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	 An important direction of human–robot interaction (HRI) is making robots respond to 
complex and dexterous tasks intelligently. To achieve this, biological signals based on surface 
electromyography (sEMG) have widely been used to identify human intentions rapidly and 
effectively. We propose an algorithm that can recognize human intentions conveyed by different 
hand gestures through analyzing sEMG data. This will facilitate the selection of the most 
appropriate interaction mode and level during HRI for the robot. We also propose an admittance 
control framework combining a tan-type barrier Lyapunov function (BLF) and a radial basis 
function neural network (RBFNN) to ensure the interaction and tracking performance and to 
guarantee the stability of the system in uncertain environments. Experiments performed on a 
Baxter robot verify the effectiveness of the proposed framework.

1.	 Introduction

	 Nowadays, robots are widely used in industrial automation, rehabilitation therapy, surgery, 
and daily life,(1–5) and inevitably interact with the external environment in actual application. It 
is essential to ensure the intelligent response of robots to complete more complex, dexterous, and 
multifunctional tasks in an unstructured environment. Therefore, human–robot interaction 
(HRI) has become a research hotspot. 
	 Compliant control and tracking control are used for intelligent HRI. A lot of meaningful 
work on compliant control has been carried out, and two mainstream methods are hybrid 
position/force control and impedance control.(6–9) Without considering the dynamic coupling 
between environment and robot, the accuracy of hybrid position/force control cannot be 
guaranteed. In contrast, impedance control aims to adjust the mechanical impedance to the 
target impedance, which has better robustness and safety. Impedance control is mainly divided 
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into impedance control and admittance control according to the causality of the controller. 
Owing to the inertia and friction of robots, impedance control is usually suitable for dynamic 
interaction in a rigid environment. Admittance control can obtain the reference trajectory from 
the required admittance model and measured external force, and is mostly used in flexible 
environments.(10,11) Therefore, we apply admittance control to deal with the interaction with a 
flexible environment. Accurate kinematic information of a robot is usually provided by the 
manufacturer, but the dynamics of a robot is uncertain in actual situations, which will have a 
negative effect on the performance of tracking control. However, the available input and output 
data could be used to approximate unknown robot dynamics. Thus, a controller based on a radial 
basis function neural network (RBFNN) is widely used.(12–14) Moreover, the position and the 
speed may change markedly upon interaction owing to low control accuracy, so the transient 
performance should be considered for tracking control. Many studies utilized a barrier Lyapunov 
function (BLF) to change the transient performance of the control system.(15–18) Li et al. 
developed a robust adaptive fault-tolerant control method based on the BLF to ensure transient 
performance and robustness against actuator failure.(15) Considering the internal force between 
dual arms, Yang et al. used the BLF to specify the tracking performance in transient and steady 
states to achieve effective cooperation between dual arms.(16) Sun et al. combined the time-
varying BLF technology and a high-gain feedback method to limit the output tracking error in a 
predefined arbitrary area.(17)

	 One of the most critical problems in HRI is making robots understand the movement 
intention of humans. Common intention recognition techniques include the use of vision, natural 
language processing (NLP), and biological signals.(19–24) The visual method can easily produce 
incorrect judgments when the view is blocked by an object, whereas for the NLP method, 
industrial applications are limited by the need for voice acquisition and text input. However, 
biological-based intention recognition methods usually capture the operator’s movement 
intention rapidly and effectively. A surface electromyography (sEMG) signal is one of the most 
widely used biological signals for interaction. Kong et al. proposed a shared control strategy that 
used sEMG signals to control the direction and speed of mobile robots.(25) To obtain adaptive 
impedance control effectively, Zeng et al. used sEMG to extract the characteristics of human 
arm stiffness and then mapped the estimated stiffness to an impedance controller.(26) Yang et al. 
proposed a variable gain control mechanism to make a remote operating system naturally 
interact with the external environment by utilizing a task learning framework and the recorded 
sEMG signal.(27) In all these studies, sEMG signals were used to achieve more intelligent HRI. 
However, the force applied to the same object may be different in different situations, which may 
cause the falling of objects in HRI. 
	 In this paper, we propose an algorithm to make the robot automatically select the interaction 
mode and level during HRI by recognizing human intentions through their hand gestures. A 
BLF-based RBFNN control framework is applied to a constraint manipulator, which interacts 
with an unknown environment. Compared with existing research, the main contributions of this 
paper are as follows.
(1)	We propose an algorithm for human intention recognition that can automatically select the 

interaction mode and level according to the classification results of hand gestures. 
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(2)	We present a control framework combining a tan-type BLF and an RBFNN that can limit the 
tracking error within a certain range and achieve good transient performance during HRI.

	 The rest of this paper is organized as follows. In Sect. 2, related preliminary research is 
described. In Sect. 3, the method of human intention recognition and the design of the controller 
with its proof of stability are introduced. In Sect. 4, the effectiveness of our proposed method is 
verified through experiments conducted on a Baxter robot. Section 5 shows conclusions.

2.	 Preliminaries

2.1	 Robot dynamic description

	 Murray et al.(28) have derived the formulas for robot dynamics in detail, and the following 
formulas and properties are based on their work. The dynamics of a robot in the joint space is 

	 ( ) ( ) ( ),+ + = +q q qM q q C q q q G q u f  ,	 (1)

where q, q, and q are  the coordinate, speed, and acceleration in the joint space, respectively. 
( ) n n×∈qM q   is the inertia matrix of the manipulator, ,( ) n n×∈qC q q 

  represents the centrifugal 
and Coriolis force vector, 1( ) n×∈qG q 

 represents the gravity torques, n∈u   is the vector of the 
control input, and n∈f   is the vector of the measured interaction force, which is the force 
exerted by the human on the robotic arm.
	 Since the manipulator is controlled in Cartesian space, the above formula is transformed 
from the joint space to Cartesian space as

	 ),( ) ( ( )+ + = +x x x u fM q x C q q x G q  τ τ ,	 (2)

where x, x, and x are the coordinate, speed, and acceleration in Cartesian space, respectively. 
The remaining variables are transformed from the joint space to Cartesian space, and the robot 
dynamics have two properties as follows.

	 1T− −=x qM J M J 	 (3)

	 ( )1 1T− − −= −x q qC J C M J J J 	 (4)

	 T−=x qG J G 	 (5)

	  T−=u J uτ u	 (6)

	  T−=f J fτ f	 (7)
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Property 1: ( )xM q  is a symmetric and positive definite matrix.
Property 2: ( ) ( )2 , −x xC q q M q

  is a skew-symmetric matrix.

2.2	 RBF neural network

	 An RBFNN is widely used to deal with uncertainties in various systems because of its 
universal approximation of(29)

	 *( ) ( )= TZ W S Zϕ ,	 (8)

where 1 ( ) n×∈Zϕ  , *T n k×∈W   denotes the ideal weight matrix, which cannot be obtained in 
practice, 1m×∈Z   is the input vector, and 1( ) k×∈S Z   is a vector composed of radial basis 
functions. In general, we select the Gaussian function as the radial basis function, and the ith 
S(Z) is calculated as

	 ( )2 2exp /ii iS −= − ΩZ u ,	 (9)

where 1m×∈iu   is the central vector and iΩ  is the width of the radial basis function. The 
dynamic parameters of the manipulator are
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where Mε , Cε , and Gε  represent the bounded approximation errors of the neural network. We 
define the deviation signal of the RBFNN is equal to estimated value minus actual value, which 
would not affect the stability analysis.
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3.	 Human Intention Recognition and Controller Design

3.1	 Human intention recognition based on sEMG signal

	 sEMG is an important feature for the non-invasive recognition of muscle activity. Different 
intensities of an sEMG signal can represent different muscle movements. To select sEMG 
features initially before preprocessing, we obtain eight channels of hand gestures and use a 
320-ms-long sliding window to intercept 64 frames of data for each channel as the feature of one 
sampling. Human intention recognition is based on the following structure including an offline 
training process and an online intention estimate, as shown in Fig. 1. The training process is 
offline, and the features of the raw sEMG signals of different hand gestures are extracted 
through a low-pass filter and a sliding window. In practice, the feature of the raw sEMG signal is 
extracted rapidly and then imported as an input to a convolutional neural network (CNN) 
classifier for hand gesture recognition online.
	 We set up six hand gestures to represent three interaction modes and three interaction levels 
as shown in Fig. 2. Among them, gestures 1 to 3 represent the pause, forward, and backward 
modes, respectively. Gestures 4 to 6 represent levels 1, 2, and 3, respectively. In the pause mode, 
the robot stops its motion to ensure safety during HRI until the next hand gesture is recognized. 
In the forward mode, the human pushes the robot to move in the forward direction, while in the 
backward mode, we add a virtual force to the manipulator to keep the robot following the human 

Fig. 2.	 (Color online) Hand gestures associated with three interaction modes (gestures 1–3) and three interaction 
levels (gestures 4–6).

Fig. 1.	 (Color online) Training offline and estimate intention online of sEMG signal.
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in the backward direction. These two modes represent common back-and-forth motion during 
HRI. However, when the human and robot hold an object collectively in the backward mode, the 
object is more likely to fall if the robot cannot follow the human motion with the same pace. To 
solve this problem, we set different interaction levels. A higher interaction level means a larger 
force will be exerted on the object by the robot. In this way, the interaction levels, i.e., the forces 
exerted by the robot, are determined according to the manipulation task, e.g., the weight of the 
ball in this example. Although this way of setting interaction levels applies to both the forward 
and backward modes, the levels for these two modes are independently determined.
	 We propose an algorithm that can automatically switch the interaction mode and level by 
human intention recognition. Algorithm 1 shows the pseudocode for achieving this process. In 
Algorithm 1, we define two flags: flag1 represents the interaction mode and flag2 represents the 
interaction level. We set three levels for flag2, so that it can cope with three objects with different 
weights. These levels, which represent the interaction force, can easily be changed according to 
the needs in other HRI applications. The threshold setting is related to the additional sEMG 
signal activation value when we change the hand gesture, and it is set to 30% of the maximum 
sEMG activation value of the minimum-intensity exercise. As also shown in Algorithm 1, when 
an sEMG signal reaches the set threshold, it is fed to a CNN classifier to produce the 
classification result. When the first gesture is identified successfully, the robot will move 
accordingly, e.g., when gesture 1 is identified, the robot will stop and enter the pause mode to 
ensure safety. Otherwise, if the classification result is either gesture 2 or 3, flag1 will be changed 
to choose either the forward or backward mode. After setting flag1, we need to define flag2. 
Now we use gestures 4, 5, and 6 to define flag2. When the second hand gesture is identified, we 
choose the interaction level accordingly by changing flag2. The robot will then switch to the 
appropriate interaction mode and level to facilitate the physical interaction with the human 
partner. 

Algorithm 1
Framework of automatically switching interaction mode and level.
Input: Different sEMG signals 
Output: the interaction mode flag1 and level flag2 which control robot motion
1:  flag1 = 0, flag2 = 0
2:  while not receive end signal
3:    accept and update sEMG signal
4:    if 2sEMG∑ ≥ Threshold
5:      input to CNN and obtain sEMG signal classification result κ
6:      if   κ∈{gesture 1}
7:        mode = pause mode
8:        continue
9:      else if  κ∈{gesture 2, gesture 3}
10:       flag1 = corresponding mode of κ , mode∈{forward mode, backward mode}
11:       continue
12:    else if flag1≠ 0 and  κ∈{gesture 4, gesture 5, gesture 6}
13:        flag2 = the corresponding level of κ, level∈{level 1, level 2, level 3}
14:      send flag1 and flag2 to robot
15:   else
16:    goto step 3
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3.2	 Design of RBFNN controller based on BIF

	 We design the RBFNN controller based on the BLF and introduce the design process and 
stability analysis in detail in this section. Figure 3 shows the general framework of our proposed 
controller. The Cartesian tracking error is defined as

	 1

2 ,
,= −

 = −

dz x x
z x α

	 (13)

where [ ]1 11 1
T

nz z=z  , [ ]1 T
d dnx x=dx   is the desired position in Cartesian space, and 

α is the virtual controller, which can be designed as

	  = −d x Aα  ,	 (14)

where 
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1
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cos
2
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i
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i

zk z
a
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a

  π
     
 =  
  π      

A  , k1i > 0, i = 1, ..., n.

	 Let 1 =x x and 2 =x x , then Eq. (2) can be transformed into

	 ( )
1 2

1
2 .

,
−

=
 = + − − x u f x x

x x

x M C x G



 τ τ
	 (15)

Fig. 3.	 (Color online) Structure of RBFNN controller.
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	 The robot interacts with the unknown environment through admittance control, and the 
adaptive control torque uτ  is

	

	

2 2 2
1 1 1

2 2 12 2
1 1

2

( )

ˆ̂ˆ( ) ,

tan sec
2 2

n n
i i i i

i
i i

k a z zz
a a

sgn

π
+    π π

= − − −      
   

− − + + +

∑ ∑T
u p

r f x x x

k z z

k z M C G

τ

τ α α

	 (16)

where kp > 0, 2( )+Tz  is the pseudoinverse of error z2, sgn(*) is the sign function, and kr > 0 with 
+ +> M C Grk ε α ε α ε .

3.3	 Stability analysis

	 In this part, we utilize the Lyapunov method to strictly evaluate the stability of the control 
system and derive the stable adaptive update law of the RBFNN in detail. Owing to the low 
control accuracy, the position and speed may change markedly during an interaction, resulting in 
a strong collision and unpredictable results. Therefore, we introduce a BLF(30) to solve this 
problem:

	
2 2

2( ) tan
2

aV t
a

 π
=   π  

z
,	 (17)

where z is the system state restricted by a<z .
	 Consider a continuous Lyapunov function V(t) > 0, where t R+∀ ∈ , V(0) is bounded. It can be 
concluded that if the derivative of the Lyapunov function satisfies the following inequality, then 
V(t) is bounded.(31)

	 ( ) ( )V t V tρ σ≤ − + 	 (18)

	 Consider the Lyapunov function

	
2 2

1
2 22

1

1 1 1 1( ) tan
2 2 2 22

n
i i

i

a zV t
a

 π
= + + + +  π  
∑ T T T T

x M M c c G Gz M z W W W W W W      ,	 (19)
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∑ T T T
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

ˆ+ T
C CW W ˆ+ T

G GW W .	 (20)

	 Because ( ) ( )2 , −x xC q q M q

  is a skew-symmetric  matrix, upon substituting Eqs. (13)–(16) 
into Eq. (20), we obtain
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	 The stable adaptive update law of the RBFNN is

	 2
ˆ ˆ

Mβ= − −M M MW S z Wα ,	 (22)

	 2
ˆ ˆ

Cβ= − −C C CW S z W α ,	 (23)

	 2
ˆ̂

Gβ= − −G G GW S z W ˆ
GW ,	 (24)

where βM, βC, and βG represent the robust items of the RBFNN. Substituting Eqs. (22)–(24) into 
Eq. (21) gives
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	 Equations (18) and (26) have the same form, from which we obtain 
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4.	 Experiments

	 Experiments are carried out with the Baxter robot manipulator, as shown in Fig. 4. The 
human partner interacts with the robot with his left arm. The robot recognizes his intention by 
identifying the gesture posed by his right hand. There is a ball held between the robot end 
effector and the left hand of the human partner. The end of the Baxter robot arm is equipped 
with a Mini45 force sensor to measure the contact force in real time. The human partner 
continuously adjusts the force he applies to the contact force exerted by the robot to keep the ball 
in place without falling off. Raw sEMG signals are collected by a Myo armband worn by the 
human partner on his right arm. In the first experiment, we verified that the proposed control 
framework could guarantee transient performance during interaction. In the second experiment, 
we verified that the proposed method could make the robot change its interaction mode and level 
automatically according to human intentions conveyed by hand gestures.

4.1	 Test of RBFNN controller based on BLF

	 In the first experiment, we use a held balloon to interact with the left arm of the Baxter robot 
while ensuring transient performance. The initial Cartesian position is [x, y, z] = [0.60, −0.33, 0.50] m 
and the final Cartesian position is [x, y, z] = [0.60, 0.30, 0.50] m. We push the balloon along the 
Y-axis to make the robot’s left arm move from the initial position to the final position and 
observe the variation of the force, position, and position error. Transient and steady performances 
are guaranteed by utilizing the BLF-based RBFNN constraint controller designed using Eq. (16). 
The parameter is ai = 0.04 and the control gains are k1i = 80, kp = 60,  and kr = 5. Furthermore, to 
use the RBFNN to estimate the uncertain parameters of the robot dynamics, n = 37 neural 
network nodes are employed for ˆ ( )xM q  and ˆ ( )xG q  and 2n = 2 × 3 are employed for ˆ ( )xC q . The 

Fig. 4.	 (Color online) Process of HRI (left arm interacts with robot while right arm’s hand gestures are used for 
human intention recognition).
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weight matrices are initialized as 1 2 1 1ˆ̂ˆ ,( ) ( ) ( ),n n n× × ×= ∈ = ∈ = ∈x x xM C G  0 00 0 00  and Gx(0) = 0 1 2 1 1ˆ̂ˆ ,( ) ( ) ( ),n n n× × ×= ∈ = ∈ = ∈x x xM C G  0 00 0 00 , and 
the parameters of the RBFNN update law are chosen as βM = βC = βG = 5.
	 The force on the Baxter robot’s left arm during the interaction is shown in Fig. 5. The initial 
received force is not 0. This is because the Mini45 force sensor has errors due to gravity. The 
force received by the robot remains at about 3 N with tiny fluctuations. Because of ergonomic 
limitations, a human cannot exert an absolute constant force during interaction. The 
experimental results show that the admittance control is effective in force control for interaction 
with a flexible object.
	 The position and tracking error in the Y-axis are shown in Fig. 6. It can be seen from Fig. 6 
that except for the larger tracking error at the beginning and end, the errors at other times are all 
approximately zero. The actual trajectory has good tracking performance for the reference 
trajectory, and the tracking error is kept within 4 cm, which is a small range. The experimental 
results show that our proposed BLF-based RBFNN controller limits the tracking error to a value 
within a certain range and ensures a transient response.

Fig. 5.	 (Color online) Force measured during HRI.

Fig. 6.	 (Color online) Y-axis position and tracking error during HRI. (a) Y-axis position and (b) Y-axis tracking 
error.

(a) (b)
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4.2	 Human intention recognition based on sEMG signal

	 In the second experiment, we change the hand gestures to make the robot perform different 
interaction modes and levels to achieve human intention recognition. The raw sEMG signals 
corresponding to different gestures of a volunteer are shown in Fig. 7. It is observed that different 
features are associated with the hand gestures. The gestures are dynamic since static gestures 
require upper limb muscles to stay taut all the time, which will inevitably produce muscle fatigue 
and lower the success rate of gesture recognition. The recognition learning curves of different 
gestures are shown in Fig. 8. As the number of iterations increases, the loss decreases and the 
accuracy increases gradually, indicating that the features of different hand gestures could be 
acquired after passing through a CNN classifier to achieve good classification performance.
	 The robot could change its interaction mode and level according to human intentions, as 
described in detail in Sect. 3.1. According to the classification result of the hand gestures, we 
first set flag1 to choose the interaction mode. Then, by recognizing the next hand gesture, we 
changed the value of flag2 to define the interaction level. Figure 9 shows the variation of the 
interaction force for three sample conditions. Specifically, Fig. 9(a) shows the force switching to 
a different level in the same mode. The red line represents the force in the forward mode and in 
level 1, and the green line represents the force in the forward mode and in level 2, which 
indicates an increased force level. Figure 9(b) shows the force switching to a different mode in 
the same level. The red line represents the force in the forward mode and in level 1, and the 

Fig. 7.	 (Color online) Raw sEMG signals corresponding to different gestures: (a) gesture 1, (b) gesture 2, (c) 
gesture 3, (d) gesture 4, (e) gesture 5, and (f) gesture 6.

(a) (b) (c)

(d) (e) (f)
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green line represents the force in the backward mode and in level 1. Because a virtual force is 
added according to the different level in the backward mode with level 1 for both interaction 
levels, the absolute values of the forces are different in Fig. 9(b) for the forward and backward 
modes. Moreover, although the forces are both in the negative direction, the direction of motion 
is opposite for these two modes. Owing to the accuracy of the sensor, the forces measured in the 
forward mode and in level 1 in Figs. 9(a) and 9(b) are not exactly the same. However, the 
variation range is within 0.5 N. Figure 9(c) shows the force switching to a different mode and a 
different level. The red line represents the force in the forward mode and in level 1, and the green 
line represents the force in the backward mode and in level 3. 
	 The above experimental results prove that our proposed method can effectively identify 
human intentions and flexibly achieve intelligent HRI. Humans can change the interaction mode 
and level according to different situations when interacting with a robot while the contact force 
fluctuates around a certain value.

Fig. 8.	 (Color online) Recognition learning curves of different gestures.

(a) (c)

Fig. 9.	 (Color online) Force measurement in different interaction modes and levels. (a) Switching to different level 
in same mode. (b) Switching to different mode in same level. (c) Switching to different mode and level.

(b)
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5.	 Conclusions

	 In this paper, we propose an algorithm of human intention recognition through identifying 
various hand gestures, which makes the robot automatically change the interaction scheme to 
adapt to different HRI tasks. An admittance control framework combining a tan-type BLF and 
an RBFNN has also been proposed to achieve desirable interaction and tracking performance 
while guaranteeing stability. HRI experiments with a Baxter robot show that, first, the proposed 
control framework gives the robot good tracking and transient performances. Second, the human 
intention recognition algorithm allows the robot to adapt its interaction mode and level according 
to human hand gestures in real time, which ensures the exertion of the most appropriate contact 
forces by the robot, greatly improving the success rate of the HRI task. This framework will be 
extended to accommodate more challenging scenarios and tasks in the future by exploring the 
relationship between the activity level of human upper limb muscles and the robot position in an 
HRI process to achieve continuous intention recognition, and by realizing optimal interaction 
with flexible objects.

Acknowledgments

	 This work was supported in part by the National Nature Science Foundation of China (NSFC) 
under Grant 61803039.

References

	 1	 W. Wan, F. Lu, Z. Wu, and K. Harada: Neurocomputing 259 (2017) 85. https://doi.org/10.1016/j.
neucom.2017.01.077 

	 2	 W. Wan, K. Harada, and F. Kanehiro: IEEE Trans. Ind. Inf. 16 (2019) 442. https://doi.org/10.1109/
tii.2019.2892772 

	 3	 L. Randazzo, I. Iturrate, S. Perdikis, and J. D. R. Millán: IEEE Rob. Autom. Lett. 3 (2017) 500. https://doi.
org/10.1109/lra.2017.2771329 

	 4	 H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno, and E. D. Momi: Neural Networks 131 (2020) 291. https://
doi.org/10.1016/j.neunet.2020.07.033

	 5	 S. Murata, Y. Li, H. Arie, T. Ogata, and S. Sugano: IEEE Trans. Cognit. Dev. Syst. 10 (2018) 712. https://doi.
org/10.1109/tcds.2018.2797260 

	 6	 M. H. Raibert and J. J. Craig: J. Dyn. Syst. Meas. Contr. 102 (1981) 127. https://doi.org/10.1115/1.3139652
	 7	 M. C. Yip and D. B. Camarillo: IEEE Rob. Autom. Lett. 1 (2016) 844. https://doi.org/10.1109/lra.2016.2526062 
	 8	 Y. Jiang, C. Yang, Y. Wang, Z. Ju, Y. Li, and C. Y. Su: Mechatronics 67 (2020) 102348. https://doi.org/10.1016/j.

mechatronics.2020.102348 
	 9	 C. Ott, R. Mukherjee, and Y. Nakamura: J. Intell. Rob. Syst. 78 (2015) 359. https://doi.org/10.1007/s10846-014-

0082-1
	10	 G. Peng, C. Yang, W. He, and C. L. P. Chen: IEEE Trans. Ind. Electron. 67 (2019) 3138. https://doi.org/10.1109/

tie.2019.2912781 
	11	 C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, and Z. Li: IEEE Trans. Cybern. 49 (2018) 2568. https://doi.

org/10.1109/tcyb.2018.2828654 
	12	 C. Yang, G. Peng, L. Cheng, J. Na, and Z. Li: IEEE Trans. Syst. Man Cybern.: Syst. 51 (2019) 1. https://doi.

org/10.1109/tsmc.2019.2920870 
	13	 Y. Jiang, Y. Wang, Z. Miao, J. Na, Z. Zhao, and C. Yang: IEEE Trans. Neural Networks Learn. Syst. (2020). 

https://doi.org/10.1109/tnnls.2020.3037795 
	14	 C. Yang, C. Chen, W. He, R. Cui, and Z. Li: IEEE Trans. Neural Networks Learn. Syst. 30 (2018) 777. https://

doi.org/10.1109/tnnls.2018.2852711 

https://doi.org/10.1016/j.neucom.2017.01.077
https://doi.org/10.1016/j.neucom.2017.01.077
https://doi.org/10.1109/tii.2019.2892772
https://doi.org/10.1109/tii.2019.2892772
https://doi.org/10.1109/lra.2017.2771329
https://doi.org/10.1109/lra.2017.2771329
https://doi.org/10.1016/j.neunet.2020.07.033
https://doi.org/10.1016/j.neunet.2020.07.033
https://doi.org/10.1109/tcds.2018.2797260
https://doi.org/10.1109/tcds.2018.2797260
https://doi.org/10.1115/1.3139652
https://doi.org/10.1109/lra.2016.2526062
https://doi.org/10.1016/j.mechatronics.2020.102348
https://doi.org/10.1016/j.mechatronics.2020.102348
https://doi.org/10.1007/s10846-014-0082-1
https://doi.org/10.1007/s10846-014-0082-1
https://doi.org/10.1109/tie.2019.2912781
https://doi.org/10.1109/tie.2019.2912781
https://doi.org/10.1109/tcyb.2018.2828654
https://doi.org/10.1109/tcyb.2018.2828654
https://doi.org/10.1109/tsmc.2019.2920870
https://doi.org/10.1109/tsmc.2019.2920870
https://doi.org/10.1109/tnnls.2020.3037795
https://doi.org/10.1109/tnnls.2018.2852711
https://doi.org/10.1109/tnnls.2018.2852711


Sensors and Materials, Vol. 33, No. 9 (2021)	 3167

	15	 D. Y. Li, P. Li, W. C. Cai, Y. D. Song, and H. J: IEEE Trans. Ind. Electron. 65 (2017) 3275. Chen. https://doi.
org/10.1109/tie.2017.2748036 

	16	 C. Yang, Y. Jiang, Z. Li, W. He, and C. Y. Su: IEEE Trans. Ind. Inf. 13 (2016) 1162. https://doi.org/10.1109/
tii.2016.2612646 

	17	 W. Sun, Z. Zhu, J. Lan, and Y. Peng: Trans. Inst. Meas. Control 42 (2020) 1180. https://doi.
org/10.1177/0142331219886411 

	18	 C. Yang, D. Huang, W. He, and L. Cheng: IEEE Trans. Neural Networks Learn. Syst. (2020) 1. https://doi.
org/10.1109/tnnls.2020.3017202 

	19	 Z. Fang and A. M. López: IEEE Trans. Intell. Transp. Syst. 21 (2019) 4773. https://doi.org/10.1109/
tits.2019.2946642 

	20	 D. Lee and Y. Park: IEEE Trans. Consum. Electron. 55 (2009) 2308. https://doi.org/10.1109/tce.2009.5373803 
	21	 K. Zinchenko, C. Y. Wu, and K. T. Song: IEEE Trans. Ind. Inf. 13 (2016) 607. https://doi.org/10.1109/

tii.2016.2625818 
	22	 E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh: arXiv preprint arXiv:19 (2019) 2153. https://doi.

org/10.18653/v1/d19-1221 
	23	 C. Yang, H. Wu, Z. Li, W. He, N. Wang, and C. Y. Su: IEEE Trans. Ind. Inf. 14 (2017) 3822. https://doi.

org/10.1109/tii.2017.2785415 
	24	 C. Zeng, C. Yang, Z. Chen, and S. L. Dai: Assembly Automation (2018). https://doi.org/10.1108/aa-02-2018-019 
	25	 H. Kong, C. Yang, G. Li, and S. L. Dai: IEEE Access 8 (2020) 26030. https://doi.org/10.1109/

access.2020.2970468 
	26	 C. Zeng, C. Yang, H. Cheng, Y. Li, and S. L. Dai: IEEE Trans. Ind. Inf. 17 (2020) 1244. https://doi.org/10.1109/

tii.2020.2984482 
	27	 C. Yang, J. Luo, C. Liu, M. Li, and S. L. Dai: IEEE Trans. Autom. Sci. Eng. 16 (2018) 1512. https://doi.

org/10.1109/tase.2018.2874454 
	28	 R. M. Murray, Z. Li, and S. S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC press, 

Florida, 1994) Chap. 2. https://doi.org/10.1201/9781315136370 
	29	 T. H. Lee and C. J. Harris: Adaptive Neural Network Control of Robotic Manipulators (World Scientific, 

Singapore, 1998) p. 396. https://doi.org/10.1142/3774 
	30	 X. Jin and J. X. Xu: Automatica 49 (2013) 2508. https://doi.org/10.1016/j.automatica.2013.04.039 
	31	 H. Huang, C. Yang, and C. P. Chen: IEEE Trans. Cybern. (2020) 1. https://doi.org/10.1109/tcyb.2020.2998984 

About the Authors

	 Junbao Gan received his B.S. degree in automation from South China 
University of Technology, Guangzhou, China, in 2018, where he is currently 
pursuing his M.S. degree. His current research interests include human–robot 
interaction, human intention recognition, and adaptive control.

	 Ning Wang is a senior lecturer in robotics at the Bristol Robotics Laboratory, 
University of the West of England, United Kingdom. She received her M.Phil. 
and Ph.D. degrees in electronics engineering from the Department of 
Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, 
in 2007 and 2011, respectively. Ning has rich project experience: she has been 
a key member of the EU FP7 Project ROBOT-ERA, the EU Regional 
Development Funded Project ASTUTE 2020, and industrial projects with UK 
companies. She has received several awards including Best Paper Award of 
ICIRA’15, Best Student Paper Award nomination of ISCSLP’10, and Award of 

https://doi.org/10.1109/tie.2017.2748036
https://doi.org/10.1109/tie.2017.2748036
https://doi.org/10.1109/tii.2016.2612646
https://doi.org/10.1109/tii.2016.2612646
https://doi.org/10.1177/0142331219886411
https://doi.org/10.1177/0142331219886411
https://doi.org/10.1109/tnnls.2020.3017202
https://doi.org/10.1109/tnnls.2020.3017202
https://doi.org/10.1109/tits.2019.2946642
https://doi.org/10.1109/tits.2019.2946642
https://doi.org/10.1109/tce.2009.5373803
https://doi.org/10.1109/tii.2016.2625818
https://doi.org/10.1109/tii.2016.2625818
https://doi.org/10.18653/v1/d19-1221
https://doi.org/10.18653/v1/d19-1221
https://doi.org/10.1109/tii.2017.2785415
https://doi.org/10.1109/tii.2017.2785415
https://doi.org/10.1108/aa-02-2018-019
https://doi.org/10.1109/access.2020.2970468
https://doi.org/10.1109/access.2020.2970468
https://doi.org/10.1109/tii.2020.2984482
https://doi.org/10.1109/tii.2020.2984482
https://doi.org/10.1109/tase.2018.2874454
https://doi.org/10.1109/tase.2018.2874454
https://doi.org/10.1201/9781315136370
https://doi.org/10.1142/3774
https://doi.org/10.1016/j.automatica.2013.04.039
https://doi.org/10.1109/tcyb.2020.2998984


3168	 Sensors and Materials, Vol. 33, No. 9 (2021)

Merit of the 2008 IEEE Signal Processing Postgraduate Forum. Her research 
interests lie in signal processing, intelligent data analysis, human–robot 
interaction, and autonomous driving. 

	 Lei Zuo (M’17) received his B.Sc. and Ph.D. degrees from Northwestern 
Polytechnical University, Xi’an, China, in 2011 and 2017, respectively. Since 
2017, he has been with the School of Electronic and Control Engineering, 
Chang’an University, Xi’an, where he is currently an assistant professor. His 
current research interests include multiagent systems, coverage control, model 
predictive control, and vehicle platoon control.


