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	 Continuous point cloud stitching can reconstruct a 3D model and play an essential role in 
autonomous vehicles. However, most existing methods are based on binocular stereo vision, 
which increases space and material costs, and these systems also achieve poor matching 
accuracies and speeds. In this paper, a novel point cloud stitching method based on the 
monocular vision system is proposed to solve these problems. First, the calibration and parameter 
acquisition based on monocular vision are presented. Next, the region-growing algorithm in 
sparse matching and dense matching is redesigned to improve the matching density. Finally, an 
Iterative Closest Point (ICP)-based splicing method is proposed for monocular zoom stereo 
vision. The point cloud data are spliced by introducing the rotation matrix and translation factor 
obtained in the matching process. In the experiments, the proposed method is evaluated on two 
datasets: self-collected and public datasets. The results show that the proposed method achieves 
a higher matching accuracy than the binocular-based systems, and it also outperforms other 
recent approaches. In addition, the 3D model generated using this method has a wider viewing 
angle, a more precise outline, and more distinct layers than the state-of-the-art algorithms.

1.	 Introduction

	 Model generation technology has been widely used in many areas, such as panoramic display, 
navigation, and data visualization. Many continuous images collected by vehicle-mounted 
cameras need to be stitched to reconstruct the environment for autonomous vehicles. Both image 
matching and stereo point cloud stitching are key technologies. A 3D point cloud is defined as 
the collection of points on the surface of an object and represents the 3D model.(1) 
	 In most studies, point cloud data are obtained by applying professional instruments and 
binocular stereo vision systems. The optical scanner can acquire point cloud data on a target 
surface in seconds. Mineo et al. and Berger et al. applied costly devices to obtain point cloud 
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data for the target surface but got an unsatisfactory result. Multiple transformation models such 
as non-uniform rational B-splines (NURBS) surface models and computer aided design (CAD) 
models have obtained efficient point cloud data.(2,3) Point cloud data can also be obtained by 
methods based on binocular stereo vision. Yang proposed a bilateral filtering method suitable for 
hardware implementation to improve the speed of matching computation.(4) Einecke and Eggert 
proposed an anisotropic mean filtering method to improve the accuracy of matching.(5) 
Kowalczuk et al. proposed a dynamic programming method to improve the speed of matching.(6) 
However, these methods are complex, require high computational resources, and increase the 
cost of memory.
	 3D point cloud stitching is an important technology that enables an autonomous vehicle to 
understand its surroundings and tendency of motion. There are three reconstruction methods 
differing in the number of images required, namely, single-image-based, double-image-based, 
and image-sequence-based methods. First, a small amount of image information is used to 
reconstruct the 3D model in our proposed method, which significantly improves the speed of 
model operation. Schönberger et al. proposed a joint reconstruction and retrieval system that 
improves scalability and stores many scene details.(7) Huang et al. extended automatic object 
reconstruction by analyzing different objects and formulating optimization strategies.(8) 
Effective unsupervised deep networks were extended by Payne et al. and Eigen et al. to 
recognize and reconstruct 3D objects.(9,10) However, the features extracted from a single image 
are limited, leading to poor accuracy and incompleteness. Second, the parallax of multiple 
spatial points collected by two-view sensors is calculated to reconstruct the 3D model. The key 
technology is to match feature points and calibrate the sensors. Fraser proposed some self-
calibration methods to obtain scene-independent camera calibration parameters.(11) A geometric 
calibration method to automatically estimate the intrinsic, extrinsic, and distortion parameters 
was proposed by Li et al.(12) Although double images provide more feature points than a single 
image for reconstruction, these feature points still cannot achieve a highly complete model.
	 In this paper, we propose a model based on an image sequence to improve the speed and 
accuracy of stitching 3D point clouds. A depth image sequence is used in model reconstruction 
in our model. The fusion of multiple sets of depth images can be used to obtain the complete 3D 
information of a model, and the gray values of each pixel can represent the different features.(13) 
The depth-image-based method was studied by Ju et al. to propose a continuous deep fusion 
model.(14) Hanqi et al. achieved a complete depth surface by introducing Bayesian mapping to 
constrain images from various perspectives.(15) The density of the point cloud is a key factor for 
reconstructing the 3D model, and a region-growing-based method can improve the density.(16) 
Tanskanen et al. proposed a monocular device to generate a 3D model with a high density 
suitable for outdoor and indoor scenes.(17) Lasang et al. obtained a dense 3D model by combining 
color and depth images.(18) Motivated by the recent success of the region-growing-based method, 
we used such a method in our model to achieve a high density and good reconstruction accuracy.
	 To improve the feature matching accuracy and the speed of reconstruction, we proposed a 
point cloud stitching method based on monocular stereo vision. The main contributions of our 
paper are summarized as follows. 1) From a detailed analysis of the imaging principle and 
characteristics of the monocular camera, an offline calibration is proposed to obtain stable 
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camera parameters at different focal lengths. 2) An image generation method based on the 
Iterative Closest Point (ICP) algorithm is proposed, including data simplification, matching, and 
image splicing. 3) The image-matching algorithm is improved by combining the region-growing 
theory.
	 This paper is organized as follows. In Sect. 2, we describe the camera calibration method. In 
Sects. 3 and 4, we introduce our proposed model in detail. In Sect. 5, we evaluate the proposed 
model, and in Sect. 6, we describe the limitations of our model and outline future work.

2.	 Related Work

2.1	 Calibration method

	 Camera calibration involves finding the internal and external parameters of a camera in 
accordance with a given camera model and establishing the mapping method between the image 
pixel coordinate system and the spatial coordinate system, that is, the position of the 3D space 
point and the positional relationship of the image pixel points captured by the camera. In this 
work, we study the point cloud stitching method based on zoom monocular stereo vision. The 
internal and external parameters of the camera under different focal lengths need to be 
calibrated, and the calibrated projection matrix is used for subsequent point cloud calculation. 
We capture the zoom image using a manual zoom camera and calibrate the zoom camera using a 
2D planar template and a MATLAB calibration box. The in-camera parameter model of the 
calibration box is expressed as 

	
(1) _ (1) (1)
0 (2) (2)
0 0 1

M
fc alpha c fc cc

fc cc
⋅ 

 =  
  

.	 (1)

	 The parameter fc is a vector that represents the focal length of the horizontal pixel. We use a 
1 × 2 matrix to express this parameter. cc is a vector expressed as a 1 × 2 matrix that represents 
the center of the image, the tilt factor alpha_c represents the tilt angle in the kc direction and the 
y direction, and alpha_c is 0. Also, the distortion factor kc is a 1 × 5 vector, and kc is taken as 
[1, 1, 1, 0, 0].
	 On the basis of the planar target, images from multiple viewpoints are acquired to complete 
the camera calibration. The method sets the coordinate system of the calibration plane plate used 
in the calibration in space coordinate system to Z = 0. We calculate the optimal solution of the 
camera parameters based on the linear model and solve the nonlinear solution by the maximum 
likelihood method. The equation for the imaging model is
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where s is the depth coefficient and 
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 is the parameter matrix in the camera. 

Let H = M[n o p] = [h1 h2 h3] be a homography matrix. H is obtained by maximum likelihood 
estimation and the algorithm in accordance with the constraints of the in-camera parameter 
matrix.
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	 In Eq. (3), the H matrix is obtained by assuming that the observed samples are independently 
and identically distributed. The inner parameter matrix is below.
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	 After finding the inner parameter matrix using the homography matrix H = λM[n o p] = [h1 h2 h3] 
(λ is a constant factor), the camera external parameters are obtained as below.
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	 (5)

2.2	 Calculation of 3D coordinates

	 When the zoom camera captures images at different focal lengths, image pairs with different 
focal lengths can be considered positional relationships translated along the optical axis. The 
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thick lens model is deemed to be the ideal model for zoom lenses.(19) As shown in Fig. 1, the 
principal planes Hoxy and Hixy are perpendicular to the optical axis and intersect at points Hoxy 
and Hixy. The object distance Hoxy is the distance from the object to the main plane po, and the 
image distance Hixy is the distance from the image plane to the main plane pi. When zooming, 
the main planes Hoxy and Hixy move along the optical axis. In addition, when Ho and Hi coincide, 
the thick lens model is transformed into a pinhole model, where C is the projection center in the 
pinhole model, po = Tz (the distance from the object to the center of the projection), and pi = f (the 
distance from the image plane to the center of the projection).
	 According to the characteristics of the zoom image, the change in the focal length of the 
camera zoom is equal to the change in the object distance. However, owing to various factors, 
the change in the focal length is not equal to the change in the object distance. The thick lens 
model is more suitable than the pinhole model for zoom depth information recovery. In the thick 
lens model, the translation of the principal plane Hoxy determines the position at which the ray is 
incident, whereas the translation of the principal plane Hixy determines the focal length. If Ho is a 
static reference point and the main plane Hixy is shifted to coincide with the main plane Hoxy, we 
find that the change in the object distance Δt is the key to zoom ranging. By using an image with 
at least two different focal lengths, the depth calculation equation for the thick lens model is

	 2

1 2 2 1

trfDepth
f r f r
∆

=
−

.	 (6)

Fig. 1.	 Thick lens model for zoom depth estimation.
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	 To accurately obtain the depth information of the object point, the 3D coordinate system of 
the spatial point is calculated with Eq. (7) using the calibration result of the zoom camera, where 
M is the internal parameter matrix of the camera, zc is the depth of the point, and u  is the image 
point coordinate in the image.

	 1
c

c c
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y M z u
z
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 
  = 
  

	 (7)

3.	 Proposed Dense Matching Algorithm

3.1	 Image feature detection and tracking

	 For a monocular image under double the focal length, the position and angle do not change. A 
bifocal monocular vision mainly involves a change in the scale, and the main direction should 
remain unchanged. The scale is used to measure the view degree of the image. In the scale-
invariant feature transform (SIFT) algorithm, the descriptors with similar degrees of blur are 
most likely to be matching points. However, the same target object is captured in a bifocal image 
pair compared with a bifocal monocular image. The degree of blurring is different because of the 
inherent noise. Therefore, to make the blurring degree of the two images similar, the smoothing 
scales are necessarily unequal and fixed. The zoom images are taken at focal lengths of F18 and 
F55, and the main directions and scale characteristics of the bifocal monocular image matching 
points are verified. The results show that the main trends of the bifocal monocular image are the 
same, and the ratio of the matching point scale is close to 3, which is the ratio of the focal length.
	 Let the number of matching points obtained by the SIFT algorithm be N, and the matching 
point scale ratio is s(i), the main direction ratio is o(i), and the value range of i is [1, N]. Therefore, 
the scale average ratio can be expressed using Eq. (8), and the main direction average ratio can 
be expressed using Eq. (9). Their standard deviations are given by Eqs. (10) and (11), respectively.
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	 Let s(i) and o(i) have normal distributions. We remove anomalous matching points that do not 
satisfy the scale and main direction characteristics within the confidence interval. Let s(i) have a 
confidence space of [us − ksσs, us + ksσs] and ks is the standard deviation factor. The confidence 
space of o(i) is [uo − koσo, uo + koσo] and ko is the main direction ratio standard deviation factor. 
By adjusting the standard deviation factor, the confidence interval can be controlled. After the 
matching of feature attributes based on the SIFT algorithm, there is still mismatching. Therefore, 
on the basis of this, the polar constraint of the bifocal monocular image is used to remove the 
mismatch.
	 The pole-to-pole distance is called the polar line distance. According to the zoom image 
feature, the zoom image can be understood as a unique panning image, as shown in Fig. 2. The 
blue cube simulates the zoom image. The orange circle simulates the size of the target object at 
different focal lengths. The points of different colors in the blue cube simulate the matching 
points in the bifocal monocular image. In an ideal state, the extension of the line between the 
matching pairs of points in the blue cube intersects with a point O1, which is called the pole. On 
the basis of the least-squares method, a pole is fitted by the polar line of the matching point, and 
the mismatched pair is removed using the pole distance. The calculation of the pole distance is 
given by Eq. (12), Ai, Bi, and Ci are the i pole line equations, and (x0, y0) are poles.

	 0 0
2 2

i i i
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i i

A x B y Cd
A B
+ +
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	 Let the i-pole distance be d(i), i ∈ [1, N]. The average ratio of the polar line distances and the 
standard deviations are determined using Eqs. (13) and (14), respectively.

	
1

1 ( )
N

d
i

d i
N

µ
=

= ∑ 	 (13)

	 ( )2
1

1 ( )
N

d d
i

d i
N

σ µ
=

= −∑ 	 (14)

	 The polar line distance obeys the normal distribution, and the equidistance interval is used to 
remove the mismatch point of the pole line distance. The confidence interval for the polar line 
distance is [µd − kdσd, µd + kdσd], where kd is the multiple of the standard deviation of the 
matching point line distance and is used to control the size of the confidence interval. Once the 

Fig. 2.	 (Color online) Bifocal image pole schematic.
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mismatched points are removed using the SIFT feature attributes, kd can take a smaller value, 
that is, the set limit distance is further reduced. dmax is the maximum value of the pole line 
distance, and the iterative operation satisfies

	 , [1, ,]m m
i maxd d i N< ∈ 	 (15)

where m
id  is the distance value of polar line i, and Nm represents the remaining matching points 

of the m operation. The value of dmax directly determines the number of iterations. The smaller 
the value of dmax, the more accurate is the pole fitting and the higher the accuracy of matching 
points.

3.2	 Matching algorithm

	 The matching algorithm is an essential part of the 3D reconstruction. The dense matching 
processing is implemented with the region-growing algorithm, as shown in Fig. 3. It was first 
applied in the field of image segmentation. It uses the continuity of pixel arrangement, selects a 
small number of precise matching points as the starting point, and then propagates in the region. 
When the set conditions are met, the matching relationship is propagated to other points. The 
most important part of the region’s growing matching algorithm is seed point selection and 
region growth.
	 The process of applying the region-growing dense matching method is described as follows. 
For seed point selection, first, the feature points are matched by the SIFT algorithm. Second, the 

Fig. 3.	 (Color online) Region-growing dense matching flow.
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Random Sample Consensus (RANSAC) algorithm is used to purify the initial matching results. 
Finally, the matching points with high reliability are selected as seed points.
	 The key of the region-growing algorithm is to select an exact matching point as the starting 
point and spread the matching to the entire region.(20) Therefore, the search range for Nm can be 
narrowed down within the smaller value of point P. Window sizes of 3 × 3 and 4 × 4 are usually 
selected, and the pixel similarity in the window is calculated. We use the difference of pixels in a 
window in a color image to calculate the pixel similarity. When the similarity reaches the 
maximum, the selected point is the matching point.(21) The strategy map for regional growth is 
shown in Fig. 4.

4.	 Proposed Point Cloud Stitching Method

4.1	 Point cloud acquisition

	 The point cloud features are of two types: point cloud local feature description and point 
cloud topological feature description.(22) The extraction of local features depends on the storage 
format of point cloud data. In the case of many noise points, the reliability of the local feature of 
the point cloud is low. The topological feature description is constructed by using all points in 
the point cloud, and such features contain more information than local features. Our method 
uses the local feature description of the point cloud. Surface normal features are one of the 
essential properties of a geometric surface. Normal features can be extracted using the surface 
feature extraction technique. Extracting the normal of a point on the surface is equivalent to 
estimating the normal of the plane tangent to the surface, which can be summarized as the least-
squares plane fitting estimation problem. The extraction of normal features is as follows.
	 For each point Pi, the covariance matrix is shown in Eq. (16). The number of points adjacent 
to point Pi is represented by k, P is the 3D centroid of the nearest neighbor, λj is the j feature 
value in the covariance matrix, and the corresponding j feature vector is Jv .
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Fig. 4.	 Strategies for region growing.
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	 The point VP is known, and this thorny problem can be solved by using the viewpoint 
direction. Therefore, all the normals in  are oriented, and the normal direction must be consistent 
with the viewpoint direction VP, i.e., Eq. (17) must be satisfied.

	 ( ) 0i P in v P⋅ − >


 	 (17)

4.2	 Point cloud stitching

	 Point cloud sets cloud 1 and cloud 2 contains coincidence points. The coordinate system of all 
3D points in cloud 1 is O1X1Y1Z1, and the coordinate system of all 3D points in cloud 2 is 
O2X2Y2Z2. By defining in this way, cloud 1 and cloud 2 can be spliced. Let the coordinates of a 
point in the coordinate system O1X1Y1Z1 be (X1, Y1, Z1), and the coordinates in the coordinate 
system O2X2Y2Z2 be (X2, Y2, Z2). Therefore, the conversion relationship between (X2, Y2, Z2) and 
(X1, Y1, Z1) is as shown in Eq. (18).
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                

 	 (18)

	 The steps for finding the optimal R and T using the algorithm for matching are as follows. 
After determining the corresponding points in the initial point set, it is assumed that the set of 
matching points is P in cloud 1, the number of points included in P is Np, and the point cloud set 
in cloud 2 is X. The number of points in the set X is Nx, and Nx = Np. We calculate the sum of 
squares of the smallest Euclidean distances of all the nearest point pairs using Eq. (19) and find 
the corresponding rotation matrix R and the translation matrix t. To find the minimum value of 
f(q), we determine the point set Np and the center of gravity of the point set Nx using Eqs. (20) 
and (21), respectively.
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	 The centers of gravity up and ux are used to obtain the set Np and the covariance matrix of set 
X using Eq. (22).
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	 The covariance matrix can be used to construct the symmetric matrix given by Eq. (23), 
where the trace of the matrix Σpx is tr(ΣP,x). Δ = [A23, A31, A12] is the identity matrix, where 
Aij = (ΣP,x − ΣTP,x)ij.
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	 The eigenvalue of the covariance matrix given by Eq. (23) is calculated, and the eigenvector 
qr = [q0, q1, q2, q3] is the eigenvector associated with the largest eigenvalue, and according to the 
eigenvector, the rotation matrix can be calculated as
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.	 (24)

	 The obtained R(qR) can be obtained from

	 ( ) .t x R pq u R q u= −  	 (25)

	 After the optimal rotation matrix R and translation factor t are obtained, the points in point 
set X are substituted into Eq. (22), and after the coordinate transformation, a new point set M is 
obtained. If the sum of the squares of the distances of point sets M and Np is less than a given 
threshold, the iterative calculation is ended. Otherwise, M is taken as the point set Nx, and the 
above steps are repeated until the sum of the squares of the distances from point set M is less 
than the given threshold.
	 Let the coordinate system of all 3D points in cloud 1 be O1X1Y1Z1, the coordinate system of 
all 3D points in cloud 2 be O2X2Y2Z2, and there are certain overlapping areas of point cloud sets 
cloud 1 and cloud 2. To put it simply, the basic idea of splicing cloud 1 and cloud 2 is to convert 
the 3D point coordinates in the coordinate system O2X2Y2Z2 into the coordinate system O1X1Y1Z1 
using the point cloud coordinates of the two-point cloud coincident regions. Let a point in the 
coincident region of cloud 1 and cloud 2 be (X1, Y1, Z1) in the coordinate system O2X2Y2Z2 and 
(X2, Y2, Z2) in the coordinate system O2X2Y2Z2. Therefore, the conversion relationship between 
(X2, Y2, Z2) and (X1, Y1, Z1) is as shown in Eq. (26).
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	 R is a rotation matrix, and t is a translation factor. Therefore, all the 3D point coordinates in 
the coordinate system O1X1Y1Z1 can be converted into the coordinate system O1X1Y1Z1 as long as 
the optimal rotation matrix R and the translation factor t are estimated by 2D image matching, 
thereby completing the point cloud stitching to generate a panorama.
	 In the 3D reconstruction based on the bifocal monocular image, the rotation matrix R and the 
translation vector t in the matching process are obtained when performing image matching on 
the two-dimensional bifocal image. During the image acquisition, the bifocal image is acquired 
using the zoom camera, and although the Z value is changed, the focal length ratio is similar to 
the image scaling ratio. The large focal length in the test image at t1 is reduced in accordance 
with the focal length ratio based on the image center. Similarly, the same processing is performed 
on the test image at time t2. The bifocal image taken at time t2 is obtained only by moving the 
rotation angle x, y of the monocular camera. The Z coordinate of the pixel obtained by the 3D 
reconstruction can be regarded as constant. After this processing, the R and t in the image 
matching process can be used to estimate the value of the point cloud stitching. Finally, the point 
cloud stitching is realized.

5.	 Experiment and Discussion

5.1	 Experiment settings

	 The original image captured by the zoom camera has a resolution of 4758 × 3168, and each 
image has a size of 4.68 Mb. The square size of the flat template used in the experiment was 
30 × 30 mm2, and the image resolution after compression was 1176 × 784. In this study, the 
camera focal length variation range is F18–F55, and the images at the focal lengths of F18 and 
F55 are acquired.

5.2	 Calibration

	 The unit pixel of the focal length is converted to millimeter, and the calibration results of the 
focal length are shown in Table 1. The calibration results of the main points are shown in Table 2. 
To determine the accuracy and stability of the calibration, the mean and variance are obtained, 
respectively. The results are shown in Table 3. This method is based on an image with a 
resolution of 1176 × 784. The principal point approximation can be understood as the center of 
the image. For the image dataset, the coordinates of the image are [588, 392]. As shown in 
Table 3, compared with the calibrated main point mean, at the F18 focal length, there is a 
deviation of about 10.6 in the X-axis direction and an error of about 3.93 in the Y-axis. Compared 
with the calibration result at the F55 focal length, there is a deviation of about 22 in the Y-axis 
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direction and an error of about 8.48 in the X-axis. Therefore, it can be concluded that there is an 
inherent error between the principal point and the ideal image center.
	 Figure 5 shows the calibration results and the distortion coefficient curves at the focal lengths 
of F18 and F55. The result shows that under F18, the curve tends to be stable, and under F55, the 
curve has an inevitable fluctuation. The distortion coefficients under the focal lengths of F18 
and F55 are significantly different. Table 4 gives the mathematical expectation values for the 
components of the distortion coefficients that are useful for correcting the zoom image.

5.3	 Sparse matching

	 Two sets of images are taken with focal length of F55 and F18 by using a zoom camera, and 
the initial matching result is shown in Fig. 6. The number of matching points is 168, the scale 

Table 1
Focal length calibration results.

Type Focal length 
mean (mm)

Focal length 
standard deviation (mm)

F18 18.5345 0.0390
F55 53.0607 0.0450

Table 2
Calibration results of the main point.

F18 / Pixel F55 / Pixel
[576.30557, 386.41879] [562.88867, 381.68161]
[575.71693, 387.40678] [566.34844, 375.48787]
[577.44345, 387.14419] [564.70411, 384.61876]
[577.78978, 388.92651] [567.35401, 387.00371]
[578.00621, 390.42648] [567.60030, 387.02564]
[578.33154, 390.59528] [565.93015, 383.57685]
[577.29677, 389.06431] [566.85153, 382.37069]
[579.03188, 385.98752] [566.60772, 376.67035]
[578.00546, 388.07354] [567.58473, 392.26639]
[575.61311, 386.67946] [564.05132, 384.40398]

Table 3
Statistical results of the main point.

Type Main point mean Main point
 standard deviation

F18 [577.3541, 388.0723] [1.0785, 1.5475]
F55 [565.9921, 383.5106] [1.5259, 4.6803]

Table 4
Calibration results of the distortion coefficient.
Type kc(1) kc(2) kc(3)
F18 −0.1696 0.1450 −0.0014
F55 0.0624 0.3488 −0.0028

Fig. 5.	 (Color online) Calibration results of the distortion factor. (a) Curve of the distortion coefficient under F18. 
(b) Curve of the distortion coefficient under F55.
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confidence space is [2.390, 3.268], and the confidence space is [−11.544, 17.877]. On the basis of 
the SIFT feature attribute to remove the mismatch, the error matching experiment is performed, 
and the result is shown in Fig. 7. There is no obvious error matching point in the image, and the 
number of matching points is 165.

5.4	 Dense matching

	 Image points cannot meet the requirements of subsequent 3D reconstruction point cloud data, 
so the dense matching of bifocal monocular images is essential. Both methods are used to obtain 
dense disparity maps, namely, region-matching algorithm and SIFT-based region-growing 
algorithm. The disparity map obtained using the similarity measure function SAD algorithm is 
shown in Fig. 8. The result of the region-growing algorithm is shown in Fig. 9.
	 Comparison of the results shows that, although the outline of the stone pier can be obtained 
using the SAD algorithm, the background is fuzzy and has no hierarchy. The parallax map 
obtained using the region-growing algorithm is better than that obtained using the SAD 
algorithm, and the stone pier contour is clearer and the background level is more obvious.

5.5	 Point cloud stitching

	 We apply monocular stereo vision to obtain 3D point cloud data. Figure 10 shows the point 
cloud images at t1 and t2. The result of point cloud splicing is shown in Fig. 11. The results show 
that the target object is transparent, but the background is blurred. For the binocular stereo vision 
principle and the monocular stereo vision, the ICP-based point cloud splicing is also 
implemented, and the rotation matrix R and the translation factor T are obtained in the image 
matching. The result is shown in Fig. 12. Our results are more precise than those of state-of-the-
art methods, and an efficient rough outline can be obtained, whereas the other effects are more 
ambiguous.

Fig. 6.	 (Color online) Image initial matching result.

Fig. 7.	 (Color online) Polar distance-based result.
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Fig. 8.	 (Color online) Parallax map based on SAD algorithm. (a) Disparity map at time t1. (b) Disparity map at 
time t2.

Fig. 9.	 (Color online) Disparity map based on region-growing algorithm. (a) Disparity map at time t1. (b) Disparity 
map at time t2.

Fig. 11.	 (Color online) Image based on monocular 
stereo visual point cloud mosaic results.

(a) (b)

(a) (b)

Fig. 10.	 (Color online) Point cloud images at t1 and t2. (a) Point cloud display at t1. (b) Point cloud display at time t2.

(a) (b)

 Fig. 12.	 Image based on binocular stereo visual 
point cloud mosaic results.
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	 Furthermore, to comprehensively analyze the performance of the model, we thoroughly 
evaluate our proposed method on the public dataset, as shown in Table 5. The KITTI dataset 
consists of different data collected in many real applications and is the benchmark for autonomous 
vehicles. This study uses the same sequence collected at parking scenarios to test our proposed 
method and other state-of-the-art methods. We consider the following state-of-the-art methods: 1) 
an ICP-based method was proposed for 3D point cloud stitching by introducing the OCT model; 
2) a repaid NDT-based model was proposed by using the NARF and FPFH methods.(23,24) As 
shown, although the ICP-based method achieved the highest speed compared with other 
algorithms, it had poor ability to complete the stitching. Our proposed method achieved the 
balance between speed and point cloud density because we had the most point clouds.

6.	 Conclusion and Future Work

	 In this paper, to reconstruct a 3D panorama model for autonomous vehicles, a novel point 
cloud stitching method based on monocular stereo vision is proposed. The main goal is to reduce 
costs and achieve better results than binocular-based systems. The offline calibration method is 
redesigned to analyze the internal and external parameters of the camera. According to the 
characteristics of the zoom image, the SIFT algorithm is redesigned to extract and match data 
features. Next, a dense matching method based on the bifocal monocular image is proposed, 
introducing the region-growing algorithm and the ICP algorithm to increase the matching 
density of the bifocal monocular image. The results show that the proposed method achieved an 
excellent balance in precision, speed, and completeness.
	 A high-speed visual acquisition system will be designed in future work, which will focus on 
improving the ability of 3D point cloud acquisition. This is because the vehicle and the sensor 
move at a high speed in most cases, leading to poor feature extraction.
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