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	 Terahertz spectral imaging is widely used in the failure analysis of ICs. However, owing to 
the limitations of current imaging hardware, the quality of terahertz images is not high enough 
to show the internal structure of chips and analyze chip failure. Thus, to improve the detection 
capability of chip failure in different packaging materials, we propose a terahertz imaging model 
based on scale-invariant feature transform (SIFT) feature extraction with the K-means clustering 
of images from multiple sources and the wavelet fusion method. The model creates a terahertz 
image data set from images drawn from multiple sources in the time and frequency domains. 
Then, the images drawn from the multiple sources are compared to select a representative image, 
and the SIFT features of the image are also extracted. The high-quality images obtained from 
multiple sources are searched and selected by K-means clustering. The images are reconstructed 
by wavelet image fusion. Experimental results on terahertz imaging in various packaging 
materials show that the model can quickly and effectively create high-quality images in the 
internal structure of ICs, which is essential for the nondestructive analysis of chip failures.

1.	 Introduction

	 IC chips are widely used in MEMS to achieve high performance in image-based detection, 
pressure sensing, acceleration, and so forth. However, the manufacturing of IC chips involves 
tens of operations and various devices, and this complex process may generate defects inside or 
on the surfaces of the chips. Thus, failure analysis is important in the production and use of 
semiconductor chips. Electrical function tests and the microscopic examination of fragments are 
commonly used methods in chip failure analysis.(1,2) Recently, the development of terahertz 
technology has contributed to improving the technique of nondestructive analysis. Many studies 
have used terahertz spectral images for the failure analysis of IC chips.(3–5) However, the optical 
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resolution of terahertz time-domain spectroscopy (THz-TDS) is not high enough to provide the 
terahertz image quality required for nondestructive tests. Therefore, improved image resolution, 
a key indicator in tests, is required for the accurate identification of the internal faults of IC 
chips.(6)

	 To develop a new method of terahertz imaging, we obtain terahertz images of IC chips in 
different packaging materials by various imaging methods and analyze them quantitatively to 
select the images with high resolution and quality. To acquire high-quality images for non-
destructive analysis, a large number of terahertz images must be processed effectively and 
efficiently. Therefore, we propose a matching method for terahertz spectral images based on the 
combination of scale-invariant feature transform (SIFT)(7) feature extraction and K-means 
clustering.(8) The model processes terahertz images efficiently and generates high-quality 
images, enabling the internal faults of IC chips appearing at multiple angles and in different 
channels to be revealed. The clustering of similar images ensures the efficiency and effectiveness 
of fusion processing from the image source. Experimental results show that the new method 
provides terahertz images of high quality that are appropriate for nondestructive analysis and 
has better performance than the previous method of processing single terahertz images.(9-11)

2.	 Methods

2.1	 System model

	 To select high-quality terahertz images, IC chips are scanned by a spectral imaging system. 
Then, the spectral data of each scanned pixel of an image in the time domain are obtained and 
processed by the windowed Fourier transform, which transforms the spectrum to the frequency 
domain. The data of the images are included in an image data set for nondestructive tests of IC 
chips. Next, to select a representative image from the data set that can best reflect the failure 
characteristics, the images are evaluated according to the terahertz spectrum and various 
evaluation parameters. Then, the SIFT feature–K-means extraction method is used to identify a 
group of similar images from the image data set. Finally, wavelet fusion is used to reconstruct an 
image of high quality. The overall process of the model is shown in Fig. 1.

2.2	 Multimodal imaging

	 Terahertz spectral imaging is different from light intensity information imaging as it obtains 
the time-domain waveform and the electric field intensity of each pixel of a sample image in the 
entire terahertz band. The Fourier transform on the terahertz time-domain spectrum allows the 
frequency-domain spectrum of each scanned pixel to be acquired. Through the selection of 
different physical parameters in the time and frequency domains, a two-dimensional (2D) image 
of different spectral resolution is obtained. Terahertz spectral imaging is mainly divided into 
time- and frequency-domain methods.
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2.2.1	 Time-domain information

	 The time-domain method mainly uses the physical parameters of a time-domain waveform. 
Amplitude and phase are two commonly used parameters. The amplitude of an image, which 
reflects the absorption strength of the image in the terahertz wave, refers to the peak and average 
value of the field strength in the time-domain waveform. The phase indicates the time 
corresponding to the minimum or maximum peak of the amplitude. Figure 2 shows the 
amplitude of terahertz imaging, in which a is the maximum peak revealing the characteristics of  
image refraction and scattering, and A is the time when the minimum peak occurs.

2.2.2	 Frequency-domain information

	 Frequency-domain information is obtained from the physical parameters of frequency-
domain spectra. These are amplitude, phase, energy, and absorption coefficient at a specific 
frequency and reflect the differences in the physical characteristics of images at different 
frequencies. Figure 3 shows the change in power spectral density with the frequency, in which B 
indicates the power spectral density.
	 Since the terahertz energy spectrum reflects the absorption of the terahertz wave by the 
image, we use the energy parameter of the energy density spectrum. The energy parameter is 
calculated by using Parseval’s theorem,

Fig. 1.	 Flowchart of selecting the representative image of an IC chip by terahertz imaging based on SIFT feature–
K-means clustering.



4006	 Sensors and Materials, Vol. 33, No. 11 (2021)

	
2

2 ( ) ( )E s t dt S f df
∞ ∞

−∞ −∞
= =∫ ∫ ,	 (1)

where E is the energy and |S( f )|2 is the spectral energy density.

2.2.3	 Image selection with multi-evaluation index

	 The different needs of nondestructive testing require the recognition of various targets in 
terahertz images to evaluate image quality. Four indexes are used in this study to evaluate the 
quality of a digital image:(12,13) standard deviation (SD), information entropy (H), average 
gradient (AG), and spatial frequency (SF). The cutoff frequency of the terahertz transmission 
spectrum of packaging materials is also used for evaluation. Since H and AG are essential 
information on the internal defects of an image, they are used as crucial indicators with large 
weights. The cutoff frequency of the terahertz transmission spectrum of packaging materials is 
an indicator of noise. The noise is the most important indicator when reconstructing the internal 
image from the frequency information of an IC chip. After the evaluation indicators of all 
terahertz images in the image data set are compared and calculated, an image is extracted from 
the image library to obtain a high-quality terahertz image. The weights of the indexes decrease 
in the order of terahertz spectrum cutoff frequency > AG > H > SF > SD.

2.3	 Image matching based on SIFT feature–K-means clustering

	 The SIFT is an operator based on invariant technology used to describe a local feature of an 
image. The SIFT algorithm finds extreme points in spaces of different scales and calculates the 
size, direction, and scale of the extreme points. The extreme points of information can describe 
the characteristics of the image. The SIFT features are extracted and matched in the process of 
comparing the extreme points. A common matching method is to calculate the Euclidean 

Fig. 2.	 (Color online) Information of terahertz 
imaging in the time domain.

Fig. 3.	 (Color online) Information of terahertz 
imaging in the frequency domain.
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distance between SIFT features in two images.(14,15) Since each image generates thousands of 
SIFT feature points, the matching requires a large amount of calculation, especially when the 
amount of image data is large.
	 To improve the efficiency of extraction and matching of the images, the traditional matching 
method using SIFT feature points is improved in this study. First, the SIFT feature points of all 
images are extracted, and the K-means clustering algorithm is used to cluster these points to 
generate a new vector with a K-dimensional feature for each image. Then, the vectors of different 
images are matched to each other by a similarity measurement calculation of the two images. 
Here, the K-means clustering algorithm is utilized to perform statistical analysis on SIFT feature 
points. In this method, only two K-dimensional feature vectors of two images are measured, 
which greatly reduces the computation. This process can also decrease the complexity and 
improve the performance of the algorithm. The procedure of the K-means clustering algorithm 
for SIFT feature points is as follows.
(1)	The SIFT feature points of all images are extracted from the image data set, and a subset X = 

(X1d, X2d, …, Xnd) of the SIFT feature points is selected, where X1d (i = 1, 2, …, n) represents 
the ith feature point. Its dimension d is 128, that is, each feature point contains a 
128-dimensional vector.

(2)	K appropriate clusters and K SIFT points are randomly selected from the subset as initial 
cluster centers (centroids). 

(3)	The distance from each SIFT point to the cluster center is calculated as the Euclidean 
distance. Using the Euclidean distance, each SIFT point in the subset is assigned to the 
nearest centroid in turn to form K clusters.

(4)	The cluster centers are iteratively updated by considering the Euclidean distances and using 
the sum of the squared error (SSE) as the objective function of clustering,

	 2
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	 where k is the number of cluster centers, ci is the number of centers, and dist is the Euclidean 
distance.

	 The Kth centroid Ck is calculated to minimize the SSE as follows.
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Here, mk is the number of feature points in the Kth centroid.
	 The average of all the feature points in each cluster is calculated using Eq. (2). The average 
is used to generate the corresponding average vector as the cluster center for calculating the 
objective function, and the K-means test is run twice to produce two different clusters. Then, 
the average vector with the smallest objective function is regarded as the new centroid.

(5)	The convergence of the algorithm is determined to establish whether the clustering center 
and the objective function have changed. If they are unchanged, the clustering results of K 
clusters are output. If they have changed, the procedure returns to the third step. The common 
convergence condition of the algorithm is as follows: when the cluster does not change, that 
is, no new feature points are redistributed, the maximum number of iterations is reached. 
Here, the cluster no longer changes according to the algorithm convergence condition.

(6)	The cosine similarity is used to distinguish various images. First, the cosine value of the 
angle between the feature vectors of two images is calculated. All image feature vectors in 
the image data set are sorted according to the cosine values, and eight images with the largest 
cosine values are selected as the best matched images.

2.4	 Image fusion based on wavelet transform

	 The wavelet transform is typically used in frequency-domain image fusion.(16) The wavelet 
transform can deal with the low-frequency information of the image and high-frequency 
information in horizontal, vertical, and diagonal directions at the same time. By choosing a 
suitable wavelet basis and a suitable number of decomposition layers, the noise is reduced and 
edges are sharpened. Image fusion based on the wavelet transform transforms the fusion 
coefficients of multiple images inversely to obtain the final fused image. To enhance image 
fusion efficiency, the data of multiple images to be fused in different frequency bands are 
processed by a wavelet-transform-based fusion method. A flowchart of the image fusion 
algorithm based on the wavelet transform is shown in Fig. 4.

3.	 Results and Discussion

3.1	 Terahertz spectral scan in time domain

	 Three failed IC chips, in which faults were generated by applying a high voltage, were 
selected in the experiment: a ceramic SDIP40 packaged chip (Sample 1), an epoxy resin SDIP40 
packaged chip (Sample 2), and an epoxy resin LCC21 packaged chip (Sample 3). During the 
experiment, a terahertz wave transmitter and a terahertz receiver were fixed on a horizontal 
optical rail. The samples were placed on a 2D scanning platform that moved in the x-and y-axis 
directions from the focus position of the terahertz pulse. The terahertz spectra of the samples 
were acquired by 2D scanning as shown in Fig. 5.
	 Figure 5(b) shows that the terahertz pulse effectively penetrates the three different samples. 
The time-domain spectra of the samples appear behind the reference spectrum on the timeline, 
and the amplitude of the electric field intensity after transmission is attenuated to some extent. 
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Although Sample 3 (green line) shows a larger attenuation than Samples 1 (red line) and 2 (blue 
line), their peak values are almost the same. The transmission spectrum in the frequency domain 
[Fig. 5(b)] reveals that the effective frequency bandwidth for terahertz imaging is about 0.2‒2.0 
THz (gray area in the figure). The cutoff frequencies of Samples 1–3 are about 0.7, 1.0, and 1.0 
THz, respectively. The difference in the frequency originates from the different packaging 
materials.

Fig. 4.	 Flowchart of image fusion algorithm based on wavelet transform.

Fig. 5.	 (Color online) (a) Transmission spectra of samples in the time domain; (b) transmission spectra of samples 
in the frequency domain.

(a) (b)
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3.2	 Multimodal imaging  and image quality evaluation

	 A multimodal imaging process is used to generate a spectral image data set of samples. Six 
images are drawn from the time domain to obtain information on the electric field intensity. 
Each image contains the maximum peak amplitude, minimum peak amplitude, peak-to-peak 
amplitude, average amplitude, maximum peak phase of the amplitude, and minimum peak phase 
of the amplitude. The number of images used in energy information imaging with a frequency 
interval of 3.125 GHz is 1120 in the frequency domain. The total number of terahertz images of 
each sample is 1126. Multiple evaluation indicators are used to evaluate the quality of images in 
the data set. Figures 6–8 show the quantitative experimental results of different imaging modes.
	 The experimental results show that the terahertz image quality is poor for the indirect 
imaging of the peak electric field intensity and phase information in the time domain. The effect 
of the energy-based imaging at different frequencies in the frequency domain is better than that 
of imaging using time-domain information (Figs. 6–8). 
	 A comparison of the imaging effects of terahertz transmission energy at different frequencies 
reveals that (1) the terahertz image resolution of the three samples at a low frequency is low 
owing to the low wavelength of the terahertz wave and is affected by the diffraction limit, (2) the 
internal defects of the sample are clearly revealed in the mid-frequency range, and (3) the energy 

Fig. 6.	 (Color online) Comparison of imaging results of ceramic SDIP40 packaged chip (Sample 1).

Fig. 7.	 (Color online) Comparison of imaging results of epoxy resin SDIP40 packaged chip (Sample 2).
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of the terahertz wave in a high-frequency band gradually decreases, which results in its reduced 
penetration.
	 Therefore, although the terahertz images have a higher resolution in the high-frequency band 
than in the low-frequency band, the image noise increases. As the frequency increases, the 
useful information of the image is gradually masked, making it impossible to effectively reveal 
the inside of the samples. Therefore, the image quality evaluation indicators are necessary to 
evaluate the images acquired from the library and improve the images. The evaluation results 
are shown in Table 1.
	 According to the objective evaluation indexes in Table 1, Sample 1 has the best comprehensive 
evaluation indicators for energy imaging at 0.6375 THz. The outline and internal edges of the 
image are clear in Fig. 6(g). The internal die area has sharp edges, which implies that the 
terahertz image is a representative image of Sample 1. The packaging materials of Samples 2 
and 3 are the same, so the terahertz transmission spectra are similar [Fig. 5(b)] and the evaluation 
indicators are similar. Samples 2 and 3 have the best evaluation results of energy imaging at 
0.83125 and 0.66562 THz, respectively. Compared with other images, the values of AG, H, and 
SF at the selected representative image are higher. For instance, for Sample 2, the values of AG 
and SF of the images at 0.83125 THz are higher than those of the images at 0.36875 and 0.61875 
THz, but the value of H is slightly smaller. Although the values of AG and SF are higher for the 
images at 1.0781 THz, these images are noisy, as shown in Fig. 7(h). Figures 7(g) and 8(f) show 
the positioning hole of the packaging and an internal die defect, respectively. In particular, Fig. 
7(g) reveals pin lead information in the die area, which is not shown in the images of Sample 1. 
Thus, the best imaging effect for Sample 2 is at 0.66562 THz. For Sample 3, the values of AG, 
SF, and H for the image at 0.66562 THz are all higher than those for the images at 0.5 and 
0.76875 THz. Similarly, although the values of AG and SF are higher for the images at 0.9875 
THz, these images are noisy, as shown in Fig. 8(h). Therefore, these two images (imaging at 
0.83125 THz for Sample 2 and 0.66562 THz for Sample 3) are regarded as representative 
terahertz images of the samples.

Fig. 8.	 (Color online) Comparison of imaging results of epoxy resin LCC21 packaged chip (Sample 3).
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3.3	 Representative image matching extraction based on SIFT feature clustering

	 The SIFT feature–K-means model extracts 1126 terahertz images of each sample as 
representative images selected by the comprehensive evaluation. The eight images with the 
highest similarity are selected as the source images for Samples 1–3 as shown in Figs. 9‒11, 
respectively. In the experiment, the Gaussian scale of SIFT feature point extraction is set as 1.6 
and the number of K-means clusters is K = 500. Specific model parameter settings are shown in 
Table 2. The image clustering and matching in this study effectively retrieve the representative 
images of high quality from a large amount of image data. Clear images are obtained by energy 
imaging in the frequency domain. Although there is a slight difference in contrast between the 
images, the details of the images are well revealed, such as the sample outlines and internal 
defects.

3.4	 Image reconstruction by wavelet fusion

	 The quantitative analysis of the SIFT feature–K-means model allows eight representative 
images of high quality of each sample to be used to identify the faults of the samples. To verify 
the effect of image processing after wavelet fusion, we perform wavelet fusion processing on the 
representative images of the samples. The image quality evaluation indicators are adopted to 
compare the effects of each processing. The result of the fusion is shown in Fig. 12, and the 
objective evaluation results are presented in Table 3. The results indicate that the fusion results 
and objective evaluation indicators are improved by wavelet fusion. After wavelet fusion, the 

Table 1
Comparison of objective evaluation indexes for image quality.
Sample 1 SD H AG SF
Peak-to-peak amplitude imaging 96.4144 7.1958 1.5208 8.4430
Maximum peak phase of amplitude imaging 104.7158 3.1689 2.5543 25.2883
Energy imaging at 0.25937 THz 68.6096 7.3271 2.1801 3.8016
Energy imaging at 0.575 THz 81.2686 6.7650 3.6218 6.9800
Energy imaging at 0.6375 THz 77.8948 6.6411 4.6425 9.4534
Energy imaging at 0.90937 THz 57.4804 6.3358 8.1409 20.1919
Sample 2 SD H AG SF
Peak-to-peak amplitude imaging 94.2230 7.4626 3.5304 8.7114
Maximum peak phase of amplitude imaging 84.3356 4.6213 6.3993 26.8121
Energy imaging at 0.36875 THz 63.8748 7.0790 2.4595 4.9203
Energy imaging at 0.61875 THz 55.9518 6.4963 2.8094 6.2760
Energy imaging at 0.83125 THz 49.9157 6.3159 4.1725 10.2933
Energy imaging at 1.0781 THz 53.4474 6.4112 8.7161 20.8962
Sample 3 SD H AG SF
Peak-to-peak amplitude imaging 88.0291 7.1496 1.2031 8.0731
Maximum peak phase of amplitude imaging 44.4462 4.2407 1.4056 15.9233
Energy imaging at 0.5 THz 40.1138 6.2996 2.9991 7.9334
Energy imaging at 0.66562 THz 54.5763 6.4473 4.1964 10.1841
Energy imaging at 0.76875 THz 44.0045 6.0888 3.6876 8.9417
Energy imaging at 0.9875 THz 35.9417 5.7666 5.7284 12.6513
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Table 2
Model parameters of the samples.
Parameter σ S SIFT descriptor K Image size Number of images Output images
Value 1.6 3 128 500 560 × 368 1126 8

Fig. 11.	 Representative images of Sample 3 at different frequencies.

Fig. 9.	 Representative images of Sample 1 at different frequencies.

Fig. 10.	 Representative images of Sample 2 at different frequencies.

image brightness, definition, and contrast are enhanced, while the image information is retained. 
This demonstrates the effectiveness of wavelet fusion.
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4.	 Conclusions

	 Terahertz spectral imaging has attracted increasing attention in the field of chip 
nondestructive testing and analysis. However, in practice, the quality of terahertz spectral 
images of chips often fails to meet the requirements. To solve this problem, we propose a 
terahertz image processing method, where a multimode imaging method and image quantitative 
analysis are used to generate a large number of source images. Moreover, SIFT feature extraction 
and K-means clustering are combined to select high-quality terahertz images. The wavelet 
fusion image processing method is also used to improve the quality of the terahertz images. 
Through experimental analysis, it is found that the proposed method can quickly and effectively 
select high-quality terahertz images from a large number of multiple-source terahertz image 
data. Moreover, the image clarity, information entropy, and other key indicators are greatly 
improved compared with those for methods involving processing single terahertz images, 
enabling the proposed method to meet the requirements of chip failure analysis. 
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