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	 This research is aimed at the development of automatic drug image verification functions. 
Our verification system is composed of two stages. The first stage is an arbitrarily axis-aligned 
object detector, which is mainly based on a deep residual network and feature pyramid network 
(FPN). The detector predicts the rotation bounding boxes for drugs using multiscale feature 
maps generated by the FPN. Then, the rotation bounding boxes are axially aligned, and the drug 
image is cropped according to the axis-aligned bounding box. The second stage is a feature 
matcher, which is based on a feature embedding network. The embedding feature extracted by 
the feature embedding network is combined with the geometric feature obtained by the 
arbitrarily axis-aligned object detector to determine whether the drug in the image belongs to the 
category specified by the user. The database used in this research is an image database created 
by imaging drugs provided by domestic local medical centers. Our verification system achieved 
a false positive rate (FPR) of 0.047% in verification tasks of drugs of 21 categories.

1.	 Introduction

	 The Institute of Medicine has reported that medication errors are the single most common 
type of error in health care, representing 19% of all adverse events and accounting for over 7000 
deaths annually.(1) Intensive care units (ICUs) in hospitals face great challenges resulting from 
medication errors,(2) which account for 78% of serious medical errors.(3) Even minor medication 
errors can cause severe disability. Moreover, the patients in ICUs are relatively weak, so they 
cannot tolerate medication errors. The drugs in ICUs are more diverse and complex than those in 
general wards, and the potential risks of medication errors to patients’ lives are greater, making 
the prevention of medication errors a very important task.
	 The fatigue and stress of nurses undertaking long shifts in ICUs are potential factors 
contributing to medication errors owing to the possibility of confusion and misunderstanding at 
every stage of the drug use process.  Possible causes of medication errors include mislabeling 
due to a similar appearance, similar drug names, the same drug being composed of different 
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formulas, multiple abbreviations of the same concept, confusing abbreviations and symbols, 
different doses of the same drug, and confusing labeling.(4)

	 Even experts in drug administration may misidentify drugs due to fatigue. Therefore, 
additional mechanisms to assist medical personnel in the administration of drugs will be a 
future trend, which, combined with the vigorous development of AI technology and related 
hardware, will make it possible to achieve fast and accurate drug identification through the 
assistance of AI. In the previous research on drug identification, some mechanical equipment or 
additional measures were often required, or there was no uniform and effective solution for 
identifying multiple drug categories. Because the problems of different types of packaging, 
surfaces, placement positions, and angles of drugs need to be solved at the same time, there were 
certain difficulties in the practical use of previous approaches. Thus, we propose a system with 
an easy-to-use, efficient, and accurate drug verification function, thereby avoiding the potential 
risks of medication errors and the irreparable harm they may cause.

2.	 Related Work

2.1	 Traditional methods

	 Some related studies on drug identification have been reported. In 2015, Yang et al.(5) used 
the barcode attached to the bottle body to identify the category of drug. In their system, a 
scanner was used to scan the barcode, which had to face the scanner. Che et al.(6) calculated a 
global threshold to binarize a gray-scale image as a feature vector, and then compared the 
similarity with an image feature vector in a database through template matching. However, their 
method ignored the problem of the placement angle. Zhang et al.(7) proposed a method of 
extracting the drug region of interest (ROI) based on edge detection, and obtained the diameter, 
height, and neck position of the bottle by applying predefined rules, and then used a trained 
Bayesian classifier to identify the drug category. In 2016, Gong et al.(8) proposed a way to 
continuously capture images with label surfaces in the form of conveyor belts, then combine the 
images to correct the boundary distortion, and then use optical character recognition (OCR) and 
a scale-invariant feature transform (SIFT) to match the template image and input image. 
However, in this method, it was necessary to ensure that the label of the drug on the conveyor 
belt faced the camera and that the bottle was placed upright when the conveyor belt started. In 
2017, Xu et al.(9) proposed a method involving registering a complete and clear image of a drug 
in advance, which was expanded into a flat image as a template image through calculation, and a 
label image was segmented by a clustering algorithm. Their proposed algorithm extracted the 
feature matrix of a gray-scale image and compared it with the database image feature by cosine 
similarity. In the above methods, the shape, text, color, or texture on the label was used to 
identify drugs, but these methods usually had certain limitations, for example, the number of 
recognizable categories should not be too large or the accuracy was sensitive to the light source 
and rotation angle. 
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2.2	 Deep learning methods

	 In 2018, Lee et al.(10) proposed the use of VGG-19 deep learning technology for drug 
recognition. The input image was obtained by photographing handheld drugs on mobile phones. 
Eleven categories of pill boxes were successfully identified, all of which were flat pill boxes, so 
there was no need to solve the problem of multiple differently placed feature surfaces. In 2020, 
Ting et al.(11) proposed the use of YOLOv2 deep learning technology to identify blister packs of 
drugs. They developed a single-stage detection system that included positioning and recognition 
that trained a model for each side of the blister pack. However, the model trained with text and 
logo features on the back of the blister pack performed better. The above research on the 
application of deep learning in drug recognition currently only recognizes specific types of 
packaging or containers, and directly uses deep learning technology to learn attention to ensure 
robustness to the effects of changes in the rotation angle.

3.	 Proposed System

	 The proposed system architecture is shown in Fig. 1. The system consists of two stages: a 
multiscale rotating rectangular drug detection system based on a deep residual network followed 
by a drug matching system based on feature embedding.

Fig. 1.	 (Color online) Architecture of the proposed system.
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	 In the drug detection system, the input image is passed through a deep residual network to 
obtain feature maps of different scales, and a feature pyramid network (FPN) is used to merge 
features to build a multi-semantic feature map. For each feature map, a confidence module and 
regression module are used to obtain the confidence and spatial location of all rotation bounding 
boxes, and then the results of all scale feature maps are input to a  non-maximum suppression 
module to obtain a rotation bounding box with high confidence. After obtaining all the rotation 
bounding boxes, axis alignment is performed to obtain the image information contained in the 
axis-aligned bounding boxes.
	 In the part of the drug matching system, a trained full convolution feature embedding 
network is used to embed the image output of the drug detection system and the image in the 
database, then the geometric features and the embedded features are compared separately, and 
finally, the results and the expected category are input to the decision module to determine 
whether the input drug image passes a verification.

3.1	 Detection system

3.1.1	 Feature extraction backbone

	 In the object detection system using deep learning, backbones with multiscale feature maps 
are needed as the basic feature extractor, but because of the need for multiple scales, the depth of 
the network must be sufficient. The backbones are ResNet-50 and ResNet-101,(12) and these two 
networks have two basic shortcut connection blocks, the architectures of which are shown in 
Fig. 2.
	 The architectures of ResNet-50 and ResNet-101 are shown in Table 1. The deep residual 
network can determine the required depth of the network through the shortcut connection block 
structure. The problem of the disappearance of gradients that may occur in deep networks can 
thus be solved.

Fig. 2.	 (Color online) Architectures of shortcut connection blocks. (a) Identity block. (b) Projection block.

(a)

(b)
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3.1.2	 Feature pyramid network

	 The architecture of the FPN(13)  in the proposed system is shown in Fig. 3.  The FPN is used 
as a feature fusion method after these backbones to generate multi-semantic feature maps. The 
FPN contains a bottom-up pathway, a lateral connection, and a top-down pathway. The bottom-
up pathway is composed of a backbone. The final feature map of each stage is used as our lateral 
transfer feature map.
	 The lateral connection uses a 1 × 1 convolution layer, the main purpose of which is to provide 
the number of channels required to combine with deeper features, and at the same time combine 
the information of each channel to obtain new features.
	 In the path from top to bottom, the deeper feature map is upsampled twice through bilinear 
interpolation, and then element-wise addition is performed with the shallower lateral connection 
results. In addition, to detect larger objects, it is necessary to obtain feature maps with a smaller 
spatial size because the receptive field is relatively large. A convolution with step 2 is used for 
downsampling. The final feature maps obtained from the backbone are C3, C4, and C5, which 
are used to generate P3, P4, and P5, then further generate P6 and P7 through the convolution 
with step 2. Feature map C2 is not used because its size would make the number of calculations 
huge.

3.1.3	 Anchor box

	 In each spatial position of the output feature map, anchor boxes with different scales, aspect 
ratios, and angles are generated to meet objects of different shapes and placement angles.  The 
sizes of the anchor box are defined as {322, 642, 1282, 2562, 5122}, and these boxes are set in the 

Table 1
Deep residual networks.

Network Name ResNet-50 Network Name ResNet-101

Conv1(C1) 7 × 7, c = 64, s = 2 Conv1(C1) 7 × 7, c = 64, s = 2
3 × 3 maxpool, s = 2 3 × 3 maxpool, s = 2

Conv2(C2)
1 1 , 64
3 3 , 64   3
1 1 , 256

× 
 × × 
 × 

Conv2(C2)
1 1 , 64
3 3 , 64  3
1 1 , 256

× 
 × × 
 × 

Conv3(C3)
1 1 , 128
3 3 , 128   4
1 1 , 512

× 
 × × 
 × 

Conv3(C3)
1 1 , 128
3 3 , 128  4
1 1 , 512

× 
 × × 
 × 

Conv4(C4)

1 1 , 256
  3 3 , 256   6

1 1 , 1024

× 
 × × 
 × 

Conv3(C3)
1 1 , 256
3 3 , 256  6
1 1 , 1024

× 
 × × 
 × 

Conv5(C5)
1 1 , 512

 3 3 , 512   3
1 1 , 2048

× 
 × × 
 × 

Conv5(C5)
1 1 , 512
3 3 , 512   3
1 1 , 2048

× 
 × × 
 × 
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{P3, P4, P5, P6, P7} layers of the feature pyramid, respectively. In each feature map, the height: 
width ratio for each anchor box is set to {1, 1/2, 2, 1/3.5, 3.5} with different scales {20, 21/3, 22/3} 
and different angles {−85, −75, −65, −55, −45, −35, −25, −15, −5} to increase the density of 
anchor boxes.

3.1.4	 Regression module and confidence module

	 For the output feature map of each layer of the feature pyramid P3, P4, P5, P6, P7, we 
connected the regression module and then the confidence module. The architectures of these two 
modules are shown in Fig. 4. The regression module generates a bounding box spatial offset 
based on each anchor of all A anchors for each position on the feature map. Thus, the number of 
channels of the output is 5A, which is the total length of the rotating bounding box vector 
(x, y, w, h, θ) corresponding to each anchor box. Similarly, the confidence module generates the 
confidence of each category of all A anchors for each position on the feature map of different 
spatial sizes. The only difference between the regression module and the confidence module is 
that the number of channels of the last connected 3 × 3 convolution layer is KA, where K is the 
total number of categories and KA is the total length of the confidence vector for the categories 
of all the rotation bounding boxes.

3.1.5	 Post-processing

	 The spatial position and confidence of the prediction bounding box generated by the 
regression module and confidence module at each layer of the feature pyramid must be post-
processed to obtain the final output. First, the prediction box predicted using the model is an 
offset relative to the anchor box, so it must be converted to an absolute value. The output of the 

Fig. 3.	 (Color online) Architecture of the FPN.
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prediction box is defined by the model t = (tx, ty, tw, th, tθ), the anchor box a = (ax, ay, aw, ah, aθ), 
and the actual value b = (bx, by, bw, bh, bθ), and the conversion formula is given by the following 
equations.

	 bx = awtx + ax	 (1)

	 by = ahty + ay	 (2)

	 bw = awexp(tw)	 (3)

	 bh = ahexp(th)	 (4)

	 bθ = tθ × 180/π + aθ	 (5)

	 In actual situations, there may be multiple predicted bounding boxes that contain the same 
object in the image, but this is unlikely to occur, so we must use non-maximum suppression to 
delete these redundant boxes. The algorithm is defined as Fig. 5.

3.1.6	 Multitask loss function

	 Because there are multiple tasks to be performed, the multitask loss function is defined as

	 ( ) ( ) ( )( )
7

3

pl pl
reg c

l
onL t ,g  L p, yL t ,g , p, y  

=

= +∑ ,	 (6)

Fig. 4.	 (Color online) Architectures of regression and confidence modules.
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where t is the rotation bounding box predicted using the regression module, g is the label of the 
regression task, p is the confidence for each rotation bounding box predicted using the 
confidence module, and y is the label of the confidence task.
	 The regression loss is defined as Eq. (7), which refers to IOU smooth L1 loss.(14) The 
regression task involves maximizing the area of intersection between the bounding box and the 
ground truth.

	 ( ) ( )
( ) ( )( )

1

1 logL i i
reg

i  x, y , w, i h,   L i 

smooth t  v
L I

smooth t  v
t ,g   OU b,g

θ
ε

∈

−
−

−
= +∑ 	 (7)

Here, v is the label of the regression task in the offset relative to the anchor box and b is the 
prediction box converted into an absolute value from t, which is the offset of the anchor box.
	 The confidence loss is defined as Eq. (8), which is referred to as focal loss.(15) Focal loss 
reduces the loss of samples that are easy to classify (such as background), and increases the loss 
of samples that are more difficult to classify (objects of interest), which is equivalent to solving 
the problem of category imbalance.

	 ( ) ( ) ( )
1

1 1 logcon t t t
i    

L p, y   p p
p

γα
=

= − −∑ 	 (8)

Here, pt is the probability of correctly predicting that a drug belongs to the ground-truth class. γ 
is the modulation factor, and αt is the weighting factor.

Fig. 5.	 Algorithm of non-maximum suppression.
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3.2	 Matching system

3.2.1	 Feature embedding network

	 A very important part of the matching system is to obtain a global feature description of the 
image, which may be its color or texture. In our system, the feature description is obtained 
through a fully convolutional encoder network. The architecture of the encoder is shown in the 
left of Fig. 6, and feature extraction is performed through four identical and continuous CONV 
blocks. The architecture of a CONV block is shown in the right of Fig. 6.
	 The spatial range of the image of each category after feature embedding will be within a 
certain distance, and the feature distribution of each category must have a center point, called 
the prototype. The training algorithm of the feature embedding network is shown in Fig. 7. 
During training, two encoders are used, which share weights. One of the encoder inputs is the 
support set, and the average value of the corresponding output is used as the prototype. The 
other encoder input is the query set. It inputs the query set feature and prototype calculation 
distance into the loss function and then adjusts the distance between them according to the label. 
Through this training method, the distance between image features of the same category is 
reduced by the loss function, and the distance between features of different categories is 
increased.

3.2.2	 Feature distance measurement

	 In the inference stage, we compare the embedded features and geometric features of the input 
image with those of the image in our database, so a definition of similarity or distance is 
required. The following equation is used to calculate the similarity of embedded features:

Fig. 6.	 (Color online) Image feature embedding network. (a) Encoder. (b) CONV block.

(a) (b)
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	 ( )
( )( )( )
( )( )( )

exp

exp

k
emb N

kk

d f x ,  c
sim p y k  | x  

d f x ,  c

∅
∅

′ ∅ ′

−
= = =

−∑
,	 (9)

where k is the expected category, N is the total number of categories, d(x, y) is the function used 
to calculate the distance between the features (we use the Euclidean distance), ck is the prototype, 
and f⌀(x) is the embedded feature of the input image obtained by the encoder. The following 
equations are used to calculate the similarity of geometric features:

	
( )
( )

k
H H

geo _ H k
H H

min feat , feat
sim

max feat , feat
= ,	 (10)

	
( )
( )

k
W W

geo _W k
W W

min feat , feat
sim

max feat , feat
= ,	 (11)

Fig. 7.	 Training algorithm of feature embedding network.
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where superscript k represents the feature of the prototype of the expected category. The method 
used to compare the similarly of geometric features is to compare the long side with the long side 
and the short side with the short side. The long and short sides produce similarity separately, and 
when the numerator is small and the denominator is large, the similarity of geometric features is 
low.

3.2.3	 Verification decision

	 In the decision of whether to pass the verification, the corresponding thresholds are set to 
give a certain fault tolerance space, and the decision rules are as follows:

	 0 5embsim .≥ ,	 (12)

	 0 85geo _ Hsim .≥ ,	 (13)

	 0 85geo _Wsim .≥ .	 (14)

	 The above rules must all be satisfied in this system for the identification of the drug to be 
considered as verified, that is, the embedded features and geometric features have a certain level 
of similarity.

4.	 Experiments

	 The drug image verification dataset was collected in cooperation with Kaohsiung Veterans 
General Hospital (KVGH). To maintain a certain image quality, we used a Logitech C920 Pro 
webcam to collect the images, which had a resolution of 1920 × 1080 pixels. The database 
included images taken with various placement positions and placement angles. The drug image 
verification dataset contained 21 categories of drugs from KVGH. Since our system is composed 
of two subsystems for training, our dataset was also divided into two parts, namely, the detection 
dataset and matching dataset, for the training of the individual subsystems. A sample image 
from each dataset is shown in Fig. 8. The matching dataset was cropped by our trained detection 
system, and we evaluated our drug verification system by applying this matching dataset to the 
matching system.
	 In the experimental comparison, the Euclidean distance was used to compare the false 
positive rate (FPR) under different training parameters. The experimental results are shown in 
Table 2, where n-way represents the number of categories in each training support test and 
n-shot represents the number of images in a single category for each training support set. The 
experimental results show that when n-way is relatively high but n-shot is relatively low, the FPR 
will be high. A higher n-shot reduces the FPR, and under our experimental comparisons, the 
final 10-way 20-shot training obtained the lowest FPR (0.047%).
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	 The experimental results of a comparison with other methods are shown in Table 3. The 
proposed method is divided into feature distance calculation methods using the cosine distance 
or Euclidean distance. It can be seen from the experimental results that the Siamese network and 
triplet network, which respectively use dual samples or triples in a single training, have higher 
FPR values than our method. That is, feature embedding of our dataset will help improve the 
FPR if we consider multiple category features for training.
	 The results with the lowest FPR in Table 3 are shown as a confusion matrix in Table 4. We 
evaluate the results with the following common metrics:
•	 Precision = TP / (TP + FP) = 99.03%
•	 Recall = TP / (TP + FN) = 98.32%
•	 Accuracy = (TP + TN) / (TP + FP + FN + TN) = 99.87%
•	 FPR = FP / (FP + TN) = 0.047%
•	 FRR = 1 − Recall = 1.68%
Here, TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
	 It can be seen that the FPR for our method with the Euclidean distance is 0.047%, which 
means that the incorrect categorization of a drug can be effectively avoided. The FRR is 1.68%, 
which means that most drugs of the correct category can pass verification, giving the system 
high efficiency.

Fig. 8.	 (Color online) Sample images taken from datasets. (a) Image from detection dataset. (b) Images from 
matching dataset.

(a) (b)

Table 2
Results of different training methods for our system.
Training method FPR (%)
5-way 5-shot 0.104
5-way 20-shot 0.063
10-way 5-shot 0.112
10-way 20-shot 0.047
20-way 5-shot 0.132
20-way 20-shot 0.063

Table 3
Comparison with other image feature embedding 
methods.
Training method FPR (%)
Siamese network(16) 0.151
Triplet network(17) 0.169
Ours (cosine distance) 0.124
Ours (Euclidean distance) 0.047
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	 We analyzed the incorrectly identified samples in the experiments. Figure 9 is a detailed 
confusion matrix for all 21 classes; note that the table cannot display the number of TNs. 
	 Figure 10 shows some FN samples, that is, positive samples that the system believed should 
not be verified. The FN for the image on the left may be due to a detection angle error or 
shooting exposure. The detection error for the image on the right may have been due to the poor 
focus of the label and its closeness to the boundary. 
	 The pair of images in Fig. 11(a) have the same bottle body and the labels have the same 
background color. The pair of images in Fig. 11(b) show bottles with no features on the surface, 

Fig. 9.	 (Color online) Detailed confusion matrix.

Table 4
Confusion matrix.
N = 17514 Positive samples Negative samples
Verification passed 820 (TP) 8 (FP)
Verification not passed 14 (FN) 16672 (TN)

Fig. 10.	 (Color online) FN samples. 
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resulting in the images being very similar. The pair of images in Fig. 11(c) also have no obvious 
differences in the color features. The pair of images in Fig. 11(d) have the same bottle body and 
the same background color of the label, and the words on the label are similar in color.

5.	 Conclusions

	 In this study, we propose a drug image verification system, which includes an automatic drug 
detection system and a matching system. The dataset used contains drugs of 21 categories for 
performance evaluation of verification tasks. The database used in this research is an image 
database created by imaging drugs provided by domestic local medical centers. Our verification 
system achieved an FPR of 0.047% in verification tasks of drugs of 21 categories. Furthermore, 
the proposed system can be integrated into a mobile phone, so that users can easily identify a 
drug at any time. In the future, we will attempt to achieve a higher recognition rate for our 
proposed drug image verification system by collecting more databases and make the system 
more practical.
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