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	 Indoor device-free localization (IDFL) offers more flexibility than conventional indoor 
localization (device-based) systems, as the targets or objects need not be equipped with any 
device to be located. In the process of IDFL, the target is passive, enabling applications such as 
monitoring of elderly people, security systems to detect intruders, and indoor navigation. 
Despite having more flexibility than device-based systems, IDFL is still inferior in terms of 
localization performance. The most commonly used technique for IDFL is the fingerprint 
technique, which uses the uniqueness of spatial information to predict the target’s location. The 
spatial information is a fingerprint database containing information on locations and their 
corresponding parameters. The most specific parameter for the fingerprint database is the 
received signal strength indicator (RSSI). RSSI can be obtained directly from many low-cost 
devices, i.e., Wi-Fi-based devices, without the need to install additional hardware. The 
fingerprint technique is a two-phase process: the database is constructed in the offline phase, 
and a matching process to compare the target’s current parameter with those in the database is 
performed in the online phase. We propose fingerprint-technique-based IDFL using RSSI and 
illumination from an illuminance sensor as the additional parameters of the fingerprint database. 
Both parameters are recorded by considering two scenarios: an empty room and a person 
standing in the fingerprint grids. The constructed database is the person-filled room subtracted 
from the empty room database. We use random forest, one of the machine learning (ML) 
algorithms, as the pattern-matching algorithm. We evaluate its performance by comparison with 
two other ML algorithms: k-nearest neighbor (k-NN) and neural networks (NN). The results 
show that k-NN has better accuracy than the random forest for learning and testing in terms of 
the root mean square error (RMSE). On the other hand, the random forest has better accuracy 
than NN and better precision than either k-NN or NN for learning and testing in terms of the 
standard deviation (STD). The results show the possibility of improving the IDFL performance 
by adding more parameters to the fingerprint database and using an ML-based pattern-matching 
algorithm.
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1.	 Introduction

	 In 2007, Youssef et al. introduced the concept of passive indoor localization by using the 
difference in the received signal strength indicator (RSSI) for communication between Wi-Fi 
routers with two access points (APs) and monitoring points (MPs). They identified the change in 
RSSI caused by the existence of a target with detection probabilities of 1 and 0. By applying 
Bayesian inference, they found that the detection accuracy was 86% when they implemented a 
fingerprint-based technique.(1) Passive indoor localization, explicitly known as indoor device-
free localization (IDFL), is expected to have more flexibility and applicability.(2–4) Unlike 
device-based localization, the target or person does not need to carry a device in IDFL. The 
IDFL procedure will likely use the difference in the environment conditions received by a 
communication device installed in the surrounding area.(5) Radio-frequency-based technologies, 
i.e., Wi-Fi,(6) Zigbee standard,(7) radio frequency identification (RFID),(8–10) and Bluetooth Low 
Energy (BLE),(11,12) have been most commonly used for IDFL. These technologies provide the 
signal parameters applied to localization techniques.(13,14) Some signal parameters are easy to 
obtain without additional hardware installation, whereas others are complex, sophisticated, and 
costly. RSSI is widely used in indoor localization(15–17) as it is straightforward to use, compatible 
with the above technologies, and has a low cost.(18) However, RSSI is prone to signal fluctuation 
and multipath interference in relatively dense indoor environments.(19) Although it has been 
claimed that channel state information (CSI) based on the channel characterization and channel 
model has superior performance to RSSI, its complexity and the cost of measurement are 
high.(20–22) 
	 We can select a suitable indoor localization technique to tackle the drawbacks of RSSI. Two 
main techniques are used in device-based indoor localization. The first is based on range or 
distance, and the signal parameters are converted to distances, followed by the localization 
process. The second is range-free, and spatial information consisting of location information is 
collected and the corresponding signal parameter in the same location is stored. In IDFL, the 
range-free technique is most commonly applied, i.e., the fingerprint technique, as it is impossible 
to convert the signal to the distance between the target and reference points without attaching a 
device to the target or person. On the basis of this argument, we propose an RSSI-based IDFL 
system. RSSI from a Wi-Fi device is preferable because of its low cost and its high availability in 
almost all smart devices. 
	 The essential point of the fingerprint technique is the quality of the database. The fingerprint 
technique employs a two-phase process. The first process is called the offline phase, where the 
database fingerprints are recorded and stored at a specific grid location in the area of interest, 
which is the area in which the indoor localization system is set up. The second phase is the 
online phase, in which a new target parameter is acquired from the target or object and compared 
with those in the database by applying a pattern-matching algorithm. This two-phase process is 
often used in device-based systems. The IDFL fingerprint process is slightly different in that it 
builds a “passive” offline database.(3,23) Seifeldin et al. proposed fingerprint-based IDFL in 
which a probabilistic model was applied.(24) A continuous space estimator based on the RSSI 
vector was used as the location estimator. The median distance error was 1.82 m. Even though 
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the estimation accuracy was low, their method was superior to deterministic and random-
estimator-based methods.(24)

	 Other IDFL approaches are to apply radio tomographic imaging (RTI)(7,25,26) and a lighting 
infrastructure, i.e., LED sensing.(27–29) One requirement for RTI is the employment of many 
reference sensors/nodes, which is not cost-effective. On the other hand, the lighting infrastructure 
usually can only predict the existence of a target or object and not its location. Other illumination-
based approaches use modified lamps in a system that is not easily recreated or have an 
unrealistic lamp installment on the floor. These are some disadvantages of applying illumination-
based IDFL.(29)

	 How a fingerprint-based IDFL system stores the fingerprint database has been explained in 
some previous papers. A key feature of this system is that the parameters stored, i.e., RSSI, are 
in the form of RSSI values when the area is empty and when a person is standing at a certain 
position in the designed grid. The difference in the RSSI values is stored as the fingerprint 
database. In the online phase, the target, without a device attached, wanders inside the area of 
interest. This causes changes in the RSSI values received by the reference, from which the 
position can be predicted on the basis of the similarity to the database. Several proposals for the 
pattern-matching algorithm, including the use of machine learning (ML) and deep learning, 
have been discussed.(30,31) Some ML algorithms can work well with sparse data, such as the 
decision tree and random forest algorithms.(32,33) The random forest has been demonstrated to 
have high accuracy in some proposed indoor localization applications with relatively small 
datasets.
	 We propose a new approach for passive fingerprint databases where we combine RSSI and 
illuminance data by installing an illuminance sensor along with a communication device. Using 
two or more parameters for the fingerprint technique in IDFL is still uncommon. Furthermore, 
techniques based on sensor fusion are probably more common. However, the disadvantage of 
sensor fusion is the computational complexity of finding the weights of particular sensing 
parameters.(30,34,35) Therefore, we use another parameter to provide spatial information for the 
fingerprint technique by utilizing the attached illuminance sensor and processing the obtained 
information using the device that exhibits and receives the RSSI. We expect that by adding more 
parameters to the fingerprint database, the unique spatial information for different locations will 
markedly differ. We utilize the random forest algorithm as our pattern-matching algorithm and 
compare its localization performance with two other ML algorithms: k-nearest neighbor (k-NN) 
and neural networks (NN).
	 We have so far introduced the context of our research. Section 2 comprises a discussion of 
IDFL, the use of the random forest as the pattern-matching algorithm, the measurement setup, 
and the employed performance metric. The results and discussion are presented in Sect. 3. 
Finally, in Sect. 4, we conclude our work and outline our planned future work.

2.	 Materials and Methods

	 Compared with device-based indoor localization systems, IDFL requires more reference 
nodes to obtain a spatial signature in the area of interest. In this section, the primary difference 
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between device-based and device-free systems, the fingerprint-based techniques for IDFL, the 
random forest, our measurement setup, and the proposed performance metric are explained.

2.1	 Device-based vs device-free systems

	 IDFL is used to detect, track, or identify a target, object, or person without the need for the 
target to carry a localization device, in contrast to the device-based localization method, where 
the target must be equipped with a specific tool such as a smartphone or an electronic tag. 
Figure 1 shows the difference between device-based and device-free localizations.(3)

	 In contrast to device-based localization, which utilizes measurement parameters captured by 
a device placed on the target to identify the target position, device-free localization utilizes 
changes in measured parameters in the surrounding environment resulting from the target’s 
interaction with surrounding objects. For example, RF-based IDFL technology utilizes various 
phenomena caused by radio signal propagation, such as absorption, scattering, diffraction, 
reflection, refraction, or a combination of these phenomena.

2.2	 Fingerprint-based technique for IDFL

	 A passive fingerprint database is different from a device-based fingerprint database. A 
passive fingerprint database is collected on the basis of the difference between the RSSI values 
measured from an empty room and those measured with a person/object inside the area of 
interest. Figure 2 illustrates a passive fingerprint database collection. The environmental change 
due to the presence of the person causes a difference in the receiver power, e.g., RSSI. We 
measured the discrepancies in the RSSI values between the cases of an empty room and of a 
person/object inside the room and used them to create a fingerprint database.
	 First, we must design the fingerprint location grid in the measurement location. Then, 
following the two-phase fingerprint technique, we record RSSI in the empty room and in the 
room with a person standing in the designed grid for the offline phase. We create an IDFL data 
of the difference between the RSSI values obtained under the two conditions. The new RSSI 
values from the present target are then subjected to a pattern-matching algorithm in the online 
phase. Similar to the process of constructing the fingerprint database, these new RSSI values are 

(a) (b)

Fig. 1.	 (Color online) (a) Device-based and (b) device-free indoor localizations.
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also subtracted from the RSSI values for the empty room. After the comparison, the fingerprint 
location with RSSI values having the highest similarity to the new RSSI values indicates the 
target’s predicted location. In this study, we propose the addition of illuminance values as a 
parameter for the fingerprint technique to offer greater uniqueness than that obtained using only 
RSSI. As the same procedure of the RSSI values, the illuminance data is the data resulting from 
illuminance values of person-filled room subtracted to empty room illuminance data. Figure 3 
illustrates the process of RSSI-based IFDL process.

Fig. 2.	 (Color online) Passive fingerprint data collection.

Fig. 3.	 (Color online) RSSI-based IDFL process.
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2.3	 Random forest

	 ML-based pattern-matching algorithms are now commonly used, thanks to advances in 
computing technology and natural programming language. Figure 4 shows the most widely used 
ML-based pattern-matching algorithms, i.e., k-NN, NN, support vector machine (SVM), and 
k-means clustering algorithms. The random forest is an extension of the decision tree algorithm. 
The structure of the decision tree algorithm resembles a tree, where the root node consists of all 
the training data.(36) Then, the root node is divided into two or more child nodes on the basis of a 
particular condition. A child node is an internal node that either can be split further or cannot be 
split and becomes a terminal node. A specific value is used to label the terminal node. Child 
nodes are repeatedly split until the stopping criterion is satisfied.
	 Random forest is a combination of decision trees (Fig. 5), where each decision tree is trained 
using different but an equal number of data. Random forest uses the bootstrap aggregating 
(bagging) technique and random variable selection to build each decision tree. The bootstrap 
technique is used to make different training datasets by removing some data from the original 
training dataset and replacing it with the remaining data randomly.(37,38) Each decision tree is 
combined by taking the most popular class for the classifier and averaging every prediction by 

Fig. 5.	 (Color online) Decision tree.

Fig. 4.	 (Color online) ML-based pattern-matching algorithms.(30)
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Fig. 6.	 (Color online) Random forest prediction process.

(a) (b)

Fig. 7.	 (Color online) Measurement system: (a) actual hardware setup and (b) reference and sink node arrangement.

each tree for the regressor (aggregation). Aggregation acts as a classifier when it calculates the 
more significant votes as a result and as a regressor by calculating the mean values of each tree’s 
prediction results. Random forest offers high accuracy and is suitable for fingerprint-based 
IDFL with a relatively small dataset. This algorithm is also free from overfitting because it takes 
the mean of all predictions in the process. Figure 6 shows the general flow of random forest for 
prediction.

2.4	 Measurement setup

	 We used Wi-Fi-based ESP32 devices as the core of our system for both the reference nodes 
and the sink node. The reference nodes acted as action points (APs) that broadcast the RSSI 
values continuously; once each reference node becomes the receiver, it will receive all RSSI 
values from other APs and measure the cumulative illumination from its position. Seven RSSI 
values from other reference nodes or APs and one illuminance value are sent to the sink node. 
The process is repeated for all eight references (APs). A reference node consisted of an ESP32 
device, a BH1750FVI illuminance sensor, and a DC power connection. To ensure portability, we 
used a power bank for each reference node. Figure 7 shows the actual reference node and the 
arrangement of the devices in the communication topology.
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	 Table 1 shows the measurement tools and devices in detail, and Fig. 8 depicts the layout of the 
measurement setup for the proposed method. Figure 9 shows the actual measurement 
environment. Our setup in a classroom had four 16 W LED tubes as the lamp/light source. The 

Fig. 9.	 (Color online) Experiment: (a) empty room and (b) person standing at dedicated fingerprint points.

Fig. 8.	 (Color online) Layout of experiment.

(a) (b)

Table 1
Details of measurement tools and devices.

Device/tool Specifications Note

Reference node ESP32 Devkit SoC
Support: Wi-Fi IEEE 802.11 
b/g/n dan BLE. Memory: 520 

kB SRAM

Wi-Fi transceiver, RSSI 
values estimator, integrated 

with illuminance sensor

Illuminance sensor Digital ambient light sensor 
BH1750FVI

Measurement range: 1–65535 
lx. Sensor type: Photodiode 

with A/D. Power supply: 
2.4–3.6 V

To measure the illumination 
values

Power source Power bank (rechargeable) >7000 mAh To power ESP32

Software Ardunio IDE 1.8.5 version (64-bit) To program ESP32 and 
monitor RSSI values

Algorithm Jupyter Notebook
Python 3.7 with library Scikit 

learn, NumPy, Matplotlib, 
Pandas, and Keras(39,40)

To build ML-based IDFL 
(random forest, k-NN, and 

NN)
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reference node with the red arrow indicates that the ESP32 antenna is facing in that direction. 
There was light leakage from the windows in the actual measurement area, but we covered the 
windows with fabric to minimize the light noise. There was a Wi-Fi router inside the classroom, 
from which we expected interference. However, we assumed that the recorded values of both 
RSSI and illuminance in the database included these effects.
	 We constructed a database as follows. In the first procedure, we recorded the RSSI and 
illuminance values in an empty room by sequentially switching a reference node to act as a 
receiver and collecting the RSSI values from the other seven reference nodes. The node that 
acted as a receiver also collected the cumulative illuminance at its position and sent it to the sink 
node/server. The second procedure was the same but a person stood at a fingerprint location (one 
of the green circles in Fig. 8), then moved to the next location after 2 min of RSSI and 
illuminance data collection. Table 2 shows the data structure received by the sink node, and the 
acquired database is expressed as Eq. (1).

	 , , ,, fingerprint i person i empty person i emptyRSSI RSSI RSSI lux lux= − − 	 (1)

int,fingerpr iRSSI  with i = 1, 2, ..., 25 is the database corresponding to each fingerprint, where RSSI 
data obtained with a person standing at the fingerprint location is subtracted from the measured 
RSSI data of the empty room. A similar procedure is applied for illuminance values, where 
luxperson,i is the illuminance database to the corresponding fingerprint and luxempty is the 
illuminance values in empty room condition. We ultimately obtained a database of data for 25 
fingerprint locations, for each fingerprint location, the RSSI values, and the illuminance values 
measured for 2 min by the illuminance sensor. A similar process was carried out to obtain the 
target data, , , ,, target i target i empty target i emptyRSSI RSSI RSSI lux lux= − − , where luxtarget,i is the 
illuminance values of target, and luxempty is the illuminance values in empty room condition.

2.5	 Performance metric

	 We consider accuracy and precision to validate our IDFL system performance. Accuracy is 
represented by the root mean square error (RMSE) between the predicted and actual positions, 
[Eq. (2)], while precision can be evaluated from the standard deviation (STD) of the distribution 
of predicted data points [Eq. (3)]. 

	 ( )2 2
, , , ,1

1 ( ) ( )N
predict i actual i predict i actual ii

RMSE x x y y
N =

= − + −∑ 	 (2)

Table 2
Structure of measurement data.
Node RSSI RSSI RSSI RSSI RSSI RSSI RSSI RSSI Lux Reading 

stampID 1 2 3 4 5 6 7 8
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	 ( )( )2 2
, , , ,1

1 ( ) ( )  
1

N
predict i actual i predict i actual ii

STD x x y y RMSE
N =

= − + − −
− ∑ 	 (3)

3.	 Results and Discussion

3.1	 Random forest localization performance 

	 We present the localization performance first as the results of learning using the fingerprint 
database. As we have test data (not real-time online phase), 99% of the data was used for 
learning and 1% for testing. Second, we performed a test with real data to evaluate the 
performance of the proposed method by observing its accuracy and precision. We showed the 
results only for some positions with interesting learning and testing results. The learning showed 
some errors but they were less than 1 m. However, the testing results showed some large errors. 
In the target area (1 m, 1 m), the RMSE of the learning result was 0.77 m and that of the testing 
result was 0.96 m. 
	 Figure 10 shows that the testing results have high variance, as shown by the STD, compared 
with the learning results. This may be because the test data have more variance than the learning 
data. However, visual inspection revealed that the predicted locations in the testing scenario are 
distributed near the true/actual location. Testing of another location yielded similar results, i.e., 
for target location (2 m, 2 m), the testing results were distributed close to the actual location. 
From these results, we observed that the testing results tended to be distributed in the middle of 
the area of interest. One of the reasons may be that the RSSI is easily affected by environmental 
effects and signal interference.

3.2	 Performance 

3.2.1	 Learning performance 

	 Figure 11 shows the accuracy represented by RMSE and precision represented by STD of the 
learning results. For learning, the data in the database was divided into the training dataset and 
the learning/pretesting dataset. RMSE of random forest is worse than that of k-NN, as it was 0.8 
m while it was 0.25 m for k-NN. NN has the highest RMSE of 0.93 m. A similar trend was seen 
for STD of random forest compared with k-NN and NN. However, note that both RMSE and 
STD results for random forest were still under 1 m (measurement grid is 1 m).

3.2.2	 Testing performance 

	 We compared the performance of random forest with those of k-NN and NN in terms of 
RMSE and STD. RMSE indicates the accuracy of the localization result, and STD shows the 
precision of the results of location prediction for a specific location. Figure 12 shows RMSE and 
STD of random forest, k-NN, and NN for localization using actual test data. As shown in 
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Fig. 10.	 (Color online) Localization results using random forest: (a) learning and (b) testing.

(a) (b)
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Fig. 12(a), random forest is slightly inferior to k-NN, as its mean localization error is 1.65 m 
compared with 1.46 m of k-NN, but that of NN is 2 m. Figure 12(b) shows that the precision of 
random forest is superior to those of the two other algorithms, indicating that the predicted 
values have relatively low variance, the STD from the actual position being 0.88 m.

4.	 Conclusions

	 We presented an IDFL system utilizing RSSI and illuminance values for fingerprint 
localization and applied the random forest algorithm for pattern matching. From the localization 
training and testing results, random forest was found to have better precision, represented as 
STD, than other ML algorithms, i.e., k-NN and NN. However, k-NN was slightly better than 
random forest in terms of localization accuracy represented by RMSE. The localization results 
indicated that the overall performance is still relatively low. Unlike the device-based localization 
system, where the parameter values for fingerprint databases show larger differences, the effects 
of RSSI fluctuations on the IDFL system are similar between an empty and an occupied space. 
However, there is room for improvement by, for example, applying another signal parameter 

(a) (b)

Fig. 11.	 (Color online) Performance of random forest, k-NN, and NN: (a) localization error (RMSE) and (b) 
deviation error (STD).

(a) (b)

Fig. 12.	 (Color online) Performance of random forest, k-NN, and NN: (a) localization error (RMSE) and (b) 
deviation error (STD).
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such as CSI, improving the data collection method, adding a number of datasets, and 
implementing deep learning in our future work. We expect that implementing deep learning and 
the use of CSI, which is more robust and reliable than RSSI, will improve the performance of 
IDFL.(41)
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