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 In this paper, we present an end-to-end monitoring system, which is used for patients who 
have foot or ankle impairments. This system has been created to help orthopedic doctors 
optimize treatment for patients recovering from foot and ankle injuries. The system consists of 
three main parts: a wearable controlled ankle motion (CAM) boot equipped with inertial and 
load sensors, a web application that provides visual feedback obtained from sensors, and the 
implementation of machine learning and deep learning to analyze walking activity and gait. 
Sensors used on the CAM boot include an accelerometer, a gyroscope, and load cells. Values 
from sensors attached to the CAM boot are sent wirelessly to the database. The web application 
takes sensor values from the database and returns visual feedback on the patient’s walking 
patterns in the form of different graphs. The graphs can be used to analyze and determine 
abnormalities in the patient’s gait and serve as a visual aid for patients during rehabilitation. 
Sensor values obtained from the database are used to train machine learning and deep learning 
models to recognize and differentiate between seven activities performed by the patient. We 
study and compare three dimensionality reduction methods and six classifiers. As a result, we 
find that the joint incorporation of the dimensionality reduction method of sparse principal 
component analysis (PCA) and the classifier random forest (RF) gives the best result with an 
accuracy of 99.5%.

1. Introduction

 Research on IoT-oriented gait analysis and activity recognition monitoring systems has 
increased due to the widespread usage of wearable smart devices and sensors.(1–4) This has 
enabled the collection of human activity data such as gait. Gait can be defined as the pattern 
observed from limb movements occurring during movement from one place to another. Various 
sensors such as inertial measurement unit (IMU) sensors and piezoelectric sensors can be used 
to observe, monitor, and distinguish between normal and abnormal gait, especially after 
sustaining injuries to the foot or ankle.(5–7) There have been many contributions in the form of 



4246 Sensors and Materials, Vol. 33, No. 12 (2021)

smart shoes with attached sensors to analyze the gait of those with foot or ankle impairments.(8,9) 
For example, wireless joint ankle sensors can be used to measure joint rotations in three 
dimensions,(10) and pressure sensors can be attached to running shoes to measure the ground 
force applied by each foot.(11) There have been many attempts to classify, predict, and recognize 
various human activities by using various deep learning architectures and machine learning 
methods for both impaired and nonimpaired gait.(12–14) 
 Common causes of foot and ankle injuries include falls, vehicle accidents, and sports.(15,16) 
Such injuries are repeatedly experienced by many and could lead to temporary, long-term, or 
even permanent impairments depending on the severity of the patient’s condition and how 
effectively the injury was treated. In cases where there are abnormalities in a patient’s gait or 
walking pattern, it is important to identify these abnormalities and treat them in their earliest 
stages. Injuries that are not effectively treated could result in negative long-term effects or 
delayed recovery.
 When consulting a doctor for foot and ankle injuries, patients are often given a cast or, in 
most cases, a controlled ankle motion (CAM) boot to wear and are instructed to walk in a certain 
way to ensure a quick recovery. For instance, a patient could be asked not to apply more than a 
certain weight on the injured foot or to fix certain irregularities in their gait cycle. 
Recommendations and instructions are often given to patients as auditory feedback. This 
process is mostly done through physical examination, which can often leave room for errors or 
failure to detect certain gait abnormalities or disorders as not all significant details can be 
captured through observation alone.(17) Additionally, auditory feedback can be difficult for 
patients to understand and visualize as they do not have visual feedback to assist them. 
Furthermore, doctors are unable to monitor the patient’s progress after they have left the hospital. 
These problems could hinder the recovery of the patient and may even lead to permanent damage 
if the patient is unable to consistently follow recommendations or instructions given by the 
doctor.
 In this study, we have built an end-to-end IoT system with the implementation of machine 
learning and deep learning algorithms to help combat and solve the problems mentioned above. 
The system will be used to analyze, monitor, and detect abnormalities in a person’s gait. The 
system consists of three major components: the hardware design, the web application, and the 
implementation of machine learning and deep learning algorithms. The hardware design 
includes a CAM boot equipped with sensors that wirelessly transmit data values to the database. 
The web application retrieves sensor values from the database and outputs visual feedback of the 
patient’s walking activity, allowing both patients and doctors to monitor the patient’s gait in real-
time through a web application. Data obtained from the sensors is used to train machine learning 
and deep learning models to determine the patient’s gait or activity. We compare different 
classifiers and dimensionality reduction methods to find which give the best result.
 The paper is structured as follows. Section 2 describes the system that was implemented. 
Section 3 explains gait analysis and shows graphs of different walking patterns from patients. 
Section 4 illustrates the machine learning and deep learning methodology. Section 5 discusses 
our experimental results. Finally, Sect. 6 presents our conclusions.
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2. Proposed System

 The proposed system gives insight into a patient’s walking pattern and activity after an injury 
to the foot or ankle. The system can detect and differentiate between different types of gait 
patterns. The system consists of three main parts: the hardware, the web application, and the 
implementation of machine learning and deep learning algorithms. The hardware, which is the 
CAM boot, sends data wirelessly to the database. The web application outputs visual feedback of 
the patient’s walking pattern using sensor values from the database. Finally, data collected in the 
database is used to train the machine learning and deep learning models. An overview of the 
system can be seen in Fig. 1.

2.1 Hardware implementation

 The hardware consists of a CAM boot, an ESPino32 microcontroller, an IMU sensor, a load 
amplifier, and four load cells. The finished hardware can be seen in Fig. 2. The CAM boot is an 
adjustable device, which can be used with mild to severe leg, foot, and ankle injuries and is 
usually used to limit foot or ankle movement.(18) Consequently, a smaller difference in the 

Fig. 1. (Color online) System overview.

Fig. 2. Hardware: IoT gait pattern monitoring boots.
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orientation of the foot will be noticed while walking when wearing the boot. Here, the CAM 
boot was used as a platform to mount the sensors and collect the data. The sensors and 
microcontroller are described as follows.
 The microcontroller used is the ESPino32 board produced by ThaiEasyElec. It is a low-cost 
and locally produced microcontroller that includes a Wi-Fi module and an ESP-WROOM-32 
Bluetooth module. The Wi-Fi module has a range of 1 km, which allows the wireless 
transmission of sensor values to a database.
 The IMU sensor contains both a gyroscope and an accelerometer. Here, a three-axis 
accelerometer and three-axis gyroscope are used. The IMU sensor used is the MPU6050 
module, which employs an I2C interface. The accelerometer collects acceleration values of the 
injured foot, and the gyroscope collects angular velocity values. The IMU sensor can assist 
doctors in observing the patient’s gait from patterns of the injured foot’s angular velocity and 
acceleration. The raw data of the acceleration is configured to output values in the unit of g (the 
standard acceleration due to gravity). Then, the acceleration values are multiplied by 9.8 to 
obtain acceleration in m/s2. On the other hand, angular velocity values are given in the unit of 
degrees per second.
 The load cells and load amplifier are used to help monitor the weight exerted by the patient 
on the injured foot. Four load cells are used, which are attached to the insole of the CAM boot. 
The four load cells are connected to an HX711 load amplifier. The load amplifier combines four 
load sensors into a standard four-wire Wheatstone bridge configuration, which outputs the total 
weight value from all four sensors combined when weight is applied. Finally, the circuit is 
powered by a power bank attached to the CAM boot.

2.2 Web application implementation

 Patients and doctors can log into the web application to track and monitor the progress of 
recovery and view the walking activity of the patient’s injured foot. After data are sent wirelessly 
to the database from the CAM boot, the data are displayed on the dashboard of the web 
application for patients and doctors to see. Information displayed includes acceleration graphs, 
load graphs, and angular velocity graphs, which can help give insight on the patient’s gait such as 
the speed at which the patient is walking, how much weight is exerted, and the number of steps 
per second. The front end of the web application was created using HTML and CSS. The back 
end was created with PHP, and a Firebase real-time database was used, which is a cloud-hosted 
NoSQL database. With Firebase, data can be stored and synced between users in real-time. The 
user interface of the web application is shown in Fig. 3.

3. Gait Analysis

 In this section, we compare and observe different types of gait. We tested our system on three 
different patients in three different scenarios: walking heel first, walking foot flat, and walking 
toe first. Each scenario will be analyzed in detail in the following sections using the dashboard 
from the web application we have created. The different types of gait will be described on the 
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basis of patterns of exerted weight, acceleration, and angular velocity in the x, y, and z axes. The 
scenario of walking heel first is that of a normal gait, while the other two scenarios are instances 
of abnormal gait. When walking heel first, the participant strikes their heel to the ground first at 
the beginning of each gait cycle. To first understand and recognize abnormal gait, we study the 
normal gait cycle, which is shown in Fig. 4. There are four commonly observed events in the gait 
cycle: heel strike (HS), foot flat (FF), heel-off (HO), and toe-off (TO).(19,20) HS is when the heel 
strikes the ground, FF is when the foot is placed flat on the ground, during which the most 
weight is applied, HO is when the heel leaves the ground, and TO is when the toe leaves the 
ground.

3.1	 Scenario	1:	Walking	heel	first

 Walking heel first is considered a normal gait. Walking heel first involves striking the heel on 
the ground first at the beginning of each gait cycle. The line graphs for exerted weight, 
acceleration, and angular velocity are shown in Figs. 5(a)–5(c), respectively. Each graph displays 
a total of 100 records, corresponding to a walking time of 5 s (oldest record to newest record). 

Fig. 3. (Color online) User interface of dashboard inside the web application.

Fig. 4. (Color online) Normal gait cycle.
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(a)

(b)

(c)

Fig. 5. (Color online) Graphs of (a) exerted weight, (b) acceleration, and (c) angular velocity for walking heel first.

From these graphs, we can analyze the participant’s gait in terms of cadence, walking speed, and 
how much weight the patient exerts on the injured foot. From the weight graph, we can see that 
the patient takes 1.2 steps per second and exerts a weight of around 10 kg in each step. We can 
spot the four main stages of the gait cycle clearly in the weight graph. Each stage is highlighted 
in Fig. 6.
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 Following our gait cycle diagram in Fig. 4, we see that the gait cycle begins with the striking 
of one’s foot on the ground. We can spot this stage (HS) by a small increase in the exerted weight 
graph (marked by number 1 in Fig. 6) before the weight reaches its peak. This is due to the 
increased pressure on the heel but not yet the whole foot. The next stage detected after the heel 
strike in the graph is the FF (number 2 in Fig. 6). In this stage, the most weight is applied on the 
foot, which explains the significant increase in the exerted weight as can be seen from the graph. 
After that, the participant lifts the heel off from the ground to take the next step. This decreases 
the weight on the foot as we can see from the drop in the graph of the exerted weight (number 3). 
In the last stage, the toe leaves the ground (TO) to prepare for the next HS. We can also detect 
these gait events in the acceleration and angular velocity graphs. It is noticeable that during the 
FF stage, there is no or very little change in the acceleration and angular velocity in all axes. It is 
also important to point out that the angular velocity values in the z axis are always near zero as 
the orientation in this direction is limited due to the CAM boot. This trend can be observed in 
walking FF, walking toe first, and walking heel first.

3.2 Scenario 2: Walking FF

 In the second scenario, the participant walks FF. This means that the participant does not 
strike their heel on the ground first and transit to the FF stage, but instead, they instantly place 

Fig. 6. (Color online) Detected gait events labeled on graphs for walking heel first.
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their foot flat on the ground. The exerted weight graph, acceleration graph, and angular velocity 
graph for FF are shown in Figs. 7(a)–7(c), respectively.

(a)

(b)

(c)

Fig. 7. (Color online) Graphs of (a) exerted weight, (b) acceleration, and (c) angular velocity for walking FF.



Sensors and Materials, Vol. 33, No. 12 (2021) 4253

 From Fig. 8, we see three main detectable gait events: lifting foot motion (marked by 
number 1), foot falling motion (number 2), and FF (number 3). Unlike the load cell graph for 
walking heel first, we see that there is no gradient change in the exerted weight as there is no HS 
motion in walking FF. The participant skips the stage HS, which is the stage where the heel 
cushions some of the weight, and instantly places their foot flat on the ground. As a result, at 
each step, the increase in exerted weight is abrupt, with the value increasing from almost zero to 
10 kg immediately.
 From the acceleration and angular velocity graphs, we see that there is little or no change in 
acceleration or angular velocity during the FF stage, which was also the case in the previous 
scenario. In addition, it can be seen that a significant positive increase in acceleration and 
angular velocity values occurs when the participant performs the lifting foot motion. Similarly, 
there is a significant negative increase in acceleration and angular velocity values when the 
participant performs the foot falling motion.

3.3	 Scenario	3:	Walking	toe	first

 In this scenario, the participant walks toe first, where instead of striking the heel onto the 
ground first at the beginning of each gait cycle, the toe is used instead. Participants with this gait 
only exert a small amount of weight on the toes of the foot of interest and nowhere else. The 
exerted weight, acceleration, and angular velocity graphs are shown in Figs. 9(a)–9(c), 

Fig. 8. (Color online) Detected gait events labeled on graphs for walking foot flat.
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respectively. We can see that the steps taken are more random and that little force is applied at 
each step. We also notice there is little change in the acceleration and angular velocity values.

(a)

(b)

(c)

Fig. 9. (Color online) Graphs of (a) exerted weight, (b) acceleration, and (c) angular velocity for walking toe first.
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4. Machine Learning and Deep Learning Implementation Methodology

 We compare multiple machine learning algorithms using dimensionality reduction methods 
and deep learning neural networks. The diagram in Fig. 10 illustrates our methodology to 
investigate and compare different algorithms. We first load the data signals, which consist of the 
load, acceleration, and angular velocity in the x, y, and z axes. Then, we segment the data into 
frames of 4 s and encode labels in the segmented data.
 To compare different machine learning classifiers and dimensionality reduction methods, we 
extract features from our data. A pipeline is constructed containing a standard scaler, a 
dimensionality reduction method, and a classifier. It is used to prevent data from leaking 
between training and test data points. The data that pass through the pipeline are cross-validated 
via stratified K-fold cross-validation. For deep learning, data are split into training and test 
datasets. The data are then scaled and trained through the deep learning architecture. Further 
information on each stage will be given in the following subsections.

Fig. 10. (Color online) Machine learning and deep learning methodology.
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4.1 Data collection

 Our dataset consists of six people, referred to as participants A–F. Details of each participant 
are listed in Table 1. The data recorded comprise x-axis, y-axis, and z-axis acceleration signals, 
x-axis, y-axis, and z-axis angular velocity signals, and load (exerted weight on foot). The 
collected data are stored as JSON files.
 We collect the data in seven scenarios: sitting position, standing position, walking upstairs, 
walking downstairs, walking foot first, walking toe first, and walking heel first. These activities 
have been suggested by a doctor to be the basic activities carried out by a person in a day. Table 
2 shows the number of records collected for each activity. Each participant in the dataset is 
instructed to perform each activity repeatedly for an amount of time.

4.2 Data segmentation

 The results of a previous study conducted to determine a suitable sampling rate suggested a 
sampling rate of 22 Hz.(21) As a result, our data are collected at a frequency of 22 Hz. The data 
are segmented into frames of 4 s each with an overlapping rate of 50%, following suggestions 
regarding the window size and sliding window techniques made in Refs. 22 and 23. Therefore, 
the frame size is equal to 88 records. One frame will only consist of records belonging to one 
activity. We iterate over each JSON data file to create frames. Table 3 shows the number of 
frames extracted for each activity.

Table 1
Details of each participant in the dataset.
Participant Age Gender Weight (kg) Height (cm)
A 17 Female 44 158
B 19 Female 54 160
C 53 Female 51 155
D 23 Male 83 177
E 24 Male 80 172
F 57 Male 78 172

Table 2
Number of records extracted for each activity.
Activity Number of records
Sitting 27603
Standing 27606
Walking upstairs 19800
Walking downstairs 19800
Walking foot flat 34407
Walking toe first 27616
Walking heel first 27630

Table 3
Number of frames collected for each activity.
Activity Number of frames
Sitting 612
Standing 612
Walking upstairs 449
Walking downstairs 448
Walking foot flat 764
Walking toe first 612
Walking heel first 612
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4.3 Feature extraction

 We extract 14 features from each of our seven signals of load, x-axis acceleration, y-axis 
acceleration, z-axis acceleration, x-axis angular velocity, y-axis angular velocity, and z-axis 
angular velocity. The features are mean, median, mode, standard deviation, max, min, range, 
skew, kurtosis, 10th percentile, 25th percentile, 50th percentile, 75th percentile, and 90th 
percentile. The equations for the standard deviation, range, skew, kurtosis, and percentile are 
shown in Eqs. (1)–(5), respectively.

 ( )2 ix
N
µ∑ −  (1)

 max(X) − min(X) (2)

 3/2
1 3 2/g m m= , where ( )1

1    N i
i nnm x x

N =
= −∑  and x  is the sample mean (3)

 kurt = µ4/σ4, where µ4 is the fourth central moment and σ is the standard deviation (4)

 n = (P/100) × N, where P is the percentile and n is the ordinal rank of a given value (5)

4.4 Data scaling

 StandardScaler is used to reduce large differences between points. This helps lessen the 
impact on the model training. Not scaling the data may lead to skewed results when training the 
model. StandardScaler transforms the data to make the mean of the distribution of each feature 
equal to 0 and the standard deviation equal to 1. We use the sci-kit learn library to scale our data.

4.5 Dimensionality reduction approaches

 When training with a large number of features, models may be negatively affected by the 
curse of dimensionality and poor generalization.(24) Dimensionality reduction approaches have 
been shown to improve the performance of machine learning models.(25) In this study, three 
dimensionality reduction approaches are used: principal component analysis (PCA), Kernel PCA 
(KPCA), and Sparse PCA. 
 PCA is a dimensionality reduction method that converts a set of features from a higher 
dimension into a lower dimension. It achieves this by maximizing the variance in the new 
subspace by selecting the fittest principal components.(26) PCA is a linear algorithm. Kernel 
PCA extends PCA by applying a kernel to the dataset to improve the performance for features 
that are not linearly separable.(27) Sparse PCA extends PCA differently. PCA uses linear 
combinations of all of the original features, producing new features that are difficult to interpret. 
Sparse PCA solves this problem by using linear combinations of a few features.(28) The libraries 
used to perform dimensionality reduction are listed in Table 4.
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4.6	 Machine	learning	classification	using	cross-validation

 Various classifiers have been used and tested in previous studies.(29,30) In Ref. 31, it was 
shown that ensemble methods can improve the classification performance. Therefore, we 
compare both simple and ensemble classifiers in this study. We test the following machine 
learning classifiers on our dataset: K-nearest neighbor (KNN), decision tree (DT), support 
vector machine (SVM), random forest (RF), XGBoost (XGB), and LightGBM. To evaluate and 
compare each classifier, we apply Stratified K-fold cross-validation from the sci-kit learn library, 
where K = 10. The libraries used for the learning classifiers are listed in Table 5.

4.7 Deep learning architecture

 Recently, there have been many approaches where neural networks are used to classify and 
differentiate between gait or human activities.(32,33) In this study, we also implement a simple 
convolutional neural network for evaluation and comparison. It consists of 2D convolution 
layers, a dropout layer, and dense layers. All layers use the ReLU activation function except for 
the last layer, which uses SoftMax. The Adam optimizer is utilized with the default parameters. 
The deep learning architecture is shown in Fig. 11.

5. Experimental Results and Discussion

 Previously, we described the process by which we investigate and compare six machine 
learning classifiers (KNN, DT, SVM, RF, XGB, and LightGBM) and a simple convolutional 
neural network. Several dimensionality reduction approaches are applied to each machine 
learning classifier to evaluate and determine the best combination. The default hyperparameters 
are used for a fair comparison. The default hyperparameters of each classifier are listed in 
Table 6 for reference. The performance results are measured on the basis of accuracy, F1, 
precision, and recall scores.

Table 4
Dimensionality reduction methods and their libraries.
Dimensionality 
reduction method Library

PCA sklearn.decomposition.PCA
Kernel PCA sklearn.decomposition.KernelPCA
Sparse PCA sklearn.decomposition.SparsePCA

Table 5
Classifiers and their libraries.
Classifier Library
KNN sklearn.neighbors.KNeighborsClassifier
DT sklearn.tree.DecisionTreeClassifier
SVM sklearn.svm.SVC
RF sklearn.ensemble.RandomForestClassifier
XGB xgboost.XGBClassifier
LightGBM lightgbm.LGBMClassifier
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5.1	 Results	of	machine	learning	classifiers	with	dimensionality	reduction	methods

 We use stratified K-fold cross-validation with K = 10 and shuffle = true to evaluate the 
performance of our models. This evaluation method splits a dataset into K sets, where each set is 
trained K − 1 times and tested once. Each set conserves the same ratio of samples of each class. 
The stratified K-fold process can be seen in Fig. 10. In Table 7, we show the classification 
performance (accuracy, precision, recall, and F1 scores) of the six classifiers (KNN, DT, SVM, 

Fig. 11. (Color online) Deep learning architecture.

Table 6
Classifiers and their default hyperparameters.
Classifier Default hyperparameters

KNN algorithm=‘auto’, leaf_size=30, metric=‘minkowski’, metric_params=None, 
n_jobs=-1, n_neighbors=5, p=2, weights=‘uniform’

DT

ccp_alpha=0.0, class_weight=None, criterion=‘gini’, max_depth=None, max_features=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 
min_weight_fraction_leaf=0.0, presort=‘deprecated’, random_state=10, splitter=‘best’

SVM

C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape=‘ovr’, degree=3, gamma=‘scale’, kernel=‘rbf’, 

max_iter=-1, probability=False, random_state=10, shrinking=True, 
tol=0.001, verbose=False

RF

bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion=‘gini’, 
max_depth=None, max_features=‘auto’, max_leaf_nodes=None, 

max_samples=None, min_impurity_decrease=0.0, 
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1, 
oob_score=False, random_state=10, verbose=0, warm_start=False

XGB

base_score=0.5, booster=‘gbtree’, colsample_bylevel=1, colsample_bynode=1,
colsample_bytree=1, gamma=0, learning_rate=0.1, 

max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, 
n_estimators=100, n_jobs=1, nthread=None, objective=‘binary:logistic’, 

random_state=0, reg_alpha=0, reg_lambda=1, 
scale_pos_weight=1,seed=None, silent=None, subsample=1, verbosity=1

LightGBM

boosting_type=‘gbdt’, class_weight=None, colsample_bytree=1.0, 
importance_type=‘split’, learning_rate=0.1, max_depth=-1, 

min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, 
n_estimators=100, n_jobs=-1, num_leaves=31, objective=None, 

random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True, 
subsample=1.0, subsample_for_bin=200000, subsample_freq=0
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RF, XGB, and LightGBM) with the incorporation of dimensionality reduction methods (PCA, 
Kernel PCA, and Sparse PCA). The top three accuracy, F1, precision, and recall scores are in 
bold. From the table, it is apparent that the RF classifier with Sparse PCA incorporated gives the 
highest accuracy score of 99.53%. Additionally, we can observe that RF, XGBoost, and 
LightGBM generally outperform the other three classifiers. The main reason for this is that RF, 
XGBoost, and LightGBM are ensemble classifiers, which generally perform better than simple 
classifiers. RF creates multiple decision trees and combines their results to obtain a better result. 
XGBoost and LightGBM use gradient boosting. Here, trees are continuously added to the 
initially built tree to cover the weakness of the previous model until it reaches the set amount 
specified in the hyperparameter called n_estimators. This is why ensemble methods generally 
have superior performance. We also notice that PCA gives the lowest scores when incorporated 
with other machine learning classifiers, while Sparse PCA significantly improves the 
performance of the classifiers, with the three highest performances obtained with Sparse PCA. 
Since we know that Sparse PCA utilizes linear combinations of only a selected set of features 
from the dataset, this could mean that there are features that are unnecessary or have a negative 
impact on the dataset. Fig. 12 shows the importance of each feature decided from the combination 
of RF and Sparse PCA from highest importance to lowest importance. We can see that many 
features are considered unnecessary.

5.2 Deep learning results

 The deep learning model is constructed using TensorFlow 2 following the architecture in Fig. 
11. For deep learning, data are split into training and test datasets with 80% being the train 
dataset and 20% being the test dataset. A small model is chosen to minimize the running time 

Table 7
Classifiers and their scores with dimensionality reduction (in %).
Dimensionality reduction Classifier Accuracy (%) F1 (%) Precision (%) Recall (%)

PCA

KNN 96.37 96.41 96.73 96.17
DT 91.36 90.76 91.30 90.47

SVM 97.90 97.98 98.11 97.88
RF 97.68 97.65 97.91 97.47

XGB 97.68 97.64 97.85 97.49
LightGBM 97.90 97.88 98.16 97.68

Kernel PCA

KNN 96.37 96.41 96.73 96.17
DT 91.67 91.15 91.64 90.89

SVM 97.90 97.98 98.11 97.88
RF 97.66 97.61 97.98 97.35

XGB 97.98 97.91 98.08 97.78
LightGBM 98.15 98.13 98.31 97.99

Sparse PCA

KNN 95.95 95.97 96.30 95.74
DT 96.08 95.75 96.07 95.54

SVM 97.90 97.97 98.12 97.87
RF 99.53 99.54 99.59 99.51

XGB 99.29 99.29 99.34 99.25
LightGBM 99.41 99.42 99.45 99.41
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while still maintaining high performance. The accuracy, F1, precision, and recall scores are 
96.71, 96.62, 96.90, and 96.44%, respectively.

5.3	 Comparison	with	previous	studies

 In this section, we compare the results obtained in this study with those in the literature. 
Similar to in previous studies, we showed that RF outperforms other classifiers. In Ref. 34, in 
which the dimensionality reduction methods of PCA and linear discriminant analysis were 
compared, the highest accuracy of 87.5% was obtained using RF and PCA, with acceleration in 
the x, y, and z axes used as the only features. In Ref. 35, different classifiers were tested against 
three different datasets. The highest accuracy scores were again obtained from RF and ranged 
from 96.74 to 100%. In Ref. 36, CNN and LSTM were applied to the UCI HAR dataset and the 
highest accuracy obtained was 92.13%. It is important to note that different datasets were used in 
each study and that the results obtained in this paper are based on an original dataset collected 
specifically for this study.

6. Conclusions

 We have created a system that can be used to monitor and analyze the foot pressure and 
movement of a person with foot or ankle impairments. The system will help orthopedic doctors 

Fig. 12. (Color online) Ranked importance of features from sparse PCA and RF.
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optimize treatments for patients. The system consists of a CAM boot with attached sensors, a 
web application, and the implementation of machine learning and deep learning algorithms, 
which help determine and differentiate between normal and abnormal gait. We have investigated 
and compared the classification performance of machine learning classifiers with incorporated 
dimensionality reduction methods. Our experimental results have proven that the RF classifier 
with Sparse PCA incorporated outperforms all other methods. As future work, we would like to 
explore more complex deep learning architectures and expand our activity dataset.
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