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	 Durians are among the most important fruit products in tropical countries. The environments 
of durians therefore must support a high yield to meet demand. Sunlight, temperature, and 
rainfall are all key variables, and any adverse factors will have a negative impact on production. 
We propose an environmental prediction system for a durian farm on the basis of the concept of 
the IoT. The system uses multiple machine learning algorithms to analyze collected 
environmental data and predict the next state of the environmental variables. From numerous 
experiments, our results show that the support vector machine (SVM) gives the best forecasts for 
temperature, whereas the convolutional neural network (CNN) performs best for predicting soil 
humidity. The results of this paper can provide farmers with real-time understanding of their 
farms and early warning of potential risks. The farm yield rates can hence be increased.

1.	 Introduction

	 Global warming has resulted in extreme weather and caused serious disasters on Earth. 
Agriculture has become a direct victim of global warming. Farmers must adapt traditional 
farming techniques such as irrigation, fertilizing, and harvesting to accommodate rapid weather 
changes. Building an intelligent system that can monitor and predict the variations of the 
environment will give farmers immediate understanding of their farm’s status and the ability to 
react quickly.
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	 Durian trees are large and can grow as tall as 25 m. Maintaining an appropriate soil moisture 
level promotes the growth of the fruit. Hence, irrigation is an important technique for growing 
durians. Good control of the growth environment will result in the production of high-quality 
fruit. However, traditionally the farming process has been solely based on experience. No 
environmental variables were measured, and hence no intelligent system could be built. The aim 
of this work is, in cooperation with farmers, to monitor, record, and predict growth variables in a 
durian farm by applying the concepts of IoT and smart farming. Machine learning techniques 
were utilized to train our system to accurately predict environmental variables.
	 Numerous applications have implemented the concepts of IoT and smart farming. 
Muangprathub et al.(1) applied IoT techniques to collect data from environmental sensors and 
send reminders to farmers via a smart communication device. A remote irrigation system can be 
controlled by such smart devices. This technique, which was also applied to the cultivation of 
homegrown vegetables and limes, is one of the successful examples of smart farming. Sadowski 
and Spachos(2) used sensors to acquire soil humidity. Information on the condition of the soil 
was then sent to farmers via Zigbee, WiFi, and LoraWAN in real time. The system utilized solar 
power, giving it the advantages of energy-saving and mobility, which are important issues in 
smart farming. A technique using a wireless sensor network was applied in Ref. 3 to analyze 
energy efficiency. Then, Torres et al.(4) proposed a multilevel data fusion technique using a 
Kalman filter, decision trees (DTs), linear regression, and a support vector machine (SVM) to 
implement the tasks required by smart farming. The function of the evapotranspiration (the 
combined process of water surface evaporation, soil moisture evaporation, and plant 
transpiration) model generated using the SVM is very similar to that of the evapotranspiration 
reference model. Data visualization and cluster analysis are important tools to find effective 
technologies, as discussed in Ref. 5.
	 In Ref. 6, the importance of wireless networks to the smart farming IoT architecture was 
highlighted. For large farms, stability, speed, and efficiency are essential for building a wireless 
infrastructure. Hu et al.(7) used nonorthogonal multiple access to increase the stability and 
efficiency of wireless communication. Malik et al.(8) applied the concept of fog computing for 
sustainable intelligent agriculture, which demonstrated good performance in simulation results. 
Intelligent agriculture has many applications. In Ref. 9, image recognition was applied to crop 
detection; the system utilized deep learning and was validated satisfactorily. Sa et al.(10) used a 
micro aerial vehicle to take aerial photographs of a farm. Deep learning was then applied to 
detect weeds to minimize damage to surrounding plants. The above studies achieved impressive 
results and have become well known. However, the applications of intelligent agriculture are 
mainly on a case-by-case basis.
	 This paper focuses on smart farming in a durian farm, which has seldom been discussed in 
previous works. Our proposed system collects real-time environmental data from various on-site 
sensors to build up a database. Then, a data model is created and analyzed using deep learning 
techniques. The deep network is trained using the records and then makes predictions according 
to the trends of the environmental data.
	 Several models based on machine learning have been developed for prediction. The 
multilayer perceptron (MLP),(11–13)  convolutional neural network (CNN),(14–16) long short-term 
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memory (LSTM),(17–20) SVM,(21–24) and random forest (RF)(25–28) are among the most popular 
ones. We analyzed and compared these techniques to find the best fitting model for air 
temperature and soil moisture forecasts. The outcome can be used to facilitate the farming of 
durians.
	 The contributions of this paper are as follows. 1) The construction of a smart durian farm 
based on the IoT concept; 2) the debugging, cleaning, and organizing of environmental data to 
create an efficient database; 3) the synthesis of various farming models for machine learning; 
and 4) the analysis and comparison of experimental results to find the best prediction model for 
a durian farm.
	 This paper is organized as follows. Section 2 introduces the architecture of the proposed 
system. Section 3 describes the training model and the parameter setups. Experimental results of 
air temperature and soil moisture forecasts are compared in Sect. 4, and related curves are drawn 
for analysis. Finally, Sect. 5 concludes the paper and discusses future work.

2.	 System Architecture

	 Figure 1 shows the proposed real-time monitoring system installed in a durian farm in 
Thailand with an area of 1800 m2 allocated to durian trees. We installed one set of sensors in the 
middle of the farm to prevent them from interfering with the farmer’s work. The installation 
steps were as follows: (1) selection of environmental sensors, (2) installation of sensors for soil 
monitoring, (3) construction of wireless network system, (4) connection of electric power 
source, and (5) development of an app for mobile devices. The environmental sensors measure 
air temperature and soil moisture. Raspberry Pi 3 was employed as the microcontroller for data 
collection and transmission. The mobile app makes it easy for farmers to be aware of their farm’s 
status.
	 Figure 2 demonstrates the results provided by the app. Farmers must enter their username 
and password to read the real-time data collected in the farm. With the aid of this app, farmers 
have immediate knowledge of the state of their farm, enabling them to control the farm 
environment appropriately.
	 The system architecture is shown in Fig. 3. The environmental data including air temperature 
and soil moisture are set as variables and acquired by appropriate sensors. The data are 

Fig. 1.	 (Color online) System installed in the smart durian farm.
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preprocessed for cleaning and verification. Machine learning algorithms are then applied to train 
the preprocessed data to predict the variables. A best fit model can be found by analyzing the 
minimal errors. The data from the previous three days are utilized to predict data for the fourth 
day in both the training and testing phases. Finally, the forecasting results are presented to the 
end user so that appropriate measures can be followed.

3.	 Proposed Model

	 In this paper, we utilize some of the most popular machine learning algorithms, MLP, CNN, 
LSTM, SVM, and RF, for analyzing and forecasting the condition of a durian farm.
	 Figure 4 shows the system flowchart of the machine learning processes. The data collected 
from the durian farm are preprocessed for training. For each month, the first 20 days of data are 
used for training and the rest are used for testing. To reduce the interference of noise, an 
averaging filter is applied. The data input to the training network are normalized first. The 
training is then performed until the system converges. After training is completed, the testing 
data are applied to evaluate the forecasting performance.
	 MLP, CNN, and LSTM belong to neural network structures, as shown in Fig. 5. A typical 
neural network has an input layer, an output layer, and more than one hidden layer whenever 
required. Every neuron is fully connected to the neurons of its neighboring layer. The adopted 
MLP, which is shown in Fig. 6, consists of four dense layers, one dropout layer, and another 
dense layer for the output. The neurons in the dense layer are fully connected. The number of 
units in the first layer is 540, which is the average number of data points acquired over 3 days. 

Fig. 2.	 (Color online) Environmental monitoring 
mobile app developed for durian farm.

Fig. 3.	 (Color online) Architecture of the durian 
farm forecasting system.
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The number of units for the subsequent dense layers is decreased by 90 at each level to 450, 360, 
and 270 units. The utilized activation function is the rectified linear unit (ReLU). To avoid 
overfitting, a dropout layer with a dropout rate of 0.25 is inserted. The output layer has 180 units 
and uses the sigmoid activation function. The ReLU and sigmoid activation functions are shown 
in Fig. 7. They play an important role in preventing the gradient from vanishing during the 
backpropagation process and are expressed as

Fig. 4.	 (Color online) System f lowchart of the 
training process.

Fig. 6.	 (Color online) Structure of MLP.Fig. 5.	 (Color online) Structure of basic neural 
network.

Fig. 7.	 (Color online) Activation functions. (a) ReLU and (b) sigmoid.

(a) (b)
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Fig. 8.	 (Color online) Structure of the CNN. Fig. 9.	 (Color online) Structure of the LSTM.

	 ReLU: ( ) max( ,0)f x x= ,	 (1)

	 1Sigmoid: ( )
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+
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	 The CNN model applied in this work is different from the CNN model used in image 
processing, which operates in two dimensions. Our data are time-related and only one-
dimensional. The full system consists of four layers of a one-dimensional CNN (Conv1D), one 
flattening layer, one dropout layer, and a dense layer for the output, as shown in Fig. 8. For the 
Conv1D layers, the kernel size is set to 9 and the activation function is ReLU. (After CNN 
extracts the features, a flattening layer is applied to convert the data into one dimension.) The 
data are then processed by a dropout layer to avoid overfitting, where the dropout rate is again 
0.25. The output dense layer has 180 processing units that use the sigmoid activation function.
	 LSTM is a type of recurrent neural network (RNN) and is most suitable for analyzing time 
series data. LSTM has the capability of capturing long-term dependences of time series, giving 
it better performance when making data forecasts. The RNN structure used in this study, which 
is shown in Fig. 9, consists of three layers of LSTM, i.e., a flattening layer, a dropout layer, and a 
dense output layer. Its functionality is similar to that of CNN as described in Fig. 8.
	 In addition to CNN and LSTM, other neural network structures such as SVM and RF were 
studied as well. SVM is a supervised learning algorithm, for which we choose the radial basis 
function (RBF) as the basis function. All the parameters are listed in Table 1. RF is another 
popular machine learning algorithm using the concept of DTs and has the advantage of 
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simplicity. The parameters of RF used in this work are listed in Table 2. Every machine learning 
algorithm has advantages and disadvantages. We compare the results of applying the different 
algorithms to the durian farm data in the next section.

4.	 Experimental Results

	 To fully investigate the effectiveness of training and testing data from a durian farm, we 
evaluate various statistics and plots in this section. We also discuss and compare the results and 
performance of each algorithm.

4.1	 Data description

	 The data of air temperature and soil moisture were acquired in a Thailand durian farm from 
July 2018 to March 2019. An averaging filter was first applied to the data to alleviate the effects 
of noise and interference. The method of averaging is defined as

	
1

Average filter = 1 
n

i
i

x
n =
∑ ,	 (3)

where n is the number of data points and xi is the data reading. This operation smooths the 
results. Figure 10 shows the data over a period of 10 days after averaging. The top plot shows the 
air temperature and the bottom plot shows the soil moisture. The periodicity in the temperature 
variation can be observed clearly. The moisture data show higher variation than the temperature 
data, which may have been caused by periods of rainfall and sunshine.
	 A normalization process was then applied to the averaged data to limit the data to between 0 
and 1. Data segments were set on a monthly basis. For each month, data from the first 20 days 
were used for training to build the system model. The data from the remaining 10 days were 

Table 1
Parameters of SVM.
Parameter Value or method Parameter Value or method
Kernel RBF C 100
Degree 3 ε 0.1
γ Auto Shrinking True
coef0 0.0 Cache size 200
Tolerance 1.0 Maximum iterations Default value

Table 2
Parameters of RF.
Parameter Value or method Parameter Value or method
Number of estimators 100 Minimum samples leaf 1
Criterion MSE Minimum weighted fraction leaf 0.0
Maximum depth 2 Minimum impurity decrease 0.0
Minimum samples split 2 Cost-complexity pruning alpha 0.0
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used for testing and validation. The data were screened for outliers to only keep those that well 
represent the characteristics of the durian farm.

4.2	 Experimental results

	 As reported in this section, various machine learning algorithms were adopted for the 
training data. These trained models were then applied to the testing data for verification. The 
prediction errors were compared to evaluate the performance and find the best fit model. The 
evaluation was performed using the method of mean absolute error (MAE), which is expressed 
as

	
1 1

1 1| | | |
n n

i i i
i i

M xAE y e
n n= =

−= =∑ ∑ ,	 (4)

where n is the number of data, xi is the predicted value, yi is the actual value, and |ei| is the 
absolute error. The evaluation results of predicting air temperature and soil moisture are listed in 
Tables 3 and 4, respectively.
	 In Table 3, the rows represent different learning algorithms, the columns represent the testing 
trial number sorted by month, and the last column contains the average values. From the average 
values, we can see that SVM has the best performance, followed by CNN, LSTM, RF, and MLP. 
Observing the difference between the highest and lowest MAE, it is apparent that LSTM has the 
highest variation, which means that its performance is not very consistent. RF has the lowest 
variation, but its average MAE is not the lowest despite its stable performance. After discarding 
the worst result for each algorithm, the average MAEs for MLP, CNN, LSTM, SVM, and RF are 
0.262, 0.227, 0.221, 0.204, and 0.288, respectively. Again, SVM shows the best performance and 
consistency and CNN has the worst performance. Therefore, SVM is recommended for 
predicting air temperature in the durian farm.

Fig. 10.	 (Color online) Data obtained after averaging.
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	 For soil moisture prediction, shown in Table 4, CNN yields the best results, followed by 
LSTM, RF, MLP, and SVM. We can see that the moisture data have more variation and less 
consistency than the temperature data. The structure of CNN has fewer constraints on time-
related data than the other algorithms, hence it gives better results than the other algorithms. We 
thus recommend using CNN for predicting soil moisture data in the durian farm.
	 To clearly demonstrate the effectiveness of the predictions, Fig. 11 shows plots of predicted 
temperature for six different time segments obtained using SVM and Fig. 12 shows plots of 
predicted soil moisture obtained using CNN. Blue lines are real data, and red lines are the 
predicted data. The plots for the other algorithms are given in the Appendix.
	 Figures 13 and 14 respectively show the results of temperature and moisture prediction using 
various algorithms, where blue lines represent real data and the results for other algorithms are 

Table 3
Forecasting results of air temperature in terms of MAE.

#1 #2 #3 #4 #5 #6 #7 #8 #9 Avg.
MLP 0.31 0.22 0.23 0.21 0.34 0.19 0.27 0.23 0.36 0.327
CNN 0.24 0.21 0.17 0.19 0.34 0.18 0.24 0.14 0.33 0.297
LSTM 0.29 0.18 0.17 0.19 0.33 0.19 0.20 0.13 0.31 0.303
SVM 0.24 0.16 0.15 0.18 0.28 0.21 0.19 0.16 0.27 0.283
RF 0.34 0.28 0.21 0.24 0.35 0.25 0.32 0.21 0.39 0.325

Table 4
Forecasting results of soil moisture in terms of MAE.

#1 #2 #3 #4 #5 #6 #7 #8 #9 Avg.
MLP 9.63 8.44 4.81 6.12 7.64 2.20 2.46 1.99 3.67 5.743
CNN 9.38 7.62 3.08 2.75 5.00 1.91 2.10 1.71 3.43 4.890
LSTM 9.71 7.70 2.81 3.27 5.02 1.97 2.21 1.76 3.92 5.087
SVM 10.92 8.24 5.98 6.34 6.21 1.99 1.91 1.51 6.17 6.553
RF 9.82 8.22 4.81 4.33 4.61 2.61 2.18 2.00 3.76 5.302

Fig. 11.	 (Color online) Air temperature forecasting results obtained using  SVM.
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Fig. 14.	 (Color online) Soil moisture predicted by different algorithms.

Fig. 12.	 (Color online) Soil moisture forecasting results obtained using CNN.

Fig. 13.	 (Color online) Air temperature predicted by different algorithms.
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shown in different colors; the closer the line is to the blue line, the better the performance. The 
orders of performance are consistent with those in Tables 3 and 4. We also find that the 
prediction for soil moisture has higher errors and variations than those for temperature. This 
situation can be observed from the red curves corresponding to the MLP algorithm. The line 
belong to CNN is smoothest and closest to the blue one. LSTM shows some noise and deviates 
from the real data. SVM demonstrates good performance for temperature data but higher 
deviation for moisture data. RF appears to produce staircase-like curves, which may be due to 
the characteristics of DTs. Hence, the values at the peaks cannot be well approximated.

5.	 Conclusions

	 This paper presented machine learning algorithms for monitoring and forecasting the 
environmental variables of a durian farm to help maintain stable farming conditions. The 
variables are predicted from historical data so that farmers can take advance prevention 
measures. Several neural network approaches were compared and the experimental results show 
that SVM has the best performance for air temperature data while CNN yields the highest 
accuracy for soil moisture data. The results of this paper can be applied to other crops to promote 
intelligent agriculture techniques.
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Fig. A1.	 (Color online) Air temperature forecasting result obtained using MLP.

Fig. A2.	 (Color online) Air temperature forecasting result obtained using CNN.

Fig. A3.	 (Color online) Air temperature forecasting result obtained using LSTM.
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Fig. A4.	 (Color online) Air temperature forecasting result obtained using RF.

Fig. A5.	 (Color online) Soil moisture forecasting result obtained using MLP.

Fig. A6.	 (Color online) Soil moisture forecasting result obtained using LSTM.
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Fig. A7.	 (Color online) Soil moisture forecasting result obtained using SVM.

Fig. A8.	 (Color online) Soil moisture forecasting result obtained using RF.


