S & M 2682 ## CO Sensing Properties of La-added MgFe₂O₄ Powders ## Kenji Obata and Shigenori Matsushima* Department of Creative Engineering, National Institute of Technology (NIT), Kitakyushu College 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985, Japan (Received June 7, 2021; accepted July 29, 2021) Keywords: MgFe₂O₄, La addition, malic acid complex, CO, semiconductor gas sensor La-added MgFe₂O₄ (MgFe_{2-x}La_xO₄, $0.05 \le x \le 0.20$) and pure MgFe₂O₄ powders were prepared using a malic acid complex, and their CO sensing properties were examined in dry air in the temperature range of 300–500 °C. It was observed that when the measurement atmosphere was changed from air to CO, the electrical resistance of the MgFe₂O₄ sensor decreased, whereas that of the MgFe_{2-x}La_xO₄ sensor increased, indicating that the MgFe_{2-x}La_xO₄ sensor is a p-type semiconductor. It was also observed that the addition of La significantly improved the CO sensitivity of the MgFe₂O₄ sensor. Among the MgFe_{2-x}La_xO₄ sensors examined, the MgFe_{1.85}La_{0.15}O₄ sensor exhibited the highest response to CO at 300 °C, and its value was 11.2 times higher than that of the pure MgFe₂O₄ sensor. However, the MgFe_{1.85}La_{0.15}O₄ sensor did not exhibit a rapid response or steady-state electrical resistance in a CO atmosphere at 300 °C. Conversely, at 400 °C, the MgFe_{1.90}La_{0.10}O₄ sensor exhibited a higher response to CO than the MgFe_{1.85}La_{0.15}O₄ sensor and showed a quick response and a steady-state resistance. Therefore, it can be concluded that the MgFe_{1.90}La_{0.10}O₄ sensor exhibited the best CO detection characteristics among the sensors examined. MgFe₂O₄ is an environmentally friendly oxide and has attracted attention as a suitable material for meeting some of the recently adopted sustainable development goals (SDGs).⁽¹⁾ The SDGs comprehensively deal with various environmental, social, and economic issues, with 17 goals and 169 targets that humankind should achieve. MgFe₂O₄ powders have been used in applications such as catalysts,⁽²⁾ absorbents,⁽³⁾ humidity sensors,⁽⁴⁾ fuel cells,⁽⁵⁾ drug delivery systems,⁽⁶⁾ and so forth.⁽⁷⁻⁹⁾ Additionally, MgFe₂O₄ exhibits n-type semiconductor characteristics; thus, it can be applied as a gas sensor material.⁽¹⁰⁾ Among the various types of gas sensor, semiconductor-based gas sensors exhibit very high gas sensitivity despite their simple structure. Therefore, many semiconductor gas sensors capable of detecting various gas molecules have been developed and are currently used for practical applications such as gas-leak alarms.⁽¹¹⁻¹⁶⁾ The gas sensing mechanism of a semiconductor gas sensor is based on a change in the semiconductor conductivity, which is caused by the reaction between the oxygen adsorbed by the semiconductor surface and the gas to be detected. (17–19) To improve the sensitivity of a semiconductor gas sensor, it is important to synthesize a semiconductor powder having a large specific surface area.^(20–24) The authors have focused on MgFe₂O₄ to which a heteroatom was added, and have investigated the change in the specific surface area of MgFe₂O₄ due to the addition of a heteroatom. It was found that when Si, La, and Al were added, the crystallite growth of MgFe₂O₄ was suppressed and fine MgFe₂O₄ particles were obtained.^(25–28) In particular, upon adding La, the crystallite size of MgFe₂O₄ was approximately 10 nm even after heating at 600 °C in dry air. Compared with the MgFe₂O₄ before La addition, the crystallite size of the La-added MgFe₂O₄ was an order of magnitude smaller. In this work, La-added $MgFe_2O_4$ (i.e., $MgFe_{2-x}La_xO_4$) and pure $MgFe_2O_4$ powders were prepared using a malic acid complex, and their CO sensing properties in dry air were examined. Consequently, we determined the optimum amount of La that should be added to achieve a high and quick response to CO; the details of this work are given below. MgFe₂O₄ powders were prepared using a malic acid complex. Mg(NO₃)₂•4H₂O, Fe(NO₃)₃·9H₂O, and malic acid were dissolved in deionized water in the molar ratio 1:2:3.⁽²⁵⁾ La atoms were added to MgFe₂O₄ using La(NO₃)₃·6H₂O. The amount of La atoms doped was set to 2.5 mol% (x = 0.05), 5 mol% (x = 0.10), 7.5 mol% (x = 0.15), or 10 mol% (x = 0.20) with respect to Fe. The malic acid solution was heated on a hot plate to prepare the precursor powder of MgFe₂O₄. The precursor was calcined at 800 °C for 2 h in dry air. The heating rate was 10 °C min⁻¹ for all cases. Powder X-ray diffraction (XRD) measurements were performed to analyze the crystal phase of the prepared powders. The XRD patterns were corrected using Cu–K α radiation with a sweep rate of 2 °C/min and an apparent electrical power of 30 kV × 20 mA. Powder diffraction files (PDFs) were employed to identify the crystal phases. Figure 1 shows a schematic illustration of the sensor element and measuring circuit used in this study. $MgFe_2O_4$ and $MgFe_{2-x}La_xO_4$ (x=0.05, 0.10, 0.15, and 0.20) powders were mixed with α -terpineol containing 10 wt% ethyl cellulose. The resulting paste was applied on an alumina substrate, which employed a pair of interdigitated Au electrodes, as shown in Fig. 1. The sensor element was fabricated by heating the entire assembly at 600 °C for 2 h in dry air. The CO sensing properties of the sensor element were investigated in a conventional gas-flow apparatus equipped with heating facilities in the temperature range of 300–500 °C. The CO gas concentration was varied in the range of 0–500 ppm by diluting 500 ppm of CO gas in dry air. The sample gases were allowed to flow over the sensor element at a rate of 0.1 dm³ min⁻¹. The magnitude of the change in electrical resistance of the sensor to CO was defined as Fig. 1. (Color online) Schematic illustration of the CO sensor using MgFe₂O₄-based material and measuring circuit. $\lambda = (R_{air} - R_{CO})/R_{air} \times 100$ (%), where R_{air} and R_{CO} are the electrical resistances of the sensor element in dry air and in CO gas, respectively. The measurement of the electrical resistances was based on a conventional circuit, where the sensor element was connected in series with an external resistor. Initially, the relationship between the electrical resistance and the temperature of the MgFe₂O₄ and MgFe_{2-x}La_xO₄ (x = 0.05, 0.10, 0.15, and 0.20) sensors was investigated to find a reasonable temperature range for the CO sensing properties. As shown in Fig. 2, the electrical resistance of the MgFe₂O₄ and MgFe_{2-x}La_xO₄ sensors decreased as the temperature increased. The electrical resistance of the MgFe₂O₄ sensor was very high (higher than $10^7 \Omega$ even at 450 °C in dry air). Upon adding La, the electrical resistance decreased by approximately an order of magnitude. As reported previously, by adding La, a LaFeO₃ phase was formed via the MgFe₂O₄ phase, but other phases were not observed.⁽²⁷⁾ Since LaFeO₃ exhibits a smaller electrical resistance than MgFe₂O₄, the electrical resistance of the La-added MgFe₂O₄ sensor is considered to be smaller than that in the unadded case.^(4,29,30) On the basis of the preliminary examination, the gas sensing properties of MgFe_{2-x}La_xO₄ sensors were mainly investigated in the temperature range of 300–500 °C, and those of pure MgFe₂O₄ were measured in the temperature range of 450–500 °C. Figure 3 shows the transient responses to 500 ppm CO of the MgFe_{2-x}La_xO₄ (x = 0.05, 0.10, 0.15, 0.15, 0.20) and pure MgFe₂O₄ sensors in the temperature range of 300–500 °C in dry air. Before La addition, when the atmosphere in the measurement chamber was switched from air to 500 ppm CO, the electrical resistance of the MgFe₂O₄ sensor decreased. Upon switching from 500 ppm CO to air again, the resistance of the sensor increased to its initial value. These results clearly indicate that the MgFe₂O₄ sensor exhibited a reversible response to CO. As described above, when an n-type semiconductor, such as MgFe₂O₄, is exposed to a reducing gas, such as Fig. 2. (Color online) Operating temperature dependence of the electrical resistance of the MgFe_{2-x}La_xO₄ powders in dry air. Fig. 3. (Color online) Transient responses of the $MgFe_{2-x}La_xO_4$ (x = 0.05, 0.10, 0.15, 0.20) and pure $MgFe_2O_4$ sensors to 500 ppm CO in dry air. (a) x = 0, (b) x = 0.05, (c) x = 0.10, (d) x = 0.15, and (e) x = 0.20. CO, the negatively charged oxygen adsorbed by the surface of the semiconductor is removed through its reaction with CO. During this time, electrons are transferred from the negatively charged adsorbed oxygen to the semiconductor. As a result, the electrical resistance of the sensor decreases. Conversely, in the MgFe_{2-x}La_xO₄ sensor, the electrical resistance of the sensor increased when switching from air to a 500 ppm CO atmosphere. This result is attributed to the fact that LaFeO₃ is a p-type semiconductor;^(29,30) that is, when oxygen in the gas phase is adsorbed by the LaFeO₃ surface, it collects electrons from the semiconductor's surface. As a result, the hole concentration in LaFeO₃ increases. When the adsorbed oxygen reacts with CO and is consumed, electrons move from the adsorbed oxygen to LaFeO₃, reducing the hole concentration. Also, it is found that the addition of La not only improves λ but also makes it possible to detect CO at a lower temperature compared with that before La addition. Among the MgFe_{2-x}La_xO₄ sensors examined, the MgFe_{1.85}La_{0.15}O₄ sensor exhibited the highest λ at 300 °C. However, at 300 °C, when the atmosphere in the measurement chamber was switched from air to CO, the response of the MgFe_{1.85}La_{0.15}O₄ sensor gradually changed and did not reach a steady-state value. Above 350 °C, the response of the sensor quickly reached its steady-state value in the CO atmosphere, but the value was much smaller than that at 300 °C. At 400 °C, the MgFe_{1.90}La_{0.10}O₄ sensor showed the highest sensitivity among the MgFe_{2-x}La_xO₄ sensors examined. Figure 4 shows the temperature dependence of the λ value and t_{90} response time of the MgFe_{2-x}La_xO₄ (x = 0.05, 0.10, 0.15, and 0.20) and pure MgFe₂O₄ sensors to 500 ppm CO in dry Fig. 4. (Color online) (a) λ values and (b) t_{90} response time of the MgFe_{2-x}La_xO₄ (x = 0.05, 0.10, 0.15, 0.20) and pure MgFe₂O₄ sensors in the temperature range of 300 to 500 °C. air. As mentioned above, the MgFe_{1.85}La_{0.15}O₄ sensor exhibited the highest λ at 300 °C and its value was 11.2 times higher than that of the MgFe₂O₄ sensor. However, the λ value did not reach a steady-state value and the t_{90} response time was long when the atmosphere in the measurement chamber was switched from air to CO at 300 °C. On the other hand, the MgFe_{1.90}La_{0.10}O₄ sensor showed the highest sensitivity among the MgFe_{2-x}La_xO₄ sensors examined and its t_{90} response time was also the shortest at 400 °C. Therefore, the response characteristics of the MgFe_{1.90}La_{0.10}O₄ sensor were tested in detail. Figure 5(a) shows the response curve of the MgFe_{1.90}La_{0.10}O₄ sensor when the CO concentration was changed stepwise from 0 to 500 ppm at 400 °C. In this figure, it can be observed that when the CO gas concentration increased from 0 to 500 ppm, λ of the MgFe_{1.90}La_{0.10}O₄ sensor increased linearly with the logarithm of the CO concentration, as shown in Fig. 5(b). Also, t_{90} was estimated to be below 60 s at 400 °C. The response time decreased as the measured temperature increased, but λ decreased sharply. Therefore, the optimum operating temperature of the MgFe_{1.90}La_{0.10}O₄ sensor is considered to be 400 °C. In conclusion, it was found that the La-added MgFe₂O₄ sensor exhibited higher λ value to CO in dry air than that exhibited by a pure MgFe₂O₄ sensor. Also, the MgFe_{1.90}La_{0.10}O₄ sensor exhibited a high λ value and a fast response at 400 °C. In addition, a linear relationship between the CO concentration and the change in the resistivity of the sensor was found. Fig. 5. (a) Transient response and (b) λ relative to stepwise changes in CO concentration for MgFe_{1.90}La_{0.1}O₄ powder at 400 °C in dry air. ## Acknowledgments This work was partially supported by a Grant-in-Aid for Scientific Research [Grant No. (C) 19K05067]. ## References - 1 D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M. C. Öhman, P. Shyamsundar, W. Steffen, G. Glaser, N. Kanie, and I. Noble: Nature **495** (2013) 305. - 2 G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, and S. A. Rossini: J. Chem. Soc., Faraday Trans. 92 (1996) 4687. - 3 E. Astorino, G. Busca, G. Ramis, and R. J. Willey: Catal: Lett. 23 (1994) 353. - 4 Y. Shimizu, H. Arai, and T. Seiyama: Sens. Actuators 7 (1985) 11. https://doi.org/10.1016/0250-6874(85)87002-5 - 5 H. Okawa, J. H. Lee, T. Hotta, S. Ohara, S. Takahashi, T. Shibahashi, and Y. Yamamasu: J. Power Sources 131 (2004) 251. https://doi.org/10.1016/j.jpowsour.2003.11.092 - 6 H. Aono: J. Ceram. Soc. Jpn. 122 (2014) 237. https://doi.org/10.2109/jcersj2.122.237 - 7 M. Sugimoto: J. Am. Ceram. Soc. 82 (1999) 269. - 8 A. Goldman: Modern Ferrite Technology (Van Nostrand, New York, 1990). - 9 P. Coquay, A. Peigney, E. De GRrave, R. E. Vandenberghe, and C. Laurent: J. Phys. Chem. B **106** (2002) 13199. https://doi.org/10.1021/jp026632k - 10 T. Hashishin, H. Onoda, T. Sanada, D. Fujioka, K. Kojima, and T. Naka: Sens. Mater. 28 (2016) 1229. - 11 T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani: Anal. Chem. 34 (1962) 1502. - 12 T. Seiyama, H. Furuta, F. Era, and N. Yamazoe: Denki Kagaku 40 (1972) 244. - 13 T. Seiyama: Chemical Sensor Technology, 2 (Kodansha LTD, 1989). - 14 N. Yamazoe: Sens. Actuators, B 5 (1991) 7. https://doi.org/10.1016/0925-4005(91)80213-4 - 15 N. Yamazoe, N. Miura: Sens. Actuators, B 20 (1994) 95. https://doi.org/10.1016/0925-4005(93)01183-5 - 16 N. Yamazoe: Sens. Actuators, B 108 (2005) 2. https://doi.org/10.1016/j.snb.2004.12.075 - 17 N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama: Surf. Sci. 86 (1979) 335. - 18 N. Yamazoe, Y. Kurokawa, and T. Seiyama: Sens. Actuators, B **4** (1983) 283. https://doi.org/10.1016/0250-6874(83)85034-3 - 19 S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe: Jpn. J. Appl. Phys. 27 (1988) 1798. - 20 C. Xu, J. Tamaki, N. Miura, and N. Yamazoe: Sens. Actuators, B **3** (1991) 147. https://doi.org/10.1016/0925-4005(91)80207-Z - 21 N. Yamazoe, G. Sakai, and K. Shimanoe: Catal. Surv. Asia 7 (2003) 63. - 22 A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante, and N. Yamazoe: Sens. Actuators, B **29** (2004) 312. https://doi.org/10.1016/j.snb.2004.04.061 - 23 N. Yamazoe and K. Shimanoe: J. Electchem. Soc. 155 (2008) J85. - 24 N. Yamazoe and K. Shimanoe: J. Electchem. Soc. 155 (2008) J93. - 25 A. Doi, S. Matsushima, K. Obata, R. Maeda, A. Kajima, and K. Kobayashi: J. Ceram. Soc. Jpn. 122 (2014) 645. https://doi.org/10.2109/jcersj2.122.645 - A. Doi, M. Nishibori, K. Obata, T. Suzuki, K. Shimanoe, and S. Matsushima: J. Ceram. Soc. Jpn. **124** (2016) 777. https://doi.org/10.2109/jcersj2.16042 - 27 K. Obata, A. Doi, M. Nishibori, K. Shimanoe, T. Suzuki, and S. Matsushima: J. Ceram. Soc. Jpn 126 (2018) 402. https://doi.org/10.2109/jcersj2.17270 - 28 S. Matsushima, K. Obata, A. Doi, T. Hirano, and K. Nosue: Research Reports in National Institute of Technology, Kitakyushu College **50** (2017) 53 [in Japanese]. - 29 E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, and K. Watanabe: Sens. Actuators, B **25** (1995) 661. https://doi.org/10.1016/0925-4005(95)85146-1 - 30 Y. Matsuura, S. Matsushima, M. Sakamoto, and Y. Sadaoka: J. Mater. Chem. **3** (1993) 767. https://doi.org/10.1016/S0925-4005(03)00328-9