
4489Sensors and Materials, Vol. 33, No. 12 (2021) 4489–4501
MYU Tokyo

S & M 2777

*Corresponding author: e-mail: yintong0907@126.com 
https://doi.org/10.18494/SAM.2021.3561

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Evaluation of LIDAR and Camera External Reference 
Calibration Methods

Yao Fu,1 Dean Luo,1 He Huang,1 Yizhou Xue,1 and Tong Yin2*

1School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture,
No. 15, Yongyuan Road, Huangcun Town, Daxing District, Beijing 102616, China

2Institute of Surveying and Mapping Standardization, Ministry of Natural Resources, 
334 Youyi East Road, Xi’an, Shaanxi Province 710054, China

(Received July 21, 2021; accepted October 22, 2021; online published November 18, 2021)

Keywords:	 camera calibration, joint calibration, camera, LIDAR

	 In the implementation of autonomous driving, high-precision maps and environment 
perception are required to support the driving process. They are commonly used to fuse image 
and point cloud data, but it is necessary to obtain the external parameters of the camera and 
radar when performing data fusion. However, the external parameters of the camera and radar 
can cause problems that can be solved by joint calibration. For fast, accurate acquisition of 
external parameters, a special three-plane calibration plate is designed to fit the spatial equations 
for each of three different planes passing through the initial point clouds in this study. The 
calibration plate is used to obtain the coordinates of feature points in the radar coordinate system 
through the spatial relationships and to extract the pixel coordinates of the feature points from 
the images to establish the corresponding equations. Finally, the least squares method is used to 
obtain the calibration parameters. The experimental results show that this method can obtain 
calibration results faster and more robustly than the traditional checkerboard grid calibration 
method.

1.	 Introduction

	 At present, most of the sensors used for autonomous vehicle perception are composed of light 
detection and ranging (LIDAR) and vision systems. The perception of the external environment 
is realized through data fusion of multiple sensors. The collection and construction of high-
precision map data also require data fusion of cameras and LIDAR, and through the data fusion 
of these sensors, the characteristics of each of the sensors can be used to improve the reliability 
of environmental recognition.(1)

	 The joint calibration methods of cameras and LIDAR for autonomous driving can be divided 
into online and offline calibration methods.(2,3) The commonly used offline calibration methods 
are mainly the tessellation grid method and the feature point matching method.
	 The feature point matching method uses a special graphical calibration plate to extract 3D 
points acquired by LIDAR and the corresponding 2D image points obtained by a camera to 
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establish constraint equations and optimize the computer pose, which is essentially a perspective-
n-point (PNP) problem for computer positional estimation. Zhou and Deng(4) proposed a new 
robust algorithm and introduced weights to represent the uncertainty of the unit normal vector in 
the tessellation plane to obtain more accurate external parameters for the combined quality 
evaluation of each pair of images and LIDAR scans. Park et al.(5) designed a type of triangular 
calibration plate for multi-line LIDAR, where 3D coordinates were obtained by fitting the point 
cloud data of multi-line LIDAR, and the corresponding pixel coordinates were obtained by the 
corner point detection method. However, radars with lower threads were limited because of the 
small number of marked target edge points. Gong et al.(6) proposed a calibration method for a 
triangular calibration plate, which was calibrated by the nonlinear least squares method and then 
iteratively optimized to refine the calibration parameters. Debattisti et al.,(7) Pereira et al.,(8) and 
Pusztai and Haider(9) used triangular plates, spheres, and shape diversity, respectively, to 
distinguish targets in the sensor data and achieved good calibration results. Wang et al.(10) 
proposed a corner point extraction method based on the reflection intensity of the point cloud, 
which improved the accuracy of fusion results of camera and LIDAR data. Chen et al.(11) used a 
special calibration cube with point-line constraints to establish the parametric equations between 
the laser feature points and image edges and calibrated the parameters by collecting data from 
different angle cubes. Geiger et al.(12) used the idea of classifying the calibration plate laser point 
cloud and eliminating the point sets with a significantly low number of 3D points to achieve 
alignment. Hand et al.(13) and Li et al.(14) used LIDAR data points lying on a straight line to 
calibrate constraint relations using isosceles triangles and folded flat panels as calibrators, 
respectively. Guindel et al.(15) achieved the automatic calibration of LIDAR and a stereo camera 
by using simple calibrators.
	 In this study, a basic study on the feature point method and the tessellation grid method is 
conducted, and a triangular calibration plate is designed to obtain the pixel coordinates of the 
feature corner points in the image data. The 3D coordinates of the feature points are determined 
using the point cloud plane obtained after fitting to establish the constraint equations for solving 
the parameters; these parameters represent a combination matrix of the rotation translation 
matrices of the camera. The accuracy of the calibration results is verified by calibration plate 
verification experiments using the actual alignment effect of the calibration plate on the image.

2.	 Principle of Calibration in Checkerboard Grid Method

	 Assume that two spatial normals from the calibration plate to the origin of the camera 
coordinate system and to the origin of the LIDAR coordinate system are denoted as NC and NL, 
respectively. Then, the value of the modulus ||NC|| of NC is equal to the distance between the 
camera origin and the plane of the calibration plate, and the value of the modulus ||NL|| of NL is 
equal to the distance between the LIDAR origin and the plane of the calibration plate. The 
normal vectors NC and NL can be calculated from the available data.
	 Converting the rotation matrix R from the world coordinate system (assuming the upper left 
corner of the board as the origin) to the camera coordinate system by Zhang’s calibration 
method(16) using the translation vector T yields
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	 3 3( )T
CN R R t= ,	  (1)

where R3 denotes the third vector of the rotation matrix R.
	 Then, the Point Cloud Library (PCL), which is an open-source programming library, is used 
in the relevant algorithm to obtain the overall point cloud in the calibration plate point cloud, and 
the least squares method or a random sampling consistency algorithm is used to fit the calibration 
plate plane. The equation of the fitted calibration plate plane equation is Ax + By + Cz + D = 0 
and (A, B, C) is the normal vector of the plane and also the unit vector. Then, NL can be expressed 
as

	 [ ], , T
LN A B C D= .	  (2)

	 After obtaining the normal vectors NC and NL, they are both linearly related to the rotation 
matrix RLtoC from the point cloud coordinate system to the camera coordinate system and the 
translation vector TLtoC from the point cloud coordinate system to the camera coordinate system.
(1)	The difference between NL and NC, i.e., between the moduli ||NL|| and ||NC||, is equal to the 
length of the projection of the translation vector TLtoC on NL, which can be expressed as

	 ||NL|| − ||NC|| = TLtoCnL.	  (3)

(2)	Since NL and NC are both perpendicular to the calibration plate plane, they are parallel in the 
same coordinate system. To keep NL and NC in the same coordinate system, according to the 
principle of coordinate transformation, nL can be expressed as an NC unit vector of RLtoCnL, and 
nC in the camera coordinate system OC − XC, YC, ZC is expressed as nC = NC/||NC||.
	 Since RLtoCnL is parallel to nC, the inner product of RLtoCnL and nC is 1.

	 RLtoCnLnC = 1	  (4)

	 The above-defined RLtoC and TLtoC are used as initial solutions, and the objective function 
given by Eq. (5) is established. The initial solutions are optimized iteratively using the 
Levenberg–Marquardt (LM) nonlinear optimization algorithm.
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	 In Eq. (5), n is the number of positions in the data collected for the joint calibration, m is the 
number of 3D laser point clouds scanned on the calibration plate at the ith position, NC,i 
represents the normal 3D vector from the origin of the camera coordinate system to the plane of 
the calibration plate at the ith position, ||NC,i|| is the modulus of the vector NC,i, and Pi,j represents 
the jth laser scanning point on the calibration plate at the ith position.
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3.	 Camera and LIDAR Joint Calibration

3.1	 Basic concept of joint calibration

	 The geometric relationship between points in the 3D laser point cloud coordinate system and 
the 2D pixel coordinate system of a 2D plane is displayed in Fig. 1. The process of solving the 
model parameters represents the process of LIDAR and camera joint calibration, which can be 
transformed into an equation-solving problem.(17)

	 The basic principle of LIDAR and camera joint calibration is shown in Fig. 1. The LIDAR 
coordinate system OL − XL, YL, ZL, camera coordinate system OC − XC, YC, ZC, image coordinate 
system O − X, Y, and pixel coordinate system O − u, v are set as shown in Fig. 1. There are linear 
relationships between the coordinate systems. Also, θx, θy, and θz denote the steering angles of 
the LIDAR coordinate system with respect to the camera coordinate system in the x, y, and z 
directions, respectively, T(t1, t2, t3) is the translation vector from the camera coordinate system to 
the LIDAR coordinate system, and (u0, v0) is the projection point of the image coordinate system 
origin to the pixel coordinate system.(18–20) Figure 2 shows the flowchart of the feature point 
joint calibration method.

3.2	 Feature point joint calibration method

	 The feature point method can obtain both 3D coordinates of a feature point in the LIDAR and 
2D pixel coordinates of an image. To facilitate the acquisition of feature points, a special three-
plane calibration plate is designed, as shown in Fig. 3. The calibration plate has three non-
coplanar spatial planes denoted as planes 1, 2, and 3, and the three spatial points represent the 
three feature points to be obtained.

Fig. 1.	 (Color online) Schematic diagram of the 
checkerboard joint calibration method.

Fig. 2.	 Flowchar t of the feature point joint 
calibration method.
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	 In the data acquisition process, to make planes 1, 2, and 3 obtain as many laser points as 
possible, a point cloud processing algorithm based on the points in the respective planes is used, 
and the face plane equation is derived as Aix + Biy + Ciz + Di = 0, where i = 1, 2, 3; the 
corresponding plane normal to Vi is (Ai, Bi, Ci) (i = 1, 2, 3). As shown in Fig. 3, the intersection of 
the three planes P1 satisfies the following equations:

	
1 1 1 1

2 2 2 2

3 3 3 3

0
0
0

A x B y C z D
A x B y C z D
A x B y C z D

+ + + =
 + + + =
 + + + =

.	 (6)

	 The spatial coordinates of P1 can be determined using the linear least squares method.
	 According to Fig. 3, the direction of vector 1 2P P



 should be the same as V1 × V2, and its length 
1 2P P


 can be obtained from the calibration plate; then, vector 1 2P P


 is obtained. Similarly, we can 
obtain vector 1 3P P



.
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	 The values with the positive and negative signs in Eqs. (7) and (8) are combined with the 
calibration plate according to Fig. 3. Since the coordinates of vectors 1 2P P



, 1 3P P


, and P1 are 
known, the coordinates of points P2 and P3 can be calculated.
	 The 2D pixel coordinates of the feature points can be obtained by corner point detection with 
a manual check, and then the corresponding point sets of the feature points can be obtained. The 
calibration plate position is continuously changed for data acquisition, and three sets of feature 
points are obtained for each of the positions according to the above-presented method. The 
solution process after obtaining the feature points is as follows:

Fig. 3.	 (Color online) Special three-plane calibration board.
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	 Substituting the third equation of Eq. (9) into the first two equations in Eq. (9) yields

	 31 32 33 34 11 12 13 14

31 32 33 34 21 22 23 24

( )
( )

L L L L L L

L L L L L L

u n X n Y n Z n n X n Y n Z n
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.	  (10)

	 Unlike the tessellation method, the eigenpoint method does not directly solve the internal 
reference and rotation matrix of the camera, but matrix M in Eq. (10). After obtaining enough 
pairs of 3D LIDAR coordinates and 2D pixel coordinate point sets of the image, the constraint 
equations are established to solve matrix M. According to Eq. (10), two equations are established 
for a pair of point sets. Then, for n sets of feature points, 2n equations can be established as 
shown in Eq. (11):
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Here, [ ]12 1 11 12 13 14 21 22 23 24 31 32 33 34, , , , , , , , , , ,A n n n n n n n n n n n n× = ; if 12 parameters of A12×1 are 
required, a minimum of six sets of point pairs are needed. To improve the accuracy, usually 
more sets of points are used to increase the number of constraints, and then the linear least 
squares method is used to solve the problem.

4.	 Experiments and Analysis of Results 

	 This study used an autonomous driving high-precision map acquisition platform developed 
by the authors for data acquisition to conduct joint calibration experiments and accuracy 
evaluation. The acquisition platform mainly included a Songling robot, a Hesai Pandar40 
LIDAR, and a FLIR industrial camera, as shown in Figs. 4 and 5.
	 The Songling robot had the advantages of a long range, a high speed under this structure, a 
large weight capacity of up to 200 kg, and support for the ROS system access. The LIDAR 
detection distance was 200 m, having a 20% reflectivity; the vertical field of view was 23°, 
which provided a view range from −16 to +7°; the minimum vertical angle resolution was 0.33°; 
the minimum horizontal angle resolution was 0.2°. The industrial camera sensor was a CCD 
having a resolution of 3376 × 2704 pixels and a display frame rate of 9 fps.
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4.1	 Checkerboard grid method experiment

	 In accordance with the method described in Sect. 2.1, the checkerboard grid was placed in 16 
different positions for the calibration of the LIDAR and the corresponding image feature points. 
First, the internal and external parameters of the camera were obtained by Zhang’s calibration 
method. Then, the 3D vector was calculated by fitting the plane equation to the point cloud data 
of the camera calibration board and the initial solution of the rotation matrix of the point cloud 
coordinate system to the camera coordinate system. The translation vector from the point cloud 
coordinate system to the camera coordinate system was then calculated using the limiting 
equation. The LM nonlinear optimization algorithm was used to iteratively optimize the 
objective function of Eq. (5) to obtain the optimal solution and obtain the external reference 
matrix of the LIDAR and camera.

Fig. 4.	 (Color online) Autopilot equipment.

Fig. 5.	 (Color online) Camera and LIDAR.
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4.2	 Joint calibration experiment of feature point method

	 In the feature point method, corner point detection was first performed on the acquired 
images to obtain 2D coordinates of the pixel coordinate system. In this experiment, we used a 
special custom-built calibration plate for data acquisition, which was divided into two parts. The 
first part consisted of a lightweight tripod used to adjust the height of the calibration plate to 
facilitate the acquisition of point cloud data. The second part of the calibration plate had a 
similar shape to the board shown in Fig. 3, where planes 1 and 3 were right-angle triangles with 
sides of 60, 80, and 100 cm and plane 2 was an isosceles triangle having a base length of 120 cm 
and two sides with a length of 100 cm. When collecting the calibration plate point cloud data, the 
points on lines intersecting two planes were avoided, and the three planes were used to obtain as 
many point clouds as possible. The acquired image data are shown in Fig. 6.
	 In the experiment, the coordinates of feature points P1, P2, and P3 were obtained by using 
corner point detection, but the result was not satisfactory, so a manual extraction method was 
used to obtain the coordinates of the corner points. The locations of the corner points of the 
feature points are shown as green points in Fig. 7.

Fig. 6.	 (Color online) Image data.

Fig. 7.	 (Color online) Corner point data acquisition.
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	 For the acquired point cloud data of the calibration plate, the least squares method was used 
to fit the plane to each point cloud of the calibration plate and to find the three-plane intersection 
point P1; then, the coordinates of points P2 and P3 were obtained. The point cloud image is 
shown in Fig. 8.
	 After obtaining the 3D coordinates of points P1, P2, and P3 in the 3D laser coordinate system 
and the pixel coordinates in the pixel coordinate system, the over-constrained equations were 
solved using Eq. (11), whose solution contains 12 parameters, as shown in Table 1.

4.3	 Point cloud projection experiment

	 To verify the calibration accuracy of the joint calibration method of feature points visually, 
the image and point cloud data of the calibration plate were collected in the south parking lot of  
an academic building in the Daxing campus of Beijing University of Architecture using a high-
precision map acquisition platform. The results are shown in Fig. 9, where it can be seen that the 
point cloud of the calibration plate coincides well with the image data, and the point cloud of the 
trees on the left side coincides well with the point cloud of the vehicles in the rear, which 
demonstrates the feasibility of the feature point method.

Fig. 8.	 (Color online) Point cloud image: (a) initial point cloud and (b) calibration board point cloud.

Table 1
Calibration result of the characteristic point method.

Experimental 
sample group Matrix parameters A12×1

Group 1
−1.00000 −0.87567 0.27845 −0.18630
−0.26866 −0.67843 −1.06084 −0.31638

0.00002 −0.00049 −0.00001 −0.00006

Group 2
−1.00000 −0.72830 0.25850 −0.12702
−0.29605 −0.61858 −0.98411 −0.28856
−0.00002 −0.00046 −0.00001 −0.00006

Group 3
−1.00000 −0.73259 0.25792 −0.15787
−0.28786 −0.63105 −0.97909 −0.37161
−0.00002 −0.00046 −0.00001 −0.00006

(a) (b)
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4.4	 Accuracy evaluation of compound origin coordinates

	 In the accuracy verification of the algorithm, we considered that it may be difficult to fit the 
center of the point cloud using spherical targets and to obtain their two-bit pixel coordinates 
directly. Therefore, the specific targets used in the feature point method were used for the 
accuracy evaluation. The target was placed on the south side of an academic building in the 
Daxing campus of Beijing University of Architecture, so that its three planes could be scanned 
by the laser, and its 3D coordinates were obtained. The 2D pixel coordinates of the feature points 
were obtained from the image data.
	 The 3D coordinates of the target were linearly converted to the 2D pixel coordinates using 
the calibration parameters obtained by the tessellation grid method and the feature point method. 
The recovered pixel coordinates were compared with the true 2D pixel coordinates. The error 
was calculated by

	 2 2
, , , ,( ) ( )p i l i p i l ie u u v v= − + − ,	 (12)

where , ,( , )p i p iu v  denotes the true pixel point coordinates of the ith target and , ,( , )l i l iu v  denotes 
the recovered pixel point coordinates of the ith target. The error statistics are given in Tables 2 
and 3.
	 The maximum, minimum, and average errors of the checkerboard grid method were 2.93, 
1.51, and 2.12 pixels, whereas those of the characteristic point method were 4.73, 1.71, and 3.02 
pixels, respectively.
	 In the feature point method, it was not necessary to perform camera calibration to obtain the 
camera’s internal reference matrix; the rotation translation matrix was included in matrix A in 
Eq. (11). Although the physical meaning of the internal reference matrix was not very intuitive, 
its calculation was relatively convenient, and the calculation used known feature points in the 
pixel coordinate system and radar coordinate system coordinates. In this study, the point cloud 
coordinates of the feature points were obtained by fitting the planes using a special calibration 
plate, whose pixel coordinates were obtained manually, which increased the error but made the 
calculation more efficient.

Fig. 9.	 (Color online) Point cloud projection results of calibration point method: (a) initial image data and (b) point 
cloud projection data of calibration board.

(a) (b)



Sensors and Materials, Vol. 33, No. 12 (2021)	 4499

5.	 Conclusion

	 In this study, the calibration methods of LIDAR and camera sensors related to the sensing 
module in autonomous driving were investigated. In the joint calibration process, the calibration 
parameters obtained by the feature point calibration method were used for projection verification 
experiments and accuracy evaluation experiments, and the point cloud data and camera data 
were fused and used in the projection experiments. The average error of the recovered point 

Table 3
Error statistics of point coordinates recovered by characteristic point method. The unit is pixels.
Image 
size

Test point 
number

True 2D pixel 
coordinates (u,v)

Pixel coordinates (u,v) obtained by 
characteristic point method

Characteristic method 
projection results

1
1 1218 1216 1215.32 1212.84 4.14
2 1017 1479 1014.83 1476.29 3.47
3 1428 1467 1425.37 1464.75 3.46

2
4 1439 1216 1438.23 1214.47 1.71
5 1242 1475 1239.94 1474.76 2.07
6 1646 1467 1642.72 1463.59 4.73

3
7 1606 1213 1604.23 1210.89 2.75
8 1408 1472 1410.21 1469.34 3.46
9 1811 1466 1811.89 1468.79 2.93

4
10 1746 1214 1747.38 1216.17 2.57
11 1558 1470 1559.47 1467.69 2.74
12 1952 1464 1950.62 1466.52 2.87

5
13 1901 1214 1903.55 1216.42 3.52
14 1703 1467 1704.79 1466.62 1.83
15 2100 1464 2098.45 1461.32 3.10

Average value (unit: pixel) 3.02

Table 2
Error statistics of point coordinates recovered by checkerboard grid method. The unit is pixels.
Image 
size

Test point 
number

True 2D pixel 
coordinates (u,v)

Pixel coordinates (u,v) obtained by 
checkerboard grid method

Checkerboard method 
projection results

1
1 1218 1216 1216.53 1213.96 2.51
2 1017 1479 1015.42 1477.52 2.16
3 1428 1467 1426.32 1466.17 1.87

2
4 1439 1216 1438.28 1214.83 1.37
5 1242 1475 1240.12 1474.43 1.96
6 1646 1467 1645.01 1465.31 1.96

3
7 1606 1213 1604.28 1210.83 2.77
8 1408 1472 1410.12 1470.83 2.42
9 1811 1466 1810.32 1464.83 1.35

4
10 1746 1214 1743.98 1215.32 2.41
11 1558 1470 1556.32 1469.32 1.81
12 1952 1464 1950.39 1462.31 2.33

5
13 1901 1214 1903.12 1216.02 2.93
14 1703 1467 1705.23 1466.03 2.43
15 2100 1464 2101.21 1463.09 1.51

Average value (unit: pixel) 2.12
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coordinates compared with the true point coordinates was 3.02 pixels for the feature point 
method. To overcome the problems of the time-consuming and computationally demanding 
tessellation method, in the feature point method, camera calibration is not required to obtain the 
internal reference of the camera, and the rotation and translation matrices exist in a single 
matrix. Although the physical meaning of this matrix is not very intuitive, its calculation is 
relatively convenient and efficient, but the acquisition error of the feature point pixel coordinates 
is relatively large and needs to be improved. The experimental results show that both calibration 
methods have advantages and disadvantages, but they both have good practicality and high 
accuracy, and thus are suitable for use in actual applications.
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