 
or shadows similar to the background. Further work is required to solve these special cases.
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Ground truth

Fig. 8.	 (Color online) Comparisons of our method with existing state-of-the-art techniques using data set from 
Ref. 1.

Original Guo et al.(8) Zhang et al.(15) Han and Cosker(1) Ours

Fig. 9.	 (Color online) Special cases where the proposed method fails to remove the shadow.



Sensors and Materials, Vol. 33, No. 8 (2021)	 2707

5.	 Conclusion

	 In this paper, we propose a user-friendly shadow removal method that involves simple and 
powerful shadow detection based on user inputs. The strong offset correction method is adopted 
to realize fast shadow removal. After removing the shadow, the image is enhanced and filtered 
to obtain a high-quality shadowless image. 
	 This algorithm provides some innovations in the field of shadow image processing and 
recognition as follows. (1) Simple user inputs and intelligent image pixel intensity sampling are 
used. (2) A novel robust and simple user-indicated color sampling line offset correction is used to 
correct artifacts. (3) By introducing the statistical distribution of shadow-free areas, changes in 
illumination can be estimated robustly and effectively for shadow removal and re-illumination 
without prior training. To evaluate the proposed method, we use the standard data sets in the 
field. We also visually compare the results of partial shadow removal in the evaluation data set. 
Through the analysis in this article, some specific situations where it is difficult to remove 
shadows are  identified, for example, soft broken shadows and shadows with strong texture. 
Future work may be to combine user scribbles and machine learning methods to remove 
shadows in images.
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