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 We propose a chaos synchronization detection method combined with an extension neural 
network to diagnose the state of wind turbine blades. On the basis of a large-scale wind power 
generation system architecture, a 100 W small-scale wind power generation system simulation 
platform was first constructed and then a programmable logic controller (PLC) collected 
vibration sensor information. Through Ethernet and IEC 61850 communication protocols, the 
measured vibration signals were synchronously transmitted to a remote human–machine 
interface constructed by LabVIEW to facilitate remote real-time monitoring and analysis. We 
examined the identification of four different states of wind turbine blades: the normal state, 
blade rupture, blade screw fly-off, and abnormal blade inclination angle. On the basis of 
vibration signals in different states, a dynamic error scatter diagram was constructed by the 
chaos synchronization detection method, and chaos eye coordinates were extracted as 
eigenvalues for the identification of various state models. Finally, through the extension neural 
network, the four different states were identified. The measured results show that the proposed 
method can identify the states of wind turbine blades, and the identification accuracy rate of the 
proposed method was as high as 88.75%. Therefore, the proposed method effectively detects 
abnormal vibration signals of wind turbines and identifies different types of blade faults in real 
time.

1. Introduction

 The 2019 Global Wind Power Generation Report emphasized that in the next five years the 
global wind power industry will see rapid development. It is estimated that the annual growth 
rate of wind power generation will be 4%, with capacity increasing by 355 GW between 2020 
and 2024, a  rise of about 71 GW per year.(1) In addition, according to the 2020 World Energy 
Outlook issued by the International Energy Agency (IEA), renewable energy will meet 80% of 
the growth in the world’s electricity demand in the next decade, and renewable energy such as 
wind power and solar power will supply nearly 40% of the world’s electricity consumption in 
2030.(2) In recent years, many enterprises around the world, such as the International Renewable 
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Energy Agency (IRENA), the Climate Group, and the Carbon Disclosure Project (CDP), have 
actively promoted the RE100 International Initiative, where participating enterprises must use 
renewable energy for all their electricity consumption by 2040.(3) Throughout the report by IEA, 
it is shown that the world is now in an era of energy transition. In recent years, governments have 
proposed renewable energy power generation policies and have searched for and evaluated 
potential wind fields where wind power plants can be developed, so as to realize the vision of 
renewable energy power generation, such as wind power generation and solar power generation, 
and meet the above target of generating 40% of the world’s power by 2030.
 Owing to the long-term exposure of wind turbines and their almost continuous operation, 
their parts undergo aging and wear, increasing the probability of faults. As a result, wind turbine 
system maintenance and fault diagnosis will be a major challenge for the industry in the future. 
Relevant wind power accident research reports have statistically analyzed the common wind 
turbine faults and their causes, including high nacelle temperatures, gearbox damage, blade 
damage, and bearing damage.(4) According to statistics on wind turbine failure shutdown, among 
the large components, blades account for the largest proportion of faults (35%), followed by 
dynamos (32%), gearboxes (21%), and other components (8%).(5) Among the wind turbine 
operation and maintenance expenses, blade operation and maintenance expenses make up the 
largest proportion (30%), followed by dynamos (28%) and gearboxes (19%).(5) Therefore, to 
reduce the impact of current wind turbine failures on the system, blade faults should be focused 
on as the top priority. If a fault diagnosis technique for blades can be developed, then in the case 
of a minor abnormality, such a technique can be used for detection in real time, which would 
effectively reduce the fault time of wind turbines, increase the availability rate, and reduce 
operation and maintenance costs.
 In previous research on blade condition detection, Yang et al. proposed a method based on 
frequency index calculation for blade vibration dynamics and frequency analysis, which was 
applied to 29-inch glass fiber low-wind-speed dynamo blades. If the blades are ruptured, then 
the rupture position on the damaged blades can be clearly identified through this method.(6) 
Wang and Zhang put forward a data-driven framework and Haar-like method to screen test 
images and locate damaged blade areas through window scaling. The blade images were 
collected by a remote-controlled unmanned aerial vehicle and the surface cracks of blades were 
detected.(7) Zhang et al. proposed the analysis of aeroacoustic characteristics and the modeling 
of acoustic signal calculation noise in accordance with the IEEE P2400 standard to measure the 
aerodynamic noise changes of a blade airfoil surface through a voiceprint sensor and to diagnose 
blade rupture.(8) Malik and Mishra proposed a wind turbine state monitoring method based on 
an artificial neural network and an empirical mode decomposition method to evaluate whether 
aerodynamic parts such as the blades, nacelle, tail, and rotor are in equilibrium and a stable 
state.(9)

 In the above literature, most scholars emphasized the state of blade surface cracks and rarely 
studied mechanical faults such as a blade screw flying off or an abnormal blade inclination 
angle. Therefore, in the present study, we use a programmable logic controller (PLC) and an 
analog-signal-capturing module to capture the electrical signals of the vibration sensor of a wind 
turbine simulation platform. In addition, a remote monitoring system is constructed with 



Sensors and Materials, Vol. 33, No. 8 (2021) 2881

LabVIEW graphic control software that integrates the IEC 61850 communication protocol, 
Ethernet, a chaos synchronization detection method, and an extension neural network (ENN) to 
identify the most common blade states: the normal state, blade screw fly-off, blade rupture, and 
an abnormal blade inclination angle. The measured results show that the identification accuracy 
rate of the proposed method is as high as 88.75%. Therefore, the online fault diagnosis system 
for wind blades developed in this paper may be applied to actual wind fields in the future to 
improve the operation and maintenance capability of overall wind turbine systems.

2. Wind Turbine Blade Fault Vibration Signal Measurement

 In this study, the fault diagnosis of wind power generation blades has three main parts: a 
100 W wind power generation system test platform, vibration signal measurement, and a 
human–machine interface for remote monitoring and fault diagnosis, as shown in Fig. 1. First, 
the vibration signals of a wind turbine are measured by sensors, and a PLC and analog input 
converter are used as a system to collect sensor signals. The IEC 61850 communication protocol 
is employed as a data transmission medium between the PLC and LabVIEW, thus realizing a 
human–machine interface. Finally, the algorithm proposed in this paper is imported into the 
human–machine interface to develop a remote real-time information and fault detection system.

2.1 Test platform for small-scale wind power generation system

  In this study, a large-scale wind turbine structure is modeled with a small-scale wind power 
generation system test platform, as shown in Fig. 2. For the main configuration, the blades of a 
wind turbine and a single-phase drive motor are used as simulated wind energy to drive the 
blades, a speed increaser is adopted to simulate the gearbox inside the wind turbine nacelle, and 
then the energy is transmitted to the generator and supplied to the load. The vibration signals of 
the blade bearings are captured through vibration sensors. Table 1 lists the detailed specifications 
of each component of the test platform for the wind power generation system.

Fig. 1. (Color online) Overall architecture of wind power generation fault diagnosis system: (a) Wind power 
system test platform, (b) electrical signal measurement and PLC, and (c) human–machine interface for fault 
diagnosis.
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 To explore the abnormal vibration of wind turbine blades when faults occur, a normal blade 
model (State I) and three common blade fault models (States II–IV) are established through the 
constructed wind turbine simulation test platform. We then discuss the vibration phenomena 
caused by different states of the wind turbine blades.

A. Normal wind turbine blade (State I)

 On the basis of the blade structure of a large wind turbine, a small-scale blade is constructed 
on the test platform in this study. Figure 3 illustrates the model of the blade under a normal state.

B. Blade rupture (State II)

 Most wind turbines operate in a harsh environment, where they are vulnerable to strong 
wind, bird impact, or lightning strikes caused by a failure in the lightning protection system, 
resulting in damage or rupture of the blades. Therefore, we construct a blade rupture model to 
simulate blade rupture caused by external factors, as shown in Fig. 4.

C.	 Blade	screw	fly-off	(State	III)

 As wind turbines operate outdoors for a long time, their screws may gradually loosen due to 
the impact of external factors, resulting in fly-off or even breaking of the screws. If such a 

Table 1
Detailed specifications of each component of test platform for wind power generation system.
Number Component name Specification
(1) Generator 100 W
(2) Gearbox Gear ratio 1:15

(3) Vibration sensor Full scale range: 50 mm/s RMS 
Output current: 4 to 20 mA

(4) Three-phase induction motor 220 V/1 HP
(5) Wind turbine blade 30 cm

Fig. 2. (Color online) 100 W test platform for wind power generation system. 
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problem is not identified in a timely manner, then it will cause the blade to fly off. Therefore, we 
construct a model of blade screw fly-off to simulate screw fly-off caused by external factors, as 
shown in Fig. 5.

D. Abnormal blade inclination angle (State IV)

 Considering the blade pitch control of large wind turbines, long-term operation often causes 
mechanical damage to the motor or internal gear differences, resulting in an unbalanced body 
caused by different wind angles of blades. Therefore, we establish a model of abnormal blade 
inclination angle to simulate a blade inclination angle fault of wind turbines, as shown in Fig. 6.

2.2 Measurement of vibration signals

 We made four groups of blades with different states and carried out experiments on a 100 W 
wind power test platform, using a vibration sensor (SHOWA 2502-03) for measurement. The 
range of vibration displacement was 0–200 μm and the output signal was a 4–20 mA analog 
signal. The data were collected through the PLC [Fig. 1(b)], and the vibration signal was captured 
at a sampling frequency of 2 Hz. The vibration signal detected after the actual operation in each 

Fig. 3. (Color online) Model of blade under 
normal state.

Fig. 4. (Color online) Model of wind turbine 
blade rupture.

Fig. 6. (Color online) Model of abnormal blade  
inclination angle.

Fig. 5. (Color online) Model of blade screw fly-
off.
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state is shown in Fig. 7 (State I: normal wind turbine blade, State II: blade rupture, State III: 
blade screw fly-off, State IV: abnormal blade angle location). The sampling time of the captured 
vibration signal was 300 s and the data length was 600 bits. After measuring the vibration of the 
faulty blade model, data were transmitted through the IEC 61850 communication protocol and 
Ethernet network, and the human–machine interface to detect and analyze the vibration signals 
was designed using LabVIEW software.

2.3 Human–machine interface for remote monitoring and fault diagnosis [Fig. 1(c)]

 To develop a wind power generation fault diagnosis system, we integrate the proposed 
method into a graphic control human–machine interface developed using LabVIEW software 
[Fig. 1(c)]. The system mainly transmits the blade vibration signal data captured by the PLC to 
the remote monitoring interface through the IEC 61850 communication protocol and wireless 
network unit, as shown in Fig. 8. For fault diagnosis, the features of vibration signals are 

Fig. 7. (Color online) Measured vibration signals for different states of wind turbine blades.

Fig. 8. (Color online) Human–machine interface for blade surveillance system.
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Fig. 9. (Color online) Human–machine interface for blade surveillance system.

Fig. 10. (Color online) Flow chart of data feature extraction and identification system.

extracted by using the interface to plot a dynamic error scatter diagram of a chaotic system, 
denoted by (A) in Fig. 9. Finally, a trained ENN model is used for fault identification, and the 
diagnosis results are displayed on the human–machine interface [(B) in Fig. 9].

3.  Methodology

 We propose a chaos synchronization detection method combined with an ENN to identify 
blade faults. The flow chart of system identification is shown in Fig. 10. First, through Ethernet 
and IEC 61850 communication protocols, the vibration signals captured by the PLC are 
transmitted to the remote monitoring terminal, and the remote monitoring interface constructed 
by LabVIEW presents the relevant signals. Second, the measurement signals are converted into a 
synchronization error scatter diagram through the Lorenz chaos synchronization detection 
method, and the coordinate values of the left and right barycenters of the chaos eyes of the 
scatter diagram are extracted as characteristic signals of the state. Finally, the ENN is employed 
to learn and identify the signal features of the four states.
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3.1 Chaos synchronization detection method

 For signal feature extraction, we use the chaos synchronization detection method to convert 
the captured vibration signals into synchronization error scatter diagrams and adopt the 
barycentric coordinates (chaos eyes) of the scatter diagrams for the feature extraction of fault 
signals. This method has often been applied to fault signal feature extraction.(10,11) Chaos theory 
was proposed by Edward Norton Lorenz, an American meteorologist, and the chaos phenomenon 
is a characteristic of nonlinear systems. We utilize the chaotic system of Lorenz for system 
feature extraction.(12) The signal generated through the chaotic system generates an ordered but 
non-periodic motion trajectory due to a strange attractor, and this motion trajectory varies 
greatly upon minor changes. In a chaotic synchronization signal system, the chaotic system has a 
master system (MS) and a slave system (SS). When the two systems receive different signals, the 
motion trajectory of the two systems will produce different dynamic errors, and the SS will track 
the MS. This is called chaotic synchronization action.(13) We mainly use the dynamic errors 
generated in the tracking process of the master–slave system to analyze the differences caused 
by different vibration signals.
 The dynamic error generated by a vibration signal measured in this study can be plotted as a 
dynamic error scatter diagram, as shown in Fig. 11, by the chaos synchronization detection 
method. The dynamic error scatter diagram presents different distribution conditions and 
different barycenter positions for different blade states.
 Equations (1) and (2) show the representation of the MS and SS of a chaotic system, 
respectively.
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Fig. 11. (Color online) Chaotic dynamic error scatter diagram.
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 Here, x and y are state vectors and f(x) and f(y) are nonlinear functions. Subtracting Eqs. (1) 
and (2) will give the master–slave dynamic errors, such as those in Eq. (3). The calculated 
dynamic error equation is shown in Eq. (4). 
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 We employ the Lorenz chaotic system to extract the characteristics of the vibration signals of 
the four blade states. Equations (5) and (6) respectively present the MS and SS of the Lorenz 
chaotic system.
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 By subtracting Eqs. (5) and (6), the dynamic error equation of the Lorentz master–slave 
chaotic system can be obtained, expressed in matrix form in Eq. (7). Here, α, β, and γ are system 
parameters. Following Edward Lorenz, we set them as α = 10, β = 28, and γ = 8/3 to ensure that 
the system has the characteristics of strange attractors.(14)
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3.2 ENN

 Data identification is used in various research fields, mostly in fault diagnosis, disease 
diagnosis, data identification, and other applications.(15–18) When the system characteristic 
parameters are too complex, AI methods are used to assist fault diagnosis. We adopt an ENN for 
fault diagnosis.

A. Architecture of ENN

 There have been many studies on the successful application of ENNs in fault diagnosis.(19–21) 
Figure 12 is the architecture diagram of an ENN, including the input layer and output layer. 
First, the input data are classified and built into a matter–element model and then imported into 
the ENN. The number of input layers is determined by the number of features of the matter–
element model, and each input node and output node have two weight connections. One weight 
represents the minimum value of the input characteristics of this node, and the other weight 
represents the maximum value of the input characteristics of this node. For example, the jth 
input node and kth output node connect andL U

kj kjW W . The output layer is determined by the 
number of data categories and stores the calculated extension distance. The data category is 
determined by the minimum extension distance of the output layer belonging to each category.

B. Learning method of ENN

 The learning methods of ENNs are divided into unsupervised learning and supervised 
learning. We propose to adjust the weight by the latter method, and adjust and correct the weight 
by continuous learning and training to achieve the same output value as the target or to reduce 
the error of the output value. There are several variables that need to be defined before learning. 

Fig. 12. (Color online) Architecture diagram of ENN.



Sensors and Materials, Vol. 33, No. 8 (2021) 2889

The learning sample is x = {x1, x2, ..., xNn} and Np is the total number of training samples. The ith 
sample is 1 2{ , ,..., }p p p p

i ini ix x x x= , the total number of characteristic samples is n, and the category 
of the ith sample is p. To evaluate the correctness of the ENN prediction, the total test error is set 
to Nm and the total error ratio is set to ET, where

 
m

T
p

NE
N

= . (8)

The calculus steps of supervised learning for the ENN are as follows.
Step 1: Set the weight value between the connection input node and the output node according to 
the characteristic model as shown in Eqs. (9) and (10).
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Step 2: Calculate the weight center value of each feature and express it as Zk.
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Here, k = 1, 2, ..., n; j = 1, 2, ..., n.
Step 3: Read the ith sample data and feature number p, as shown in Eq. (13):

 { }1 2 3, , , , ,p p p p k
i ini i iX X X X X p m= ∈ . (13)

Here, p
inX  represents the input learning data. 

Step 4: p
inX  is used to calculate the extension distance and the distance between the sample and 

the kth cluster, expressed as 
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Here, k = 1, 2, ..., m.
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Step 5: Find the data category of test results k*, min{ }ikik k m
ED ED∗

∈
= . If k* = p then jump to Step 7. 

If the data categories are not equal, then k* = k and repeat Step 6. Figure 13 is the extension 
distance graph.
Step 6: Adjust the upper and lower limit weight values and weight center values for the kth 
feature and k*th cluster.
(a) Update the upper and lower limit weight values of the kth feature k*th cluster.

 ( )_ _ _
L L k

kj new kj old ij kj oldW W X Zη= + −  (15)

 ( )_ _ _
U U k
kj new kj old ij kj oldW W X Zη= + −  (16)

 ( )* * *_ _ _
L L k

ijk j new k j old k j oldW W X Zη= − −  (17)

 ( )* * *_ _ _
U U k

ijk j new k j old k j oldW W X Zη= − −  (18)

 Here, η is the learning rate.
(b) Update the weight center values of the kth feature and k*th cluster.

 ( )_ _
_ 2

U L
kj new kj new

kj new

W W
Z

+
=  (19)

 ( )* *

*
_ _

_ 2

U L
k j new k j new
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W W
Z

+
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Step 7: Repeat Steps 3–6 until all learning data are read and the learning classification is 
completed.

Fig. 13. (Color online) Extension distance graph.
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Step 8: Stop when the classification program of all data has reached the converged state or the 
total error rate has reached the target value; otherwise, return to Step 3.

C.	 Identification	calculus	process	of	ENN

 When the ENN completes the learning program, it can be identified. Its calculation flow is 
shown in Fig. 14. When all samples are identified, the operation will stop; otherwise, the 
program returns to Step 3 to read the next test sample.

4. Experimental Results

 There are four states of wind turbine blades in this study, 200 bits of vibration signal data of 
the blades are captured, and 50 measurements are made for each model. After calculation by the 
Lorenz chaotic system, each model has 50 groups of chaotic barycentric coordinate values, 30 of 
which are randomly selected as training samples and the remaining 20 are used as test samples. 
Therefore, there are 120 groups of training samples and 80 groups of test samples for the four 
states, which are used as data for the subsequent ENN calculus.

4.1 Chaotic dynamic error scatter diagram

 The measured vibration signals of the models of wind turbine blades are input into the 
Lorenz chaotic system for dynamic error calculation, and three types of dynamic error scatter 
diagram are compiled, e1e2, e1e3, and e2e3, as shown in Fig. 15. The three types of dynamic error 
scatter diagram show different distributions, and so the barycenter positions (red labels in Fig. 
15) are different. Hence, in this study, the barycenter coordinates (e1e2, e1e3, e2e3) of the three 
types of dynamic error scatter diagram are trained and recognized by ENNs in order to compare 
their performance and to extract the optimal dynamic error. The analysis results are shown in 
Table 2. The chaotic barycenter coordinates obtained from the dynamic error scatter diagrams 
e1e2, e1e3, and e2e3 are also used to plot the barycenter distribution map of the models for 

Fig. 14. (Color online) Identification calculus process of ENN.
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analysis. Figure 16 is the barycenter distribution diagram of Lorenz chaotic system e1e2. The 
results show that if e1 and e2 of the Lorenz chaotic system are selected as the eigenvalues of the 
chaotic barycenter, then the best clustering effect can be obtained in the coordinate distribution 
of the fault barycenter and the highest identification degree can be obtained in the ENN 
identification.

Table 2
Diagnosis results for different chaotic systems.
Chaotic system Recognition accuracy (%) Sequence
Lorenz e2e3 76.25 3
Lorenz e1e3 82.5 2
Lorenz e1e2 88.75 1

Fig. 16. (Color online) Left barycenter coordinate distribution graph of Lorenz chaotic system e1e2.

Fig. 15. (Color online) Lorenz chaotic dynamic error scatter diagrams. (a)e1e2, (b)e1e3, and (c)e2e3.

(a) (b) (c)
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4.2	 ENN	fault	identification

 The ENN model designed in this study uses the chaotic barycenter coordinate value of the 
chaotic dynamic error dispersion diagram of the blade vibration signal as identification data. 
There are 200 bits of measured vibration signal data and 50 bits of data for each state. The ENN 
model for identifying wind turbine blade states (i.e., the normal state and the three faults) is 
trained from 120 sets of chaotic barycenter coordinates, and each state has 40 sets of chaotic 
barycenter coordinates. To verify the effectiveness of the ENN model in identifying different 
states, 80 groups of chaotic barycenter coordinates are tested in this study, and each state has 20 
groups of barycenter coordinates. Table 3 lists the results of ENN identification of the wind 
turbine blade states. The proposed method effectively identifies different wind turbine blade 
states with an identification accuracy of 88.75%.
 We compare the proposed method with three types of neural network commonly used in 
traditional fault identification: the back-propagation neural network (BPNN), learning vector 
quantization network (LVQN), and probabilistic neural network (PNN). The test environment is 
MATLAB 2020a with an Intel Core i7-9700 CPU @ 3.0 GHz processor, NVIDIA GeForce RTX 
2080 SUPER display adapter, and Windows 10 operating system. Table 4 shows the experimental 
results. The PNN can complete the training of the classifier in the shortest time of 0.001 s, 
followed by the proposed ENN (0.03 s), the BPNN (9.35 s), and the LVQN (19.79 s), which is the 
most time-consuming among the four detection methods. The ENN has 88.75% recognition 
accuracy, which is the highest among the four detection methods, followed by the PNN (78.75%), 
LVQN (71.25%), and BPNN (70%). As a whole, although the PNN may complete the training 
faster, its identification accuracy is clearly less than that of the ENN. Although the proposed 
method is second only to the PNN in training time, its identification accuracy is 10% higher than 
that of the PNN.

Table 3
Results of identification of wind turbine blade states.

State Number of test 
patterns

Number of accurate 
patterns

Recognition rate
(%) 

Normal 20 17

88.75Blade rupture 20 20
Blade screw fly-off 20 20
Abnormal blade inclination angle 20 14

Table 4
Comparison of identification performance between ENN and traditional neural monitoring methods.

Detection method Accuracy of 
training (%)

Training 
time (s)

Identification 
accuracy (%)

Back-propagation neural network 73.33 9.35 70.00
Learning vector quantization network 85.83 19.79 71.25
Probabilistic neural network 100 0.001 78.75
Extension neural network 89.16 0.03 88.75
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5. Conclusions

 This paper presented a fault identification method for wind turbine blades based on a chaotic 
system in which an ENN identifies four common states of wind turbine blades. It uses the 
Lorenz chaotic system to draw chaotic dynamic error scatter diagrams from the detection data 
as fault diagnosis samples, and employs the trained ENN weight model to identify the states. 
The performance of the ENN was compared with that of three different traditional neural 
networks: the BPNN, LVQN, and PNN, and the identification accuracy of the proposed method 
was found to be the highest at 88.75%. We also constructed a remote human–machine interface 
to integrate the identification system with the monitoring system and develop a wind turbine 
fault diagnosis and monitoring system. The characteristics of the method proposed herein are as 
follows. (1) The combination of chaotic dynamic error scatter diagrams and the ENN is able to 
effectively identify the fault characteristics of blades. (2) The fault diagnosis human–machine 
interface developed by LabVIEW graphic control software also effectively identifies the states 
of wind turbine blades online, thus making the operation and maintenance of wind turbines 
more efficient.
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