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	 The effective and quantitative monitoring of spatial-temporal changes in eco-environment 
quality is critical for urban sustainable development and policymaking. In this study, four 
ecological factors (greenness, wetness, heat, and dryness) of Beijing were obtained by integrating 
MODIS imagery in each year from 2001 to 2020. Then, a remote sensing ecological index 
(RSEI), which is employed to assess the eco-environment quality, based on the four factors was 
constructed by using the Google Earth Engine (GEE) platform. Finally, the spatial-temporal 
changes in RSEI over the 20 years were analyzed. The results show that the eco-environment 
quality of Beijing improved from 2001 to 2020, with the average RSEI increasing from 0.586 in 
2001 to 0.64 in 2020. The eco-environment quality in the mountainous areas of Beijing is higher 
than that in the urban areas. The area exhibiting deterioration decreased from 23.46% between 
2001 and 2005 to 8.66% between 2015 and 2020, while the area with improved eco-environment 
quality increased from 13.04% between 2001 and 2005 to 21.64% between 2015 and 2020. We 
have thus assessed the spatial-temporal changes in eco-environment quality based on RSEI and 
GEE, which is critical to the investigation of the interactions between human activities and 
ecosystem services in Beijing.

1.	 Introduction

	 The ecological impact of urban development is an important area of research and is closely 
related to human health and the urban eco-environment. In recent years, the industrialization 
and urbanization of China have been rapid. This change has had a significant impact on the use 
of land cover and natural landscapes through the growth of built-up areas.(1) However, the rate of 
urbanization has been more rapid than the self-regulation speed of the ecosystem, resulting in a 
slew of urban issues such as congestion, waterlogging, the heat island effect, and air pollution.(2) 
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Therefore, ecological development for big cities is an important problem to consider, and 
regional planners must prioritize it in a city’s construction.
	 Satellite remote sensing technology is widely used in assessing the quality of the regional 
eco-environment because it can swiftly, precisely, and thoroughly perform large-scale 
monitoring.(3,4) Some remote-sensing-based indices have been used to evaluate the health of 
ecosystems. Xu and coworkers constructed a comprehensive indicator named a remote sensing 
ecological index (RSEI) involving four indicators (greenness, wetness, dryness, and heat).(5,6) 
RSEI can reflect the effects of climate change and environmental stresses induced by human 
activities.(7,8) For example, Yuan et al. applied RSEI in assessing ecological conditions of the 
Dongting Lake Basin from 2001 to 2019.(9) The results suggested that RSEI can objectively 
reveal the eco-environment quality on a regional scale. Moreover, using RSEI to assess the eco-
environment quality can help to prevent variations or mistakes in weight definitions caused by 
individual characteristics. Yue et al. evaluated the temporal-spatial changes of the eco-
environment of China’s 35 major cities based on RSEI.(10) Firozjaei et al. presented a new 
method based on RSEI to quantify the urban surface ecological poorness zone (USEPZ) of 
different cities in Europe.(11) The results showed that RSEI is very useful in modeling the USEPZ 
intensity (USEPZI) of cities in different environments. Kamara et al. used RSEI to assess the 
surface water environment in Freetown, Sierra Leone, from 2010 to 2018.(12) The results showed 
that greenness and wetness originating from surface water make a positive contribution to the 
eco-environment. However, when RSEI has been used to analyze long-term changes in eco-
environment quality at a large scale, its construction has been complex and time-consuming, 
requiring the use of typical specialized remote sensing software such as Environment for 
Visualizing Images (ENVI). 
	 Google Earth Engine (GEE) is an open-access platform for research. It has been widely used 
for large-scale studies such as those with global scope.(13–15) Compared with ENVI, GEE is more 
suitable for RSEI construction and eco-environment quality assessment at a large scale.(16) 
Therefore, in this study, we used the GEE platform to 1) construct RSEI efficiently by integrating 
MODIS images and 2) analyze spatial-temporal changes in the eco-environment quality of 
Beijing from 2001 to 2020. The results will help facilitate appropriate policies in Beijing’s eco-
environment planning and pollution management.

2.	 Materials and Methods

2.1	 Study area

	 Beijing (115°42′–117°51′E, 39°44′–41°06′N), the capital of China, is situated in northern 
China. The area has a warm temperate, semi-humid, continental monsoon climate, with four 
distinctive seasons. The average elevation of the whole city is 43.5 m and ranges from 20 to 1500 
m. The city has 17550000 residents, with a population density of 1069 people per km2.
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2.2	 Data sources

	 In this study, the MODIS product collection was used as the data source. The images were 
derived from NASA Land Processes Distributed Active Archive Center (LPDAAC) Collections 
(https://lpdaac.usgs.gov/). GEE provides standard data products for various application 
scenarios, including land surface reflectance, vegetation indicators, climate indicators, and so 
forth. MODIS data from 2001 to 2020 in a study area can be obtained online using JavaScript 
API on the platform. Specifically, the greenness component is extracted from the NDVI 
vegetation index in the MOD13A1 V6 image collection, and the images have a spatial resolution 
of 500 m.  The heat component was obtained from land surface temperature data in the 
MOD11A2 V6 product, which has a spatial resolution of 1000 m and gives the average surface 
temperature over 8 days. Surface reflectance data from the MOD09A1 V6 product were used to 
build wetness and dryness components. The estimated surface spectral reflectances of MODIS 
bands 1–7 are provided in this image set and corrected for atmospheric circumstances (such as 
gas, aerosol, and Rayleigh scattering).

2.3	 Construction of RSEI

	 We selected MODIS images of Beijing to obtain RSEI maps in 2001, 2005, 2010, 2015, and 
2020, spanning 20 years. The acquisition time of these images was from July to September. The 
four components were all composed at the same time of each year. Because the wetness and 
dryness components used MODIS reflectance data, we first selected cloud-free images by 
applying the mask algorithm and cloud pixel detection. Figure 1 shows the workflow of this 
study.
	 RSEI, a type of aggregated evaluation index, was specifically developed for assessing the 
ecological status using remote sensing technology. This index is a function of four indicators 
(greenness, wetness, dryness, and heat) that are directly related to the ecological quality and may 

Fig. 1.	 Workflow of study.
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be sensed by individuals. RSEI was built by using the first component (PC1) of the principal 
component analysis (PCA) transformation of these four indicators. PCA is a multivariate 
statistical method used to investigate the correlation between multiple variables. It can effectively 
recombine many variables with certain correlations into a few bands that retain the information 
of the initial variables. PC1 usually explains more than 80% of the total variation of the dataset. 
The contribution of each indicator to RSEI is weighted by its loading in PC1. This avoids a 
subjective assignment of the weights of indicators in the weighted sum method. Accordingly, 
RSEI can be expressed by the following function:

	 ( )1 , , ,RSEI PC f greenness wetness heat dryness =   .	 (1)

(1) Greenness: We used NDVI in MOD13A1 V6 to represent the greenness. NDVI is closely 
related to plant biomass, leaf area index, and vegetation coverage. Thus, it has long been used as 
the main ecosystem proxy variable owing to its robustness and simplicity. NDVI is expressed as

	 ( ) ( )NIR RED NIR REDNDVI ρ ρ ρ ρ= − + ,	 (2)

where REDρ  denotes the red band.
(2) Wetness: The wetness component was obtained from Tasseled Cap transformation.(17) The 
wetness component reflects the humidity level and is closely related to the quality of the eco-
environment. Wetness can be expressed as

	 1 2 3 4 5 60.1147 0.2489 0.3132 0.3122 0.6416 0.5087Wet b b b b b b= + + − − − ,	 (3)

where b1 denotes the sur_refl_b01 band in MOD09A1 V6. 
(3) Heat: We used the daytime land surface temperature (DLST) in MOD11A2 V6 to represent 
heat. The heat component can directly reflect local climate changes, different types of land use, 
and the degree of urbanization. In this study, we used DLST directly without modification.
(4) Dryness: We used the normalized difference built-up and soil index (NDBSI) to represent the 
dryness component.(18) NDBSI reflects the degree of soil desiccation, and it is composed of the 
index-based built-up index (IBI) and soil index (SI). The calculations are as follows:

	 ( ) 2NDBSI SI IBI= + ,	 (4)
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where BLUEρ , GREENρ , REDρ , NIRρ , and 1SWIRρ  are the blue, green, red, NIR, and SWIR1 bands 
of the MODIS image, respectively.
	 Because the dimensions of the four components are different, we need to normalize their 
values before performing PCA. In addition, to make horizontal comparisons during the study 
period, we also need to rescale RSEI to a value between 0 and 1.

2.4	 Google Earth Engine platform

	 GEE is a cloud-based computing platform designed to store and process satellite images and 
other earth observation data for analysis and decision making.(13) This platform houses a large 
repository of publicly available geospatial datasets (with data at the petabyte level) in the cloud, 
including Landsat, MODIS, Sentinel, and other long-term sequence image sets. GEE implements 
online processing, analysis, and visualization based on the API interface of JavaScript and 
Python language.(14) The front end is simple to use and provides a suitable environment for 
interactive data and algorithm development. Users can also add and curate their data and 
collections, while Google’s cloud resources handle all the processing steps.

3.	 Results

3.1	 Overall evaluation of eco-environment quality in Beijing

	 Figure 2 shows the changes in the average RSEI of Beijing from 2001 to 2020. The average 
RSEI over the 20 years is 0.589, indicating moderate overall eco-environment quality. The eco-
environment quality gradually declined from 2004 to 2008, then increased from 2008 to 2020. 
In 2019, RSEI reached a maximum of 0.654 over the 20 years. Overall, the average RSEI of 
Beijing, and thus the eco-environment quality, improved from 2001 to 2020.

Fig. 2.	 Average RSEI in Beijing from 2001 to 2020.
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	 RSEI values closer to 0 represent poor eco-environment quality, while those closer to 1 
represent good eco-environment quality, allowing RSEI to be divided into five levels at intervals 
of 0.2: Level 1: very poor (0–0.2); Level 2: poor (0.2–0.4); Level 3: moderate (0.4–0.6); Level 4: 
good (0.6–0.8); and Level 5: excellent (0.8–1.0). The area and proportion of each ecological level 
(very poor, poor, moderate, good, and excellent) were calculated from five RSEI maps of 2001, 
2005, 2010, 2015, and 2020. Figure 3 shows the proportion of the area of Beijing with each 
ecological level over the study period.
	 The proportion of “very poor” increased from 0.26% in 2001 to 1.15% in 2010, then decreased 
to 0.21% in 2020. The most prevalent ecological levels were “moderate” and “good” in 2001, 
which accounted for 36.68 and 44.08%, respectively, while the other three levels only accounted 
for 19.24% of the area of Beijing. The proportions of “moderate” and “good” fluctuated to some 
extent over the 20 years. The proportion of “excellent” accounted for 20.05% of the total area in 
2020, over 3.2 times that in 2001. Between 2001 and 2015, the overall ecological structure of 
Beijing did not change significantly, with “moderate” and “good” accounting for more than 70% 
of the area. After 2015, with the increase in the proportion of the “excellent” area, the overall 
ecological structure gradually shifted towards “good” and “excellent”. In summary, the RSEI, 
i.e., ecological level, of Beijing showed a positive trend from 2001 to 2020.
	 Figure 4 shows the spatial distribution of RSEI levels of Beijing in 2001, 2005, 2010, 2015, 
and 2020. The overall eco-environment quality was mainly moderate or good. The eco-
environment quality in the mountainous areas is superior to that in the plain. Beijing’s ecological 
condition deteriorated from 2001 to 2005. Specifically, the areas with good and excellent eco-
environment qualities were mainly distributed in the northwest and southwest, while those with 

Fig. 3.	 (Color online) Percentages of the five ecological levels in Beijing from 2001 to 2020.
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poor and very poor eco-environment qualities were mainly concentrated in urban areas. In 2020, 
much of the eco-environment of Beijing’s mountainous areas reached an excellent level. 
Compared with 2015, the area with moderate eco-environment quality in the plain was 
significantly larger in 2020.
	 As shown in Fig. 5, RSEI values of 16 districts in Beijing were extracted. To explore the 
changes in the eco-environment quality of each district, the 16 districts are divided into three 
categories in accordance with the Beijing urban master plan (2016–2035), which are ecological 
conservation (Huairou, Yanqing, Mentougou, Miyun, Pinggu, Fangshan, and Changping), 
central urban (Shijingshan, Haidian, Fengtai, Chaoyang, Dongcheng, and Xicheng), and other 
areas (Shunyi, Tongzhou, and Daxing). In the last 20 years, the RSEI values of Huairou, Yanqing, 
and Mentougou, all in the ecological conservation area, have been between 0.6 and 0.8, 
indicating good eco-environment quality. The RSEI values of Miyun, Pinggu, Fangshan, and 
Changping, also in the ecological conservation area, were also greater than 0.5. Except for 
Pinggu, all districts in the ecological conservation area achieved their highest RSEI in 2020. The 
RSEI values of Shunyi, Tongzhou, and Daxing have been between 0.4 and 0.6, and the values in 
2020 were lower than those in 2001, indicating that the eco-environment quality of these three 
districts has slightly decreased in the last 20 years. The mean RSEI values of Shijingshan and 
Haidian, in the central urban area, were between 0.4 and 0.6 during the study period, indicating 
moderate eco-environment quality, whereas the other districts in the central urban area had 
lower RSEI values. In 2020, the RSEI values of Fengtai and Chaoyang reached a moderate level. 
Dongcheng and Xicheng, which are located in the central urban area, had values between 0.2 
and 0.4 from 2001 to 2020, indicating poor eco-environment quality.

Fig. 4.	 (Color online) Distribution of RSEI grades in Beijing from 2001 to 2020.
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3.2	 Dynamic changes in the eco-environment quality of Beijing

	 There is a correlation between the increases and decreases in the areas of different ecological 
levels in Beijing. The mutual transfer among various ecological levels in different periods is not 
one-way, and the transferred areas are not quantitative or intuitive. Therefore, to understand the 
mutual transfer among the different ecological levels, we used a Sankey diagram to analyze the 
evolution of the areas of Beijing with different eco-environment qualities at intervals of 9 years 
(2001–2010) and 10 years (2010–2020).
	 Figure 6 shows that the eco-environment quality of Beijing slightly decreased from 2001 to 
2010 but improved from 2010 to 2020. In 2010, the area with a very poor ecological level was 
142.9 km2 greater than that in 2001, and the area with a poor ecological level increased by 613.29 
km2, with a transfer of 1183.41 km2 from the moderate ecological level. The transferred area 
from the moderate ecological level to the good ecological level was 1549.60 km2. From 2001 to 
2010, the area with a good ecological level decreased by 165.23 km2 and this change was not 
very notable. In 2010, the area with the excellent ecological level was 495.69 km2 larger than that 
in 2001, with an area of 698.88 km2 transferred from the area with a good ecological level. From 
2010 to 2020, the area with a very poor ecological level shrunk by 151.1 km2. The transferred 
area from the poor ecological level to the moderate ecological level was 1639.65 km2. There was 
little change in the area of the good ecological level, with 1696.96 km2 transferred from the 

Fig. 5.	 (Color online) RSEI values of 16 districts in Beijing from 2001 to 2020.
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moderate ecological level. The area with the excellent ecological level greatly increased, owing 
primarily to the transfer of an area of 1781.81 km2 from the good ecological level. Overall, the 
ecological condition in Beijing improved from 2010 to 2020.
	 Table 1 shows the difference in RSEI performance and the spatial-temporal area changes in 
the eco-environment quality of Beijing based on the results of RSEI level classification in 2001, 
2005, 2010, 2015, and 2020. The change levels are +3, +2, +1, 0, −1, −2, and −3, where, for 
example, an improvement from “moderate” to “excellent” is a change of +2. The results show 
that the eco-environment quality of most regions in the study area remained stable, with no 
change accounting for 63.50, 65.41, 65.89, and 69.70% in the four time periods. From 2010 to 
2020, the proportion of the negative changes was less than 10%, whereas it was 23.46% from 
2001 to 2005. The proportion of the positive changes gradually increased, with proportions of 
13.04, 22.80, 25.82, and 21.64%, and the proportion between 2010 and 2015 was the largest.
	 Figure 7 shows the spatial-temporal area changes in the eco-environment quality of Beijing 
based on the difference in RSEI performance. From 2001 to 2005, the area of deterioration was 
mainly distributed in the east and southwest of Beijing. From 2005 to 2010, the eco-environment 
quality in most regions remained stable. From 2010 to 2015, the area of deterioration was 
concentrated in the southern region, and most mountainous areas showed signs of improvement. 
Between 2015 and 2020, the overall quality of Beijing’s eco-environment increased, with only a 
few regions exhibiting environmental degradation.

Fig. 6.	 (Color online) Sankey diagram of the eco-environment quality grade in Beijing from 2001 to 2010 and 
from 2010 to 2020.
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4.	 Discussion

	 Using the GEE cloud platform, RSEI values of Beijing were calculated to efficiently analyze 
the regional eco-environment quality. This approach has the following advantages over typical 
RSEI modeling: (1) It is appropriate for long-term studies. Previously, it was relatively easy to 
choose suitable images for RSEI calculation when the volume of data was small. Most 
researchers concentrated on high-resolution satellite images such as Landsat images, which 
limited the comparability and acquisition time of RSEI. Nowadays, MODIS data provide a large 
number of images with extremely high time resolution, and it has become very difficult to select 
data that meet the requirements from the large amount of data. GEE can rapidly process a large 

Table 1
Change in RSEI level from 2001 to 2020.
Year Improvement No change Deterioration 

2001–2005

Change level +3 +2 +1 0 −1 −2 −3
Area/km2 12.91 39.54 2052.93 10250.50 3556.32 221.11 8.88

Change area/km2 2105.39 10250.50 3786.30
Percentage/% 13.04 63.50 23.46

2005–2010

Change level +3 +2 +1 0 −1 −2 −3
Area/km2 0.81 99.26 3580.53 10558.58 1853.61 47.61 1.61

Change area/km2 3680.59 10558.58 1902.84
Percentage/% 22.80 65.41 11.79

2010–2015

Change level +3 +2 +1 0 −1 −2 −3
Area/km2 0.00 75.86 4005.80 10636.77 1378.31 46.00 0.00

Change area/km2 4081.66 10636.77 1424.30
Percentage/% 25.28 65.89 8.82

2015–2020

Change level +3 +2 +1 0 −1 −2 −3
Area/km2 0.00 46.80 3446.57 11251.61 1380.73 16.95 0.00

Change area/km2 3493.37 11251.61 1397.67
Percentage/% 21.64 69.70 8.66

Fig. 7.	 (Color online) Change in ecological quality in Beijing from 2001 to 2020.
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number of images in a batch and effectively alleviate the challenges faced by RSEI when applied 
to large areas. Therefore, using the GEE platform and MODIS data to build RSEI can enable the 
study of long time series. (2) It has the potential for portable monitoring and analysis. GEE 
provides many built-in codes and functions that are easy to call, such as image synthesis, PCA, 
and cloud-mask codes. The code used in this study, which was deployed on the GEE platform, 
was successfully applied to the eco-environment monitoring of Beijing and may easily be 
adapted for the study of other regions. 
	 Although our method has shown its efficiency for assessing historical spatial-temporal 
changes in eco-environment quality, some of its limitations will be further examined in future 
studies. First, RSEI mainly focused on greenness, wetness, heat, and dryness. The ecosystem is 
a complex and diversified system with many characteristics that are tied not only to natural and 
social-economic growth but also to the government’s organizational and management capacities. 
Therefore, in future research, we may expand the number of indicators to improve the 
representativeness of regional ecological quality. Second, GEE’s large-scale pixel-level 
processing of data may encounter some problems such as memory overflow and a low processing 
speed when the research area is large, which can be improved by image segmentation. In this 
study, we mainly focused on the use of GEE for long-term eco-environment monitoring in 
Beijing. However, there was no detailed analysis or discussion of the causes of these changes, 
which should also be addressed in future research.

5.	 Conclusions

	 On the basis of the GEE platform and MODIS data, we used RSEI to analyze the spatial-
temporal changes in the eco-environment quality of Beijing in the last 20 years. The results 
show that the average RSEI was within the range of 0.55–0.70 (0.586 in 2001, 0.563 in 2005, 
0.584 in 2010, 0.617 in 2015, and 0.64 in 2020), indicating moderate eco-environment quality. In 
Beijing, the eco-environment quality in mountainous areas is notably higher than that in plain 
areas. The proportion of the area with excellent ecological level gradually increased from 6.22% 
in 2001 to 20.05% in 2020. From 2001 to 2020, the area with a deterioration of the ecological 
level decreased from 3786.30 to 1397.67 km2, while the area showing an improvement increased 
from 2105.39 to 3493.37 km2. The deterioration was concentrated in the eastern region from 
2001 to 2005. However, from 2005 to 2020, only a few areas in Beijing showed deterioration. 
	 This research was entirely based on MODIS images, and RSEI was constructed on the GEE 
platform. We have presented a realistic technique for assessing the spatial-temporal changes in 
eco-environment quality. More research is needed to connect our methodology with social-
economic data to investigate the interactions between human activities and ecological services.
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