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 With the rapid development of emerging technologies, intelligent agriculture is incorporating 
techniques such as the Internet of Things, big data, cloud computing, artificial intelligence, 
blockchains, and fifth-generation mobile communication to improve work efficiency, prevent 
various disasters, and change the sales mode of agricultural products. Ornamental fishery is a 
part of agriculture and accounts for a significant proportion of commercial trade. This paper 
introduces image processing technology to help ornamental fisheries calculate the number of 
shrimps quickly. To solve the problem of overlapping live shrimps when counting, K-means 
unsupervised machine learning is adopted to determine the area of one shrimp. In addition, the 
proposed method using unsupervised machine learning is able to count different types of shrimp 
with high accuracy, such as crystal red shrimps, fire red shrimps, and Takashi Amano shrimps. 
We also analyze two background subtraction techniques, hue/saturation/value (HSV) histogram-
based detection and Sobel edge detection, to compare the accuracy and calculation time of this 
application.

1. Introduction

 The size of the trade in global ornamental fish has steadily increased in recent decades. There 
were only 28 countries exporting ornamental fish in 1976, compared with more than 125 
countries at present. Moreover, the global export market for ornamental fish almost doubled 
from US$ 177.7 million in 2000 to 337.7 million in 2016.(1,2) 
 The global ornamental fish industry is worth US$ 15 billion, and more than 2 billion live 
ornamental aquatic animals are traded per year, making it necessary to consider how to deal 
with large numbers of live ornamental aquatic animals. Until now, the calculation of numbers of 
live fish or shrimps has mainly been carried out manually, which has many weaknesses 
including subjectivity, slowness, low accuracy, worker fatigue, and even the injury and death of 
animals during the calculation.(3) 
 The development of computer vision technology with a tiny camera for image capture for 
counting shrimps is a strong possibility. In this study, we propose a method of counting 
ornamental shrimps that solves the above shortcomings of manual counting. The proposed 
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Table 1
Related literature on the application of computer vision for object identification or counting in aquaculture.
Authors Applications Targets Results
Newbury et al., 1995(6) backpropagation network artificial fish 94% accuracy, overlapping

Huang, 2002(7) HSV background subtraction fluorescent lamp fry error ranging between 0.9 and 32%, 
non-overlapping

Friedland et al., 2005(8) erosion–dilation filter American shad eggs FN classification error of 1%, non-
overlapping

Zion, 2012(4) shape model fish fry 98% accuracy, overlapping

Flores et al., 2008(9) adaptive threshold and fast 
Fourier transform (FFT)

Peruvian scallop 
larvae

accuracy of 95% in 2 min, 
overlapping

Khantuwan and 
Khiripet, 2012(10)

adaptive threshold and 
co-occurrence color of 

histogram
shrimp larvae accuracy of 97% in 1 min, 

overlapping

Coronel et al., 2018(11) local normalization filter and 
iterative selection threshold fish fingerlings

precision, recall, F measure of 99.80, 
97.90, 98.83%, respectively, in < 1 s, 

non-overlapping

method employs a portable smart device consisting of a Raspberry Pi computer attached to a 
camera sensor and has the expected advantages of avoiding the need to physically touch the 
shrimps, rapid calculation, low cost, and portability.
 The remainder of this paper is organized as follows. Section 2 describes related work on 
aquaculture using computer vision techniques. Section 3 shows the hardware and software 
elements of the proposed system. Section 4 explains the process flow used with our proposed 
method. Section 5 reports experimental results obtained with the implemented system. Finally, 
the article is concluded in Sect. 6.

2. Related Work

 Zion summarized the applications of computer version technology in aquaculture into five 
categories. His review described the state of the art and focused on needs in all stages of the 
aquaculture process from hatcheries to harvesting. These applications included counting, size 
measurement and mass estimation, gender detection and quality inspection, species and stock 
identification, and the monitoring of welfare and behavior. Optical methods to count objects 
were the most common approach. The counted objects included eggs, larvae, fry, and fish at 
various stages of growth.(4) Silvério categorized these computer vision systems in aquaculture. 
These systems have the following common steps:(5)

 • Capturing images
 • Extracting features 
 • Detecting blobs
 • Counting based on the blobs detected.
 Most computer vision applications that perform image recognition require the above four 
steps. The image processing techniques are mostly used in steps 2 and 3, i.e., extracting features 
such as boundaries or a given color range and detecting blobs to segment the image. In this 
paper, we present a state-of-the-art application of computer vision for counting in aquaculture. A 
comprehensive summary of related studies for object identification or counting in aquaculture 
from 1995 to 2018 is included in Table 1. 
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 Newbury et al. used artificial fish to simulate the process of fish calculation, especially 
considering the fact that fish often overlap each other. Then they applied a backpropagation 
algorithm and achieved 94% accuracy when estimating the number of fish.(6) Huang adopted the 
value of intensity (V) in the hue/saturation/value (HSV) color space to filter the target image, 
then performed thresholding for image segmentation, and calculated the area of fluorescent 
lamp fry based on the obtained foreground. The depth of each fry in an aquarium is different, 
resulting in fish of the same size having different areas in an image. In addition, the overlapping 
of fry was not considered, so errors of between 0.9 and 32% were obtained.(7) In 2005, 
Friedland et al. used the mathematical morphological dilation–erosion algorithm to eliminate 
touching eggs, and then performed seven measurements to identify American shad eggs and 
debris in the water, enabling them to count the number of American shad eggs. The false 
negative (FN) rate in the identification, i.e., eggs judged to be debris, was 1%.(8) Zion et al. 
developed image processing algorithms using shape models of various species and detected the 
number of overlapping fish fry with 98% accuracy.(4)

 Flores et al. applied image processing technology to calculate the number of Peruvian scallop 
seedlings. The processing flow was as follows. Step 1, place the samples on a Sedgewick Rafter 
cell slide under a microscope; step 2, capture an image; step 3, find the region of interest; step 4, 
filter the image using Laplacian and median filters to enhance the image and as preprocessing 
for the next step; step 5, use adaptive thresholding for binarization; step 6, divide the targets into 
A with one seedling and B with two or more overlapping seedlings; step 7, find the area of   a 
scallop seedling through the FFT of the histogram; step 8, calculate the total number of scallop 
seedlings. The experimental results showed that the calculation can be completed in 2 min per 
image with 95% accuracy.(9) 
 Khantuwan and Khiripet proposed an image processing method that automatically calculates 
the number of shrimp larvae using a co-occurrence color histogram template comparison 
technique. The whole algorithm can be divided into three parts: image enhancement, separation 
of juvenile shrimps from the background, and classification. The accuracy of automatic counting 
was experimentally shown to be 97%.(10) Compared with manual counting, the error between 
automatic counting and manual counting was between −1.5 and 6%, and the average error was 
3.25%. They used MATLAB 2010a run on an Intel Core™ i5 laptop, and it took an average of 
1 min to analyze an image of 100 juvenile shrimps. Coronel et al. proposed a set of efficient 
image filtering and segmentation methods that used two image processing technologies, a local 
normalization filter, and an iterative selection threshold to perform background removal. In 
terms of counting accuracy, the combination of these two methods obtained an average precision, 
recall, and F measure of as high as 99.80, 97.90, and 98.83%, respectively.(11)

 Table 2 shows the related studies on object recognition and counting that apply computer 
vision technology. Some of the objects included are as small as microbes, colonies, blood cells, 
rotifers, and Aedes aegypti larvae, as well as field insects, pests, and mice. Barbedo and 
Fuad et al. found in their review that color space conversion is mainly used in the calculation of 
these targets.(12,13) Alver et al., Mohamed and Far, Barbedo, and Das et al. used the conversion 
between the color models of RGB, cyan/magenta/yellow/key, International Commission on 
Illumination lab, and HSV. Then, they applied filter technologies such as Laplacian and median 
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filters to enhance the image, and they removed the background using an appropriate thresholding 
technology.(14–17) Other researchers such as Pistori et al., Lu and Qin, and Qing et al. adopted 
emerging methods to count and identify target images. The technologies include artificial neural 
networks, machine learning, and sample comparison techniques.(18–22)

3. Materials and Methods 

 To achieve our goals of cost-effectiveness and portability, the entire proposed system is based 
on Raspberry Pi with a Raspberry Pi camera for calculation and image acquisition.(24) Raspberry 
Pi is a tiny computer developed by Raspberry Pi Foundation. The Raspberry Pi Zero W model is 
mainly dependent on the Broadcom BCM2835 SoC with a core architecture of a 32-bit ARM11 
processor and a basic size of 65 × 30 mm2. It has an operating frequency of 1 GHz, a memory of 
512 MB SDRAM, two USB-2.0 ports, Wi-Fi and Bluetooth support, a mini high-definition 
multimedia interface port, a camera serial interface connector, and a mobile industry processor 
with a micro secure digital memory card slot. The Raspberry Pi camera module has an 
OmniVision OV5647 five-megapixel sensor. The camera module can be used to take high-
definition video as well as still photographs. There are numerous third-party libraries built for it, 
including the Picamera Python library.
 Figure 1 shows the entire hardware device. The lower left is the Raspberry Pi camera, and the 
upper right is the Raspberry Pi Zero W. The two devices are installed above and below the cover, 

Table 2
Related literature on the application of computer vision for object identification or counting in other domains.
Authors Applications Targets Results

Alver et al., 2005(14) thresholding rotifers accuracy could be adjusted 
according to requirements

Pistori et al., 2010(18) auto-adjustable 
observation

mice and Aedes aegypti 
larvae 85% mean classification rate

Lu and Qin, 2010(20) improve K-means via 
hidden Markov model insects in stored grain

recognition accuracy of 98% 
with normal pattern and 87% 

with lateral pattern
Mohamed and Far, 2012(15) Otsu thresholding white blood cell nuclei 80.6% accuracy

Barbedo, 2012(12) median filter and 
thresholding

micro-organisms and 
colonies

correct identification of 
more than 90% of cases and 

overall deviation of 8%

Qing et al., 2014(21)
AdaBoost classifier, 

support vector machine, 
thresholding

white-backed 
planthoppers

85.2% correct detection and 
9.6% false detection

Barbedo, 2014(16)
color models 

transformation, 
thresholding

adult whiteflies
counting result within 

deviation of 1% from 748 
images

Das et al., 2014(17) edge detection blood cells 85% identification accuracy

Martin et al., 2015(23) extended region growing 
detection pests identification and counting 

with 90% accuracy

Fuad et al., 2017(13)
color models 

transformation, 
thresholding

Aedes aegypti larvae review of techniques
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respectively. As shown in the upper left of Fig. 1, the back of the lid is used to capture the picture, 
and an LED is used to provide the light source. As shown in the upper middle of Fig. 1, a battery 
is installed on the front of the lid to power the operation of the whole system. The lower right of 
Fig. 1 shows the inside of the plastic bucket containing shrimps, and the lower middle of Fig. 1 
shows the appearance of the bucket.
 Table 3 lists all the software and hardware elements. The application installed in the mobile 
devices provides the user interface and controls the Raspberry Pi to perform the process of 
shrimp calculation. Therefore, the ionic framework is used to deploy the application in various 
mobile phones, including Android and iPhone. Raspberry Pi Zero W is the main computing unit, 
which calls the OpenCV library for image processing and the scikit-learn library for machine 
learning calculation. The Apache HTTP server allows users to interact with the Raspberry Pi. 

Fig. 1. Portable automated shrimp-counting device.

Table 3
Hardware and software elements of portable automated shrimp-counting device.
Hardware Software Description

Mobile device

Hypertext Markup Language, 
cascading style sheets, JavaScript web technologies provide user interface (UI)

Ionic framework open-source UI toolkit for building high-
performance, high-quality mobile and desktop apps

Android/iOS mobile operating system

Raspberry Pi Zero W

OpenCV
scikit-learn

free library aimed at computer vision
free library aimed at machine learning

Python programming language
Apache Hypertext Transfer 

Protocol (HTTP) Server
free and open-source cross-platform web server 

providing access to images
Raspberry Pi Camera Picamera Python library captures images or video
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4. Proposed Method

 Figure 2 shows the flowchart of image processing for the portable automated shrimp-
counting system. Each image is subjected to processing techniques such as resizing, grayscale 
conversion, feature extraction, and thresholding. The program in the Raspberry Pi computes the 
areas of the extracted contours and stores them in an array. Then, the program determines 
whether each contour contains noise or shrimps depending on its area. Considering the 
overlapping of shrimps, it divides whole contours into two clusters. One cluster is for a single 
shrimp, and the other cluster is for more than one shrimp.
 Considering practical use, we use two different methods to extract features. Sobel edge 
detection uses a pair of 3 × 3 convolution masks, one to estimate the gradient in the x-direction 
and the other to estimate the gradient in the y-direction. The Sobel algorithm effectively 
highlights the shrimps via edge detection.(25) The other method, HSV filtering, can extract a 
specific range as a feature.(26) Figure 3 shows the results of using Sobel edge detection and HSV 
filtering after thresholding. In terms of noise and area, the HSV filtering method is clearly better 
than the Sobel method. However, HSV filtering is impossible to implement for shrimps with 
multiple colors, such crystal red shrimps.
 The K-means clustering algorithm is an unsupervised machine learning algorithm. The aim 
of this algorithm is to divide S points into K (≤ S) clusters as shown in Eq. (1). The within-cluster 
sum of squares, ‖x − μi‖2, which is the Euclidean distance, is minimized. The cluster center μi is 
the mean value of all points x in Si. The K-means clustering method simply divides all the blob 

Fig. 2. Image process flow for portable automated shrimp-counting system.
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contours into two clusters. The cluster with the larger number, oneShrimp, is identified as a 
shrimp, and the other cluster, moreShrimps, is identified as multiple shrimps. For the oneShrimp 
cluster, the area of a shrimp is determined by the median value in this cluster. The program 
calculates the rounding integer operation for each element of the moreShrimps cluster.

 2

1
arg min

i

k

iS
i x S

x µ
= ∈

−∑∑  (1)

5. Experimental Results and Discussion

 We apply the HSV filter to calculate the number of fire red shrimps, and perform Sobel edge 
detection to calculate the numbers of fire red shrimps, crystal shrimps, and Takashi Amano 
shrimps. The experimental results in Table 4 show that the system based on Raspberry Pi can 
count shrimps accurately in 1 s. The average accuracy rate of 100 runs was maintained at above 
96%, except for fire red shrimps counted by the Sobel method, and the standard deviation was 
low. According to the results of analyzing the counting accuracy, there are two conditions of the 
calculation results: shrimps were undercounted or overcounted.

Fig. 3. (Color online) Results of (a) Sobel edge detection and (b) HSV filter.

(a) (b)

Table 4
Results of using different feature extraction methods.
Actual shrimp #
Features

Average 
shrimp #

Standard 
deviation

Accuracy rate 
(%)

Calculation 
time (ms)

Fire red (25)
HSV filter 25.8 3.14 96.80 (+3.20) 600.7

Fire red (25)
Sobel 31.35 1.47 74.60 (+25.40) 681.3

Crystal red (25)
Sobel 25.96 1.36 96.16 (+3.84) 681.1

Takashi Amano (25)
Sobel 25.45 1.68 98.20 (+1.80) 654.9
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 The undercounted conditions are as follows:
•  Situation 1 - Direct neglect: (1) The feature of the target shrimps is not obvious enough to be 

extracted. For example, the color of the shrimp is not within the specified color space, or the 
edge is unable to be detected clearly. (2) The filtered area is too small to be considered as 
noise, as shown in red circle 1 of Fig. 3(b).

•  Situation 2 - Indirect neglect: There is too much overlap, as shown in red circle 2 of Fig. 3(b). 
Actually, there are three shrimps in that blob, but two shrimps completely overlap except for 
their tails. On the basis of the area calculation, we divide the blob area by the area of a 
shrimp. In the case of rounding, the result shows two shrimps instead of three shrimps. 

 The overcounted condition: Too many shrimps are so close together that the area of the blob 
contour includes the space between the shrimps. 
 The results of using different feature extraction methods are shown in Table 4. This system 
exhibits satisfactory speed (< 700 ms) and high accuracy. The average accuracy rate of 100 runs 
was maintained at above 96% in our experiment. The number in parentheses in the first column 
of Table 4 indicates the number of the shrimps. The number in parentheses in the fourth column 
of Table 4 indicates the direction of accuracy rate. A positive value indicates overcounting, and a 
negative value indicates undercounting. The low standard deviation indicates the high quality of 
the programming in terms of performing stable calculations. Furthermore, the different 
extraction methods have different accuracies. The HSV filter is suitable for fire red shrimps, 
whereas Sobel edge detection has poor accuracy as shown in Table 4.

6. Conclusions

 In this study, we applied image segmentation, edge detection, and unsupervised machine 
learning methods to the Raspberry Pi Zero W. The proposed cost-effective and portable device 
increases the practicality of a portable automated shrimp-counting system. This system exhibits 
satisfactory speed to complete the calculation in one second and high accuracy at 96%. The 
experimental results show that different extraction methods have different accuracies on 
different species of shrimps. Therefore, we suggested that different extraction methods should 
be used for different species of shrimps to keep the accuracy high.
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