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	 To understand the terrestrial ecosystem and track whether it is influenced by any external 
factors, an accurate assessment of vegetation phenology at the regional to global scale is needed. 
Because it has become crucial to monitor changes in green cover due to the impacts of climate 
change, phenology research is a crucial part of documenting life cycle patterns and the effects of 
climate change on ecosystems. However, ground observations can be a tedious, if not impossible, 
way of studying such broad-scale trends. Vegetation indices derived from satellite images 
provide the efficacy to study such trends over a large area and time span. Cloud computing 
platforms such as Google Earth Engine (GEE) facilitate the storage, manipulation, and 
accessibility of such large datasets. The satellite-remote-sensing-based normalized difference 
vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
was used to study the phenological shift in Chitwan National Park of Nepal, which is home to 
unique biological resources, in response to two major climatic drivers: temperature and 
precipitation. The four transition stages of greenness onset, maturity onset, senescence onset, 
and growing period were determined by fitting spatially averaged NDVI values using the 
phenofit package of R. It was found that the greenness and maturity onsets have been delayed 
over the years while the growing period has seen fluctuations due to variations in senescence 
onset. Precipitation was correlated positively with NDVI while temperature was negatively 
correlated with NDVI. Moreover, the rainfall one month earlier better explained the NDVI 
variability than the amount of rainfall in the same month because of the stronger correlation. 
Overall, this study indicates that climate variability is affecting the phenology of vegetation, and 
the results can help in performing suitable checks and assessments of the ecosystem in Nepal.

1.	 Introduction

	 The study of plant and animal life cycles in relation to the seasons is known as phenology. It 
is the study of the occurrence of life cycle events at the population level, with a particular 
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emphasis on how they have been altered in response to climate change. Long-term records are 
often used, and activities such as greening, flowering, hatching, and leaf fall are all included.(1) 
Remote sensing (RS) phenology can provide information on large-scale phenological trends that 
would be extremely arduous to detect from the ground. Satellites allow regular monitoring of the 
global land surface, and the thus obtained remotely sensed information can be used in assessing 
phenological data to appraise critical patterns such as crop conditions, drought severity, and 
wildfire risk, as well as tracking invasive species, infectious diseases, and insect pests.(2) As the 
present world is greatly affected by the threats of global warming, climate change, and 
deforestation, it has become crucial to monitor environmental changes, and the study of 
phenology is a primary tool for keeping records of life cycle trends and the impacts of climate 
change on ecosystems. There has been evidence that over the last few decades, the timing of 
seasonal activities of many plant and animal species has altered and that these shifts are 
influenced by climate change.(3–5) However, in Nepal, this critical issue of phenological change 
has not been considered as an important research topic, despite being a country that has much of 
its land covered by forest and hosts critically endangered species. The studies previously 
performed in Nepal focused on studying either growing trends using ground data or normalized 
difference vegetation index (NDVI) patterns to describe climatic fluctuations. Our study 
provides a novel approach in integrating information derived from a remote sensor to study plant 
phenological patterns and analyzing the changes while incorporating weather data. The study is 
also focused on an area that is relatively little affected by human intervention, enabling the 
changes in nature to be attributed to natural phenomena.
	 Plant phenology has been proposed as an indicator of climatic differences and global changes 
by the European Environmental Agency and the Intergovernmental Panel on Climate Change 
(IPCC).(6) Field-based ecological studies have demonstrated that vegetation phenology tends to 
follow relatively well-defined temporal patterns. Some vegetation types exhibit multiple modes 
of growth and senescence within a single annual cycle. Therefore, RS-based methods need to be 
sufficiently flexible to allow for this type of variability.(7) Thus, phenological events are sensitive 
to environmental parameters such as temperature, rainfall, and pressure.(8)

	 Schmid et al.(9) used Google Earth Engine (GEE) in conjunction with Landsat 5 and 8 images 
to study the development of NDVI in three study areas across Germany, the Biosphere Reserve 
Schwäbische Alb, National Park Hainich, and Biosphere Reserve Schorfheide-Chorin, from 
1984 to 2016 and found that the decline in NDVI was linked to large- and small-scale changes in 
land use and associated with declining biodiversity. Workie and Debella(10) used time-series 
NDVI generated from 8-day Moderate Resolution Imaging Spectroradiometer (MODIS) data. 
The aggregated NDVI was used along with temperature and rainfall data for 12 ecoregions in 
Ethiopia in the GEE environment, which was followed by Fourier smoothing to eliminate 
various noises and fitting with sigmoid vegetation growth functions to identify phenophases.(10) 
The study, carried out over 14 years, found that the start of the growing period became earlier, 
and the growing period increased in length for most of the ecoregions in Ethiopia. Potter(11) 
analyzed the change in Landsat NDVI between 1985 and 2017 within the Santa Rosa Mountains 
Wilderness in the southern deserts of California at four elevation zones between 500 and 2500 
m, which showed that green cover dropped notably in the below-average precipitation years of 
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2002, 2007, 2014, 2015, and 2016, whereas it increased sharply in the above-average precipitation 
years of 1998, 2005, 2010, and 2017. This was supported by the work of Kelly and Goulden.(12) 
Pan et al.(13) studied the impacts of climate change on the wetland vegetation of Dunhuang 
Yangguan National Nature Reserve in northwest China by comparison and analysis of satellite-
derived NDVI and climate change factors (temperature, precipitation, and snow depth). The 
findings revealed that, over the last 30 years, global warming has accelerated while precipitation 
has remained relatively unchanged. For the arid region, snowmelt contributed more to the 
increase in wetland vegetation in the region than the increase in precipitation and temperature. 
Using MODIS nadir bidirectional reflectance distribution function (BRDF)-adjusted reflectance 
(NBAR), Zhang et al.(14) showed that urban areas had the earliest green-up and the latest 
dormancy, while croplands had the opposite pattern. Wolf et al.(15) highlighted the importance of 
other abiotic variables e.g., light infiltration and nutrient concentrations, which highly influenced 
the diversity of plants in an area. Many plant species bloomed earlier in response to decreased 
biodiversity, and the species with the largest ranges during peak flowering times had the most 
robust responses to changing biodiversity.
	 RS-based phenological studies involve two approaches: extracting trends in vegetation 
indices (VIs) or computing the phenophase time, which can then be applied to identify the 
patterns over space and time.(10) Smoothing is involved in extracting the trend in order to 
overcome noises, which can be done using i) statistical, ii) curve fitting, and iii) data 
transformation techniques.(16) Data can be smoothed by different methods such as the harmonic 
Fourier transform,(17) piecewise logistic function,(14) and polynomial curve fitting.(18) Jones et 
al.(19) analyzed global phenology cycles over a six-year record using satellite passive microwave 
RS-based vegetation optical depth retrievals derived from daily time-series brightness 
temperature measurements. Satellite-derived VIs and phenological metrics have been found to 
be comparable with the results of near-surface RS and thus enable large-scale comparison and 
analysis.(20) The derived indices have also been found to be in agreement with in situ data.(21)

	 The phenology of Nepal and its drivers have been rarely studied. Although the country hosts 
a wide diversity of vegetation including rare species, the phenology of the vegetation has hardly 
been discussed and researched. Chitwan National Park (CNP) is known throughout the world for 
its rare flora and fauna as well as its outstanding natural features. The park aims to protect many 
endangered wildlife species, including the Royal Bengal tiger and the world’s second-largest 
viable population of greater one-horned rhinoceros. Multiple forms of woodland, wetland, and 
grassland habitats can be found in the park’s core region and buffer zone, resulting in rich habitat 
diversity. The park protects the delicate Churiya Hill ecosystem in the south and the lowland 
ecosystems of the inner Terai valley. The World Heritage Convention declared CNP as a World 
Heritage Site in 1984, acknowledging its unique biological resources (UNESCO/IUCN-2003).(22) 
Additionally, understanding how vegetation responds to climate change will help improve the 
management of natural resources and the development of efficient climate change adaptation 
strategies. 
	 Working on large sets of satellite images in edge devices is labor-intensive, tedious, and often 
requires a lot of storage. Using several computers to manage a huge volume of Earth observation 
data over large spatial and temporal scales is one possibility, but it is also an expensive 
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investment for a few times of usage. A cloud-based public computing platform will be the ideal 
solution for all of the problems mentioned above. This will save time, money, and resources by 
addressing the problems of infrastructure, expense, and computing time all at once. GEE is a 
cloud-based computing platform with a large volume of satellite data. This approach gives users 
free and easy access to data and makes it possible to analyze large amounts of data in seconds.(23)

	 This study is a novel work in Nepal, which tracks the long-term phenological shift in CNP, a 
protected region hosting diverse ecosystems, by coupling remotely sensed datasets. In this paper, 
we present results obtained by deriving NDVI from satellite RS-based observations and 
analyzing how the peak and changes in NDVI have altered in response to changing climatic 
parameters (temperature and precipitation) over the years.

2.	 Materials and Methods

2.1	 Study area

	 With a total area of 952.63 sq. km, CNP is located between 27° 34’ and 27° 68’ N and 83° 87’ 
and 84° 74’ E, while the buffer zone extends further from 27° 28’ to 27° 70’ N and 83° 83’ to 84° 
77’ E as shown in Fig. 1. It lies in the subtropical inner Terai lowlands of south-central Nepal and 
spans portions of four districts, namely, Chitwan, Nawalparasi, Parsa, and Makawanpur.(22,24) 
Established in 1973, it was granted the status of a World Heritage Site in 1984 for its natural and 
cultural heritage. The park consists of diverse ecosystems including the Churia Hill forests, ox-
bow lakes, and the floodplains of the Rapti, Reu, and Narayani rivers.(25) The central location of 
CNP makes it a perfect case study for this novel work and validates the satellite RS-based 
phenology and the understanding of the changes in NDVI over time.

Fig. 1.	 (Color online) Location map of the study area, i.e., CNP in Nepal.
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2.2	 Data

2.2.1	 Satellite data

	 The satellite data for this study were acquired from the MODIS aboard the National 
Aeronautics and Space Administration (NASA) Terra and Aqua satellites. The satellites have a 
sun-synchronous orbit and a temporal resolution of 1–2 days. The NBAR product provides 
500-m-resolution reflectance data of MODIS bands 1–7. These are adjusted using a bidirectional 
reflectance distribution function to model the values as if they were collected from a nadir view. 
MODIS NBAR data have the characteristics that atmospheric contamination is reduced and 
cloud cover is explicitly masked.(8) The seven spectral bands are explicitly designed for land 
surface monitoring. Table 1 shows the details of the MODIS NBAR bands along with potential 
applications.

2.2.2	 Climate data

	 Amongst the climate parameters, precipitation and temperature were used to analyze how the 
phenological trend has changed under the influence of these parameters. Time-series rainfall 
data were generated using Climate Hazards Group Infrared Precipitation with Station (CHIRPS) 
data for the study period. CHIRPS data incorporate 0.05° resolution satellite imagery with in 
situ station data to create gridded rainfall time series for trend analysis and seasonal drought 
monitoring.(26) Land surface temperatures were derived from the MOD11A1 Version 6 product, 
which provides daily per-pixel land surface temperature and emissivity with 1 km spatial 
resolution in a 1200 by 1200 km grid.(27) The pixel-valued temperature was reduced spatially to 
generate a mean for the study area. Figure 2 shows the monthly average temperature and Fig. 3 
shows the average and total precipitation for the CNP region.

2.3	 Vegetation index

	 NDVI is a graphical indicator of vegetation greenness, which is mathematically obtained as 
the ratio of the spectral reflectance difference between the near-infrared (NIR) and red bands to 

Table 1
Bands, ranges, and names of MODIS NBAR data.
Nadir 
reflectance band Band name Wavelength 

range (nm) Potential applications1

1 Red 620–670 Absolute land cover transformation, vegetation chlorophyll
2 NIR1 841–876 Cloud amount, vegetation land cover transformation
3 Blue 459–479 Soil/vegetation differences
4 Green 545–565 Green vegetation
5 NIR2 1230–1250 Leaf/canopy differences
6 SWIR1 1628–1652 Snow/cloud differences
7 SWIR2 2105–2155 Cloud and land properties
1Source: https://modis-land.gsfc.nasa.gov/
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the sum of the reflectances of the NIR and red bands as follows: 

	 NDVI = NIR Red

NIR Red

R R
R R

−
+

,	 (1)

where RNIR and RRed are the spectral reflectances in the NIR and red bands, respectively.(13)

Fig. 2.	 (Color online) Monthly average temperature throughout each study year.

Fig. 3.	 (Color online) Climatic parameters in CNP: (a) monthly average precipitation and (b) total precipitation for 
each of the study years.

(a) (b)
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	 NDVI is a common index used in RS studies of vegetation. NIR bands are more sensitive 
than other bands to vegetation because chlorophyll reflects more NIR and green light than light 
with other wavelengths and absorbs more red and blue light.(2) Because all the datasets used are 
available from the GEE repository, the GEE platform was used for all the calculations and 
extraction of the data.

2.4	 Phenology

	 The study of cyclic biological events is known as phenology. It is the study of the occurrence 
of life cycle events at the population level, with a particular emphasis on how they react to 
climate change. Long-term records are often used, and activities such as flowering, leaf fall, 
hatching, and annual migration are often included.(1) In today’s environment, where deforestation 
is a major problem, climate change is a huge concern, and wildfires have become more frequent, 
it is critical to monitor the remaining green cover.(28) The wide and frequent coverage of satellite 
RS-based NDVI makes it the best indicator for studying long-term phenology. The four key 
transition dates in the annual cycle of vegetation phenology can be inferred from RS.(8,14)

1.	 Green-up: Indicated by the increase in NDVI, the period at which photosynthetic activity 
commences.

2.	 Maturity: Indicated by the peak in NDVI, the period at which the green leaf area is maximum.
3.	 Senescence: Indicated by the decline in NDVI, the period at which photosynthetic activity 

and green coverage begin to subside rapidly. 
4.	 Dormancy: Indicated by the trough in NDVI, the date at which corporeal function nearly 

ceases.

3.	 Results
	
3.1	 Phenological trends over the years

	 The phenophases were identified for six distinct periods: 2001–2002, 2005–2006, 2009–2010, 
2013–2014, 2016–2017, and 2019–2020. Figure 4 shows the phenological fit to the spatial mean 
NDVI for CNP. The extremely low values were due to the presence of clouds during the 
monsoon season. While the trends were very distinctive for the periods 2001–2002, 2009–2010, 
2013–2014, and 2016–2017, they were slightly different for the periods 2005–2006 and 2019–
2020. The fluctuations in climatic parameters may have resulted in fluctuations in the 
phenomena. Table 2 shows the vital periods in the plant cycle including the greenness onset, 
maturity onset, and senescence onset. The table shows how the phenological stages changed over 
time. Both of the earlier phenophases, the greenness onset and maturity onset, have been delayed 
while the growing period has fluctuated over the years. Compared with the year 2001, the 
greenness onset was delayed by 19 days, and maturity onset was delayed by 24 days in 2019. 
Moreover, the growing period has significantly shortened from 196 to 180 days. Among the 
years, the greenness onset showed the least fluctuation as it usually started toward the end of 
April. Although the maturity onset was in June for all periods, senescence was significantly 
altered, resulting in the varied growing period.
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	 Table 3 shows the peak NDVI date and the date of peaking for different periods. The peak 
value of NDVI has fluctuated very little, but the dates for the peaking ranged from early July to 
mid-September. The date was much later for the period 2019–2020, and from Fig. 4, we can 
observe that it also lacked a distinctive phenological pattern, unlike other years.

3.2	 Effect on NDVI due to climatic parameters

	 Table 4 shows the correlation between NDVI and the climatic parameters. Precipitation 
shows a positive correlation with NDVI while temperature shows a negative correlation. This 

Fig. 4.	 (Color online) Trends in phenological changes for (a) 2001–2002, (b) 2005–2006, (c) 2009–2010, (d) 2013–
2014, (e) 2016–2017, and (f) 2019–2020.

Table 2
Comparison of different phenological stages for different years.
Years 2001–2002 2005–2006 2009–2010 2013–2014 2016–2017 2019–2020
Greenness onset April 02 April 21 April 17 April 21 April 25 April 21
Maturity onset June 04 June 14 June 24 June 19 June 16 June 28
Senescence onset Dec 17 Dec 17 Dec 11 Dec 10 Nov 27 Dec 25

(a) (b)

(c) (d)

(e) (f)
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Table 3
Peak NDVI and the respective dates.
Years Peak NDVI Peak NDVI date
2001–2002 1.24 27 July
2005–2006 1.226 31 July
2009–2010 1.235 31 July
2013–2014 1.271 4 July
2016–2017 1.236 18 July
2019–2020 1.243 14 September

Table 4
Correlation between NDVI and climatic parameters.

Years Monthly average NDVI vs 
Monthly average precipitation

Monthly average NDVI vs 
Monthly average temperature

1Monthly average NDVI vs 
Monthly average precipitation

2001–2002 0.529 −0.352 0.508
2005–2006 0.556 −0.286 0.724
2009–2010 0.419 −0.518 0.502
2013–2014 0.233 −0.434 0.571
2016–2017 0.414 −0.427 0.642
2019–2020 0.344 −0.285 0.604
1The precipitation period is a month earlier than the NDVI period.

indicates that as the vegetation starts greening up, the temperature decreases and vice versa. 
Moreover, the average precipitation one month earlier seemed to affect NDVI more than that of 
the same month because it showed a stronger correlation. Early precipitation would therefore 
result in the early greening of plants, and extended precipitation would result in an extended 
growing period. The temperature was weakly correlated with NDVI, so the effect of temperature 
on NDVI is not as strong as the effect of precipitation, which shows a stronger correlation.

4.	 Discussion and Conclusion

	 The findings presented in this paper were obtained by deriving NDVI from satellite RS 
observations and examining how it has changed over time in response to the changing climatic 
factors of temperature and precipitation. We used a cloud-based computing platform (GEE) to 
acquire data for CNP and applied fitting algorithms using the phenofit package of R. The spatial 
mean NDVI of the park was derived to determine phenological cycles for six different periods. 
The cycle was distinctive for the periods 2001–2002, 2009–2010, 2013–2014, and 2016–2017, in 
contrast to the years 2005–2006 and 2019–2020. The changes in NDVI were assessed using the 
correlation with the drivers of climate change, i.e., temperature and precipitation. Precipitation 
of the same month showed moderate correlation with NDVI (average 0.416), while the 
precipitation of the previous month had a correlation coefficient of 0.60, signifying a stronger 
correlation and thus more effect on NDVI. The temperature was weakly correlated with NDVI, 
implying that vegetation is less affected by temperature. Greenness onset showed the least 
variation over the years, usually starting toward the end of April. While maturation usually 
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began in June, senescence was greatly altered, resulting in a varying growth period. Despite 
Landsat providing better spatial resolution, MODIS data were used due to the better temporal 
resolution. Note that the ground phenology of plants is not studied by the officials of CNP, which 
makes it impossible to compare any satellite-derived data with ground truth data. We are hopeful 
that the insights from this paper will help conservationists become more aware of the need to 
track these changes. 
	 We compared our work with the research conducted by Zhang et al.,(7) who monitored the 
vegetation phenology in the northeastern United States. Greenness onset was similar, occurring 
around April in both works, while maturity was reached at different periods after greenness 
onset. The differences and delays could be explained by differences in the elevation, types of 
forest cover, and climatic conditions of the study areas. Workie and Debella(10) studied the 
phenological shift behavior of Ethiopia’s different ecoregions for the years 2002 and 2015. For 
most of Ethiopia’s ecoregions, the growing period started earlier and the growing period was 
longer in 2015. The work was performed for two specific years, making it impossible to conclude 
whether the changes were continuous or just an annual fluctuation, in contrast to our work, 
which showed the trends over the years. However, the findings of the climatic influence on 
phenological shifts were very similar, with both works indicating a strong positive correlation 
between rainfall and NDVI, and thus the change in phenophases was confirmed to be influenced 
by the shift in the rainfall trend to earlier in the year Because the temperature was weakly 
correlated with NDVI, Workie and Debella also explained the behavior by implying that 
greening up in vegetation is less affected by temperature drops, given the importance of 
photosynthetic behavior to plants. This may imply that the minimum temperature is sufficient to 
catalyze compound responses, while the light energy related to the temperature is sufficient to 
meet the energy prerequisites for photosynthetic action. Rather than actuating NDVI, any 
increase in temperature promotes evapotranspiration, making vegetation lose its leaf dampness 
content and gradually become light green or wither. Pan et al.(13) presented the impacts of 
climate change on the wetland vegetation of Dunhuang Yangguan National Nature Reserve 
(YNNR) in northwest China by comparing two approaches: trend and correlation analyses and 
time series analysis. The wetland vegetated area (WVA) and the spatial mean NDVI (mNDVI) of 
the entire wetland vegetation exhibited an increasing trend. Trend and correlation analyses of the 
annual maximum values were found to be more useful than time series analysis. The study 
showed that in dry areas, the most significant requirement of wetland vegetation is water 
accessibility in soils, which is identified with surface water confinement and the release of 
groundwater. Thus, their work illustrates the limitation of our work, in which we only focused 
on the major climatic parameters affecting the phenological cycle. Thus, to determine if the cycle 
has been altered over the long term, other parameters should also be taken into consideration.
	 We encountered some problems while conducting the study. The first major problem was 
obtaining cloud-free data for the monsoon season. Because the data volume was large, it was not 
possible to use individual datasets. The phenofit package of R provided a solution to the problem 
by fitting a phenological curve, which ignores extreme values. The curve not only helped to 
remove these outliers but also assisted in defining a clear transition cycle. Another problem was 
obtaining climatic data over a longer period. Because station data were not available to the 
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public, it was necessary to obtain the climatic data from the accessible remotely sensed CHIRPS 
data and land surface emissivity. CNP comprises different ecosystems including wetlands and 
grasslands and thus has different phenological cycles. Because this study considered the spatial 
mean NDVI of the whole park, our results do not represent those of an individual ecosystem. 
Thus, it is recommended that the discrete ecosystems are evaluated, as well as how their 
phenomena have changed under the influence of climatic parameters. No comparisons were 
made in this work between ground observations and the RS-based results because of the coarse 
resolution of MODIS data and the field-based methods being species-specific. Also, different 
species of plants and their numbers present in an area will affect the cycle. Thus, considering 
biotic components such as biodiversity would yield additional findings. The phenological 
patterns are characterized by the species of plants, which in turn are influenced by altitude, 
weather phenomena, and natural availability. Incorporating altitude variations will yield some 
valuable insights into which belts of Nepal (plains, hills, or mountains) are most severely 
affected by the changes in climatic parameters, resulting in a difference in growth patterns.
	 Finally, our research has implications for ecological studies because the findings provide a 
wealth of opportunities to understand ecosystems when coupled with species distributions and 
will help show how CNP has changed over the years. Our approach is also capable of identifying 
phenologic behavior characterized by multiple growth and senescence periods within a single 
year. By taking this as an initial step, in further research on CNP, the area of study can be 
expanded to the hilly and mountainous regions in the east and west. Installation of suitably 
equipped weather stations and high-resolution data capture will be very effective in 
understanding specific vegetation responses to the changing climate in the Himalayan country 
of Nepal.
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