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	 We performed a systematic analysis of the dynamic behavior of the cutting process of a 
machine tool with an unbalanced force induced by the mass eccentricity of the workpiece, a 
nonlinear cutting force, and a nonlinear suspension effect. Phase diagrams, power spectra, 
bifurcation diagrams, and a Poincaré section were applied to identify the dynamic motion. The 
simulation results show that nonperiodic dynamic responses are very prevalent in the cutting 
process of the machine tool. A stability analysis and modeling with multiple-degree-of-freedom 
coupling systems were also performed in this study. The results provide an understanding of the 
operating conditions under which undesirable dynamic motion takes place in this type of system 
and therefore serve as a useful reference for engineers designing and controlling such systems 
for precision manufacturing. Moreover, the results of this research will help clarify the dynamic 
characteristics of cutting machine tools and provide relevant and useful parameters to build or 
design better sensors.

1.	 Introduction

	 The complicated interaction mechanisms among the tool, workpiece, and chips in a cutting 
process make them difficult to analyze and to provide a comprehensive solution. Many 
significant and groundbreaking investigations on machine cutting have been reported. The 
dynamics of cutting has been analyzed on the basis of the model of Hastings et al.(1) in many 
studies. Grabec (2–4) presented a series of papers discussing the chaotic dynamic responses 
occurring in cutting machines and also found some mechanisms involving chaos in the cutting 
process. Hanna and Tobias(5,6) analyzed a machine tool structure in terms of the nonlinear 
stiffness effect, hysteretic damping effect, and cutting force (the variation of the chip thickness 
was modeled as a cubic polynomial) and found many significant types of nonperiodic motion. 
Wu and Liu(7) modeled a cutting system using the friction and empirical ploughing forces and 
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performed experiments to verify their simulation results. Johnson and Moon(8) presented a one-
degree-of-freedom model to simulate the cutting behaviors in the machining process and 
analyzed both the prechatter and chatter vibrations. Nosyreva and Molinari(9) also simulated a 
cutting model considering the velocity-dependent friction and ploughing force, and the 
experimental results were in accordance with the simulation results. Jemielniak and Widota(10) 
carried out a numerical simulation of nonlinear chatter vibration in turning machines. Other 
noteworthy studies(11–13) also found widespread nonperiodic motion or the so-called chaotic 
motion when simulating cutting machines. Therefore, it is known that the cutting process is a 
highly nonlinear phenomenon and that linearization or simplification when analyzing the 
process may result in large simulation errors. 
	 In any automated process, sensors and their signal interpretation play an important role. A 
variety of sensors are used in systems for monitoring cutting tool conditions, such as power, 
vibration, and torque sensors.(14–16) Signal processing and analysis are important for enhancing 
the production capacity and processing quality. Most systems in nature are nonlinear systems, 
but humans linearize them to simplify their analysis. Linearization has less impact when the 
accuracy requirement is low, but it will produce considerable errors and misjudgments in 
precision production or in machines with extremely high accuracy requirements. Therefore, we 
need to clarify the nonlinear dynamic characteristics of cutting machine tools and provide 
relevant and useful parameters to build or design better sensors.
	 In the previous studies, some assumptions were made or linearization was performed to 
simplify the simulation model and reduce the simulation time. This may lead to large errors 
compared with the real situation. In this study, we consider the nonlinear dynamic responses in 
the cutting process of a machine tool with a nonlinear suspension effect and also take the 
nonlinear cutting force into consideration. The nonlinear dynamic equations are solved using the 
fourth-order Runge–Kutta and differential transform methods. The dynamic trajectories, power 
spectrum, Poincaré maps, and bifurcation diagrams are applied to analyze the dynamic motion.

2.	 Mathematical Modeling

	 Figure 1 shows the model of metal cutting under a nonlinear suspension. K1x and K2x are the 
first and second equivalent stiffness coefficients in the vertical direction; K1y and K2y are the 
first and second equivalent stiffness coefficients in the horizontal direction; and Cx and Cy are 
the damping coefficients of the supported structure in the vertical and horizontal directions, 
respectively. Moreover, Fx and Fy are the components of the external excited cutting forces; Fy is 
the cutting force dependence on the cutting speed and chip thickness; and Fx is the thrust force, 
which is related to the main cutting force through a related frictional coefficient μ (Fx = μFy). 
The nonlinear parts of the dynamic equations include a nonlinear suspension term (hard spring 
case) and a nonlinear cutting and thrust force term.

	 3 2
1 2 0 1[ ( 1) 1] ( )rMx Cx K x K x q h C V H h+ + + = − +  	 (1)
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 3 2 2 2
1 2 2 3 0 1( 1) 1][ 1) 1 ( )sgn( ) [ ( 1) 1] ( )[ ( ]f x f rMy Cy K y K y C v C h H F V q h C V H h+ + + = − + − + − +  	 (2)

	 Let X = x /h0; Y = y/h0; τ = ωt; 
d d
dt d

ω
τ

= ; and（′）denotes d/dτ.

	 3
2 2

2 1 xFcX X X X
s ps s

α′′ ′+ + + = ,	 (3)

	 3
2 2

2 1 yFcY Y Y Y
s ps s

α′′ ′+ + + = ,	 (4)

where 
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= , 22
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α = , Fy = μFx, 2
0 1[ 1 1] ( )( )x rF q h C V H h= − + , 

2 2
2 3[ )[ ( 1) 1)] ( 1) 1)] ( )sgn(f x fC v C h H F Vµ = − + − + ,(2,3) Vr = V0 − X′, Vf = V0 − RY′, h = h0 − Y, 

and 2
0 4[ ( 1) 1]rR R C V= − + . H(Fx) is approximated as (1/2)[1 + tanh(Fx/ε)], H(h) is approximated 

as (1/2)[1 + tanh(h/ε)], and sgn(Vf) is approximated as tanh(vf /ε). The nonlinear dynamic 
equations presented in Eqs. (3) and (4) for the cutting system with nonlinear suspension effects 
and a strongly nonlinear cutting force were solved using the fourth-order Runge–Kutta method.
	 The differential transform method is an effective tool for solving differential equations owing 
to its rapid convergence and minimal computational error. Furthermore, compared with the 
integral transformation approach, the differential transform method has an additional advantage 
in that it can be used to solve nonlinear differential equations. This method has been widely used 
for solving nonlinear dynamic problems. Thus, we used this method to carry out the numerical 
analysis in this study (see Appendix A). The numerical data were then used to generate the 
dynamic trajectories, power spectrum, Poincaré maps, and bifurcation diagrams.
	 Equations (1) and (2) are of the second order and contain a cubic nonlinearity. Taking the 
differential transform of Eqs. (1) and (2) with respect to τ, they become

Fig. 1.	 Model of metal cutting under nonlinear suspension.
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 1 22 0 0
( 1)( 2) 1( 2) ( 1) ( ) ( ) ( ) ( )k l x

l m
Fk k kM X k C X k K X k K X k l X l m X m

H pH = =

′+ + +
+ + + + + − − =∑ ∑ ,	 (5)

 1 22 0 0
( 1)( 2) 1( 2) ( 1) ( ) ( ) ( ) ( )k l y

l m

Fk k kM Y k C Y k K Y k K Y k l Y l m Y m
H pH = =

′+ + +
+ + + + + − − =∑ ∑ .	 (6)

	 These equations can be rewritten as

2

1 2 0 0
1 ( 1) ( ) ( ) ( ) ( )( 2)

( 1)( 2)
k lx
l m

F kH C X k K X k K X k l X l m X mX k
p HM k k = =

′ + − + − − − −+ =  + +  
∑ ∑ ,	(7)

2

1 2 0 0
1( 2) .( 1) ( ) ( ) ( ) ( )

( 1)( 2)
k ly
l m

FH kY k C Y k K Y k K Y k l Y l m Y m
M k k p H = =

′ ++ = − + − − − − + +  
∑ ∑ 	 (8)

3.	 Stability Analysis of the Cutting System
	
	 The stability of the cutting system is analyzed using the characteristic equation of the system. 
If the chip thickness is evenly distributed, there will be periodic vibration and the cutting force F 
will remain unchanged. In addition, the deflection will remain fixed during the cutting process. 
When an impact occurs or the cutter passes through a notch, there will be a slight disturbance, 
and the output will become smaller and approach zero. This balance is called “stable” or 
“asymptotically stable”. The stability is analyzed through the characteristic equation of the 
system. Let us take Eq. (1) into consideration, with F being the amplitude of the cutting force. 
Equation (1) is then replaced with 

	 3
1 2 cos .Mx Cx K x K x F tω+ + + = 

	 (9)

	 We assume that Eq. (9) is under homogeneous initial conditions with (0) 0x =  and (0) 0x = . 
We perform the stability analysis by solving this differential equation with a fixed ω value and a 
small F value.

4.	 Numerical Results and Discussion

	 In the present study, the nonlinear dynamics of the cutting system shown in Fig. 1 are 
analyzed using the Poincaré maps, bifurcation diagrams, Lyapunov exponent, and fractal 
dimension. The dynamic trajectories of the cutting system provide a basic indication as to 
whether the behavior of the system is periodic or nonperiodic. However, they are unable to 
identify the onset of chaotic motion. Accordingly, some other analytical method is required. 
	 The dynamics of the cutting system is analyzed using the Poincaré maps derived from the 
Poincaré section of the system. A Poincaré section is a hypersurface in the state space that is 
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transverse to the flow of the system of interest. In non-autonomous systems, points on the 
Poincaré section represent the return points of a time series corresponding to a constant interval 
T, where T is the driving period of the excitation force. The projection of the Poincaré section on 
the y(nT) plane is referred to as the Poincaré map of the dynamic system. When the system 
performs quasi-periodic motion, the return points in the Poincaré map form a closed curve. For 
chaotic motion, the return points form a fractal structure comprising many irregularly 
distributed points. Finally, for nT-periodic motion, the return points have the form of n discrete 
points. The spectrum components of the motion performed by the cutting system are analyzed 
by using the fast Fourier transform to derive the power spectrum of the displacement of the 
dimensionless dynamic transmission error. In the analysis, the frequency axis of the power 
spectrum plot is normalized using the rotational speed ω. 
	 In the present analysis, bifurcation diagrams are generated using two different control 
parameters: the dimensionless damping coefficient c and the dimensionless rotational speed 
ratio s. In each case, the bifurcation control parameter is varied with a constant step and the state 
variables at the end of one integration step are taken as the initial values for the next step. The 
corresponding variations of the y(nT) coordinates of the return points in the Poincaré map are 
then plotted to form the bifurcation diagram. The Lyapunov exponent of a dynamic system 
characterizes the rate of separation of infinitesimally close trajectories and provides a useful test 
for the presence of chaos. In a chaotic system, the points of nearby trajectories starting initially 
within a sphere of radius ε0 form an approximately ellipsoidal distribution with semi-axes of 
length εj(t) after time t. The Lyapunov exponents of a dynamic system are defined by

( )
0

1 lim log j
j t

t
t

ε
λ

ε→∞
= , where λj denotes the rate of divergence of the nearby trajectories. The 

exponents of a system are usually ordered into a Lyapunov spectrum, i.e., 1 2 mλ λ λ> >…> . A 
positive value of the maximum Lyapunov exponent (λ1) is generally taken as an indication of 
chaotic motion. 
	 The attractors in the embedding space were constructed using a total of 60000 data points 
taken from the time series corresponding to the displacement of the system. By trial and error, it 
was found that the optimum delay time when constructing the time series corresponds to one-
third of a revolution of the system. The reconstructed attractors were placed in embedding 
spaces with dimensions of n = 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, yielding 10 different log c(r) 
vs log r plots for each attractor. The number of data points chosen for embedding (i.e., 60000) 
reflects a compromise between the computation time and the accuracy of the results. The 
number of points used to estimate the intrinsic dimension of the attracting set in the current 
analysis is less than 42M, where M is the greatest integer value less than the fractal dimension of 
the attracting set.
	 In this study, we compare the numerical results of applying the fourth-order Runge–Kutta 
and differential transform methods, which are found to be almost the same. The Runge–Kutta 
method is a well-developed numerical method and the differential transform method is 
demonstrated to be as effective as the Runge–Kutta method in this case. The time step in the 
iterative solution procedure was assigned a value of π/300 and the termination criterion was 
specified as an error tolerance of less than 0.0001. 
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	 In practical cutting systems, the dimensionless damping coefficient c is commonly used as a 
control parameter. Accordingly, the dynamic behavior of the current cutting system was 
examined using c as a bifurcation control parameter. Figure 2 presents bifurcation diagrams for 
the cutting system displacement plotted against c. The bifurcation diagrams show that the 
geometric center of the cutting system performs nonsynchronous motion in the horizontal and 
vertical directions. Strongly nonperiodic or even chaotic motion occurs at lower c and the 
nonperiodic motion becomes periodic at higher c. The vibration amplitude in the horizontal 
direction also decreased at higher c values (c > 0.0575). The above simulation result seems to be 

Fig. 2.	 (Color online) Bifurcation diagrams for geometric center of cutting system using dimensionless damping 
ratio c as the bifurcation parameter. 



Sensors and Materials, Vol. 33, No. 11 (2021)	 3923

Fig. 3.	 (Color online) Simulation results obtained for cutting system in the horizontal direction with c = 0.015. (a) 
Phase diagram. (b) Power spectrum. (c) Poincaré map. (d) Lyapunov exponent. (e) Fractal dimension.

(a) (b) (c)

(d) (e)

consistent with real phenomena. The dynamic responses of the cutting system in the vertical 
direction are markedly different from those in the horizontal direction. As c increases, the 
dynamic motion still shows a nonperiodic response, even for c > 0.0575. Thus, we found very 
interesting nonsynchronous motion in the vertical and horizontal directions, especially at higher 
damping coefficients. Although the cutting system or another vibrating machine system is 
known to become steady at a higher damping coefficient, actually the suspension of this system 
is highly nonlinear. Thus, we have found synchronous behaviors in the vertical and horizontal 
directions of the cutting system, which may provide interesting or valuable information for 
analyzing or controlling this type of system. 
	 Figures 3–6 show the phase diagrams, power spectra, Poincaré map, Lyapunov exponent, and 
fractal dimension of the cutting system for chaotic motion at c = 0.015 (Figs. 3 and 4) and 0.025 
(Figs. 5 and 6) in the vertical and horizontal directions. These simulation results show that the 
dynamic responses are synchronous in the vertical and horizontal directions. Also, the phase 
diagrams show disordered dynamic behaviors, the power spectra reveal numerous excitation 
frequencies, the return points in the Poincaré maps form geometric fractal structures, the 
maximum Lyapunov exponent is positive, and the fractal dimensions are found to be non-
integer. Thus, we may conclude that the dynamic motion is chaotic for the above control 
parameters, with the simulation results obtained by the different methods corresponding to one 
another. The dimensionless rotation speed s is also an important control parameter for analyzing 
the dynamic responses of rotating machines.
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Fig. 5.	 (Color online) Simulation results obtained for cutting system in the horizontal direction with c = 0.025. (a) 
Phase diagram. (b) Power spectrum. (c) Poincaré map. (d) Lyapunov exponent. (e) Fractal dimension.

(a) (b) (c)

(d) (e)

Fig. 4.	 (Color online) Simulation results obtained for cutting system in the vertical direction with c = 0.015. (a) 
Phase diagram. (b) Power spectrum. (c) Poincaré map. (d) Lyapunov exponent. (e) Fractal dimension. 

(a) (b) (c)

(d) (e)
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	 Figure 7 shows bifurcation diagrams for the geometric center of the cutting system without a 
nonlinear suspension using the dimensionless damping ratio c as a bifurcation parameter. 
Compared with the cases with a nonlinear suspension, the simulation results show that the 
dynamic motion behaves differently in the horizontal direction, particularly at low c values, 
although similar behavior is observed in the vertical direction. This may be due to the increased 
absorbance of energy of the system and the suppression of vibration at higher damping ratios, 
even for highly nonlinear systems. Figure 8 presents bifurcation diagrams for the dimensionless 
displacement of the cutting system in the vertical and horizontal directions using the 
dimensionless rotating speed s as a bifurcation parameter. It can be observed that the cutting 
system exhibits periodic motion at low rotation speeds and nonperiodic or even chaotic motion at 
high rotation speeds. We also found that the motion is synchronous in the vertical and horizontal 
directions. 
	 The results of a stability analysis of the cutting system in the vertical direction are shown in 
Fig. 9. We found that the system behaves stably in the red region and unstably in the blue region. 
A sudden and unexpected jump was also found at ω = 2.71. For ω > 2.71, the corresponding 
cutting force F on the boundary curve becomes large. This jump frequency may be the high 
resonance frequency of this system. We conclude that the cutting force should be greater with 
increasing frequency of the system.

Fig. 6.	 (Color online) Simulation results obtained for cutting system in the vertical direction with c = 0.025. (a) 
Phase diagram. (b) Power spectrum. (c) Poincaré map. (d) Lyapunov exponent. (e) Fractal dimension.

(a) (b) (c)

(d) (e)
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Fig. 9.	 (Color online) Results of stability analysis of cutting system in x-direction.

Fig. 7.	 Bifurcation diagrams for geometric center of cutting system without nonlinear suspension using 
dimensionless damping ratio c as bifurcation parameter. 

Fig. 8.	 Bifurcation diagrams for geometric center of cutting system using dimensionless rotation speed s as 
bifurcation parameter.
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5.	 Conclusions

	 We showed that chaotic behavior exists in a cutting system with a nonlinear suspension and 
nonlinear cutting force. Some interesting and useful simulation results were also found. In 
particular, we found that the dynamic responses behave nonsynchronously in the vertical and 
horizontal directions with increasing dimensionless damping coefficient. It is well known that if 
the behavior of a nonlinear dynamic system is chaotic, the resulting broad band vibration with a 
comparatively large vibrational amplitude will enhance the probability of fatigue failure. To 
increase the working life of a cutting system or enhance its performance, it is important not to 
operate the whole system under chaotic motion. Therefore, this study may help provide a 
theoretical understanding of nonlinear systems of cutting machine tools and avoid undesired 
dynamic responses in machining. Furthermore, the results of this research will help clarify the 
dynamic characteristics of cutting machine tools and provide relevant and useful parameters for 
building or designing better sensors.
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Appendix A

	 As mentioned in the main text, the differential transform method is mainly applied to solve 
initial value problems. Let x(t) be an analytic function in domain D. The Taylor series expansion 
function of x(t) is of the form

	
0

( ) ( )( ) ,
!

i

k k
i

k
k t t

t t d x tx t t D
k dt

∞

= =

 −
= ∀ ⊂  

 
∑ .	 (A1)

When ti = 0, Eq. (A1) is called the Maclaurin series of x(t), which has the form

	
0 0

( )( ) ,
!

k k

k
k t

t d x tx t t D
k dt

∞

= =

 
= ∀ ⊂  

 
∑ .	 (A2)

The differential or Taylor transform of x(t) is defined as

	 [ ]
0

( )( ) ( ) ,
!

k k

k
t

H d x tX k T x t k K
k dt =

 
= = ∀ ∈  

 
,	 (A3)

where K is the set of non-negative integers referred to as domain K, X(k) is the transformed 
function or the spectrum of x(t) in domain K, k is the transformation parameter, and H is the time 
interval of the differential transformation. Applying the Taylor expansion function, the inverse 
transformation of the differential transform is 

	
0( ) ( )

k

k
tx t X k
H

∞
=
 =  
 

∑ .	 (A4)

In a real application, the function x(t) can be represented by a finite-term Taylor series with a 
remainder as follows:

	 10( ) ( ) ( )
k

n
nk

tx t X k R t
H +=

 = + 
 

∑ .	 (A5)

Following the definition of Eq. (A3), the differential transform of the derivative of x(t) is 

	
( ) 1 ( 1).dx t kT X k

dt H
+  = +  

	 (A6)
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This equation reveals that the kth term of the differential transformation of dx(t)/dt can be 
represented by the (k+1)th term of the differential transformation of the original function x(t). 
	 The differential transformation of the product of two functions x(t) and y(t) is

	 [ ] 0( ) ( ) ( ) ( ) ( ) ( )k
lT x t y t X k Y k X l Y k l
=

= ⊗ = −∑ . 	 (A7)

	 This equation reveals that the kth term of the differential transformation of the product of x(t) 
and y(t) can be represented by the first k terms of the differential transformations of the original 
functions x(t) and y(t). Using the differential transform method, a differential equation can be 
transformed into an algebraic equation in domain K. The differential transform X(k) of the 
unknown function x(t) can be achieved by solving the iterative equation. After that, a solution of 
the unknown function x(t) in the form of a power series can be obtained by the inverse differential 
transform of X(k), as shown in Eqs. (A4) and (A5). To speed up the convergence and improve the 
accuracy of the calculation, the entire domain D is usually split into sub-intervals. First, the 
differential transform method is applied to solve the original equation in the first sub-interval. 
After that, the final values of the first sub-interval are adopted as the initial values of the second 
interval and the original equation is solved under these new initial values. The same procedure is 
repeated in all the later sub-intervals until the solution of the entire domain D is obtained.


