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 We propose a neural fuzzy inference network (NFIN) based on a symbiotic Taguchi-based 
modified differential evolution (STMDE) algorithm for solving nonlinear control problems. The 
proposed STMDE algorithm not only uses the Taguchi method in its search for the best 
individual but also employs adjustable parameter control to tune the scaling factor, which can 
prevent a solution from being trapped at local optima and reinforce the search ability. Moreover, 
symbiotic evolution (SE) is applied to improve the structure of individual compositions. Unlike 
the traditional differential evolution (DE) algorithm, SE regards each individual in a population 
as being the partial solution to a problem instead of the full solution. Compared with traditional 
DE, the proposed STMDE algorithm reduces the error by 7.95, 4.51, 5.22, and 51.34% in terms of 
regulation performance, noise rejection ability, robustness to parameter variation of the 
controlled system, and controller tracking capability, respectively. In addition, our experimental 
results also indicate that the proposed STMDE algorithm exhibits superior performance to other 
algorithms used for solving nonlinear temperature-sensing control problems.

1. Introduction

 Recently, neural fuzzy inference networks (NFINs) have been commonly used in different 
fields, such as mobile robotic control,(1) image processing,(2) and fabric pilling classification.(3) 
The advantage of an NFIN is that it incorporates the reasoning characteristic of a fuzzy 
inference system with learning ability. NFINs can be divided into two types: Mamdani-type 
NFINs (M-NFINs)(4,5) and Takagi–Sugeno–Kang (TSK)-type NFINs (T-NFINs).(6–8) The fuzzy 
reasoning in an M-NFIN involves the minimum fuzzy implication rule. However, in a T-NFIN, 
the consequence of each fuzzy rule is a linear function including a combination of input 
variables. Many studies(7,8) have shown that a T-NFIN achieves superior performance to an 
M-NFIN in terms of accuracy and network size. In general, the function involving a combination 
of input variables in a T-NFIN is linear. The traditional T-NFIN does not fully capitalize on the 

mailto:cjlin@ncut.edu.tw
https://doi.org/10.18494/SAM3549
https://myukk.org/


106 Sensors and Materials, Vol. 34, No. 1 (2022)

mapping capabilities in some nonlinear problems. Thus, in this study, we adopted an available 
network structure and embedded a functional link neural network (FLNN)(9,10) into the 
consequent part of each fuzzy rule, yielding a model called a functional-based NFIN (F-NFIN). 
In the F-NFIN, the consequent part of each fuzzy rule comprises the input functional expansion.
 Learning algorithms have been used for tuning the network parameters of NFINs. The 
backpropagation (BP) learning algorithm(7, 8) is widely used for tuning the parameters of NFINs. 
However, the BP algorithm is based on gradient descent and is easily trapped at local minima. 
An evolutionary algorithm has recently been designed for optimizing the parameters of NFINs. 
Yolmeh et al (11) predicted the effect of annatto dye on Salmonella enteritidis in mayonnaise 
using a genetic algorithm (GA)-based neural network and an adaptive neuro-fuzzy inference 
system (ANFIS). Kuo et al.(12) tuned membership functions and weights in NFINs by using 
immune algorithms. In addition, Shihabudheen et al.(13) proposed an ANFIS based on particle 
swarm optimization to reduce computational complexity and improve generalization. 
Hou et al.(14) combined the differential evolution (DE) algorithm with the BP algorithm to 
optimize an NFIN for forecasting network traffic. The aforementioned evolutionary methods are 
highly efficient in their search of the global space; however, problems pertaining to local minima 
and premature convergence persist. Therefore, in this study, we focused on improving the 
traditional DE algorithm to ensure that it can be used to obtain optimal network parameters. 
 In this study, we present an NFIN with a symbiotic Taguchi-based modified differential 
evolution (STMDE) algorithm. First, the proposed STMDE algorithm adopts an effective 
method to find the best individual and to adjust the scaling factor in the DE algorithm. In 
addition, the Taguchi method,(15) which was designed for conducting simple value analyses 
through orthogonal arrays, is used to achieve a better evolutionary direction. The power of the 
Taguchi method originates from its use of fewer experimental sets to obtain more crucial 
information. Moreover, the STMDE algorithm uses symbiotic evolution (SE) to reinforce the 
traditional DE structure. SE is different from the traditional DE algorithm in that it assumes that 
each individual in the group only represents a part of the solution, rather than a complete solution 
to the problem.

2. Structure of NFIN

 As discussed in this section, the proposed NFIN model uses an FLNN to form the consequent 
part of the fuzzy rules. Figure 1 shows the structure of the proposed NFIN model. The jth fuzzy 
rule of the NFIN is represented as follows:
 The jth fuzzy rule: IF x1 is A1j and x2 is A2j, ..., and xi is Aij, ..., and xN is ANj
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B
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where xi represents the input variables, Aij represents the membership functions, φk represents 
the basis trigonometric functions, wkj represents the local output weights, N is the number of 
inputs, and B is the number of basis functions.
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 The operation functions in each layer are as follows. 
 Layer 1: This layer has no calculations, and the input variable directly transmits its value to 
the next layer:

 (1)
i io x= . (2)

Here, o(1) is the output of a node in the first layer.
 Layer 2: The membership degree is calculated as follows:
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where mij and σij represent the mean and variance of the membership function, respectively.
 Layer 3: The node represents the premise part of a fuzzy rule and uses the product operator to 
compute the premise matching degree of the fuzzy rules. The output of each node is described as 
follows:

 (3) (2).j i ijo o= ∏  (4)

Here, (2)
i ijo∏  represents the excitation of the corresponding fuzzy rule.

 Layer 4: Nodes in this layer are the consequent nodes. The inputs of the consequent nodes are 
the outputs from layer 3 with the nonlinear combinations of inputs from an FLNN added.

 (4) (3)
1

B
j j kj kko o w ϕ

=
= ⋅∑  (5)

Fig. 1. Structure of proposed NFIN model.
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Here, wkj is the weighting value of the FLNN and φk represents the functional expansion.(9) 
 Layer 5: Each node matches a single output in this layer to perform a defuzzification 
operation.
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Here, y denotes the output of the NFIN model and F is the number of fuzzy rules.

3. Proposed STMDE

 SE assumes that each individual in the group only represents a part of the solution, rather 
than a complete solution to the problem, and it combines several individuals to solve complex 
solutions. That is, the partial solution of each individual is combined with the other solutions in 
the population to generate an effective overall solution. Figure 2 illustrates the structure of the 
SE.
 The STMDE algorithm consists of four parts: initialization, fitness evaluation, parameter 
learning, and a solution-aging mechanism. During the coding step, the membership functions 
are processed by the fuzzy rules of an NFIN for individuals. Before the learning process begins, 
the sub-individual values are assigned for the initialization step. The fitness evaluation step 
assigns a suitable value to each fuzzy system, which is a combination of several fuzzy rules that 
are selected from each subpopulation. Then, the best individual is updated and recoded on the 
basis of the fitness value. The parameter-learning step executes STMDE for all subpopulations. 

Fig. 2. Structure of SE.
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This process is repeated until a given stopping condition is satisfied. A flow chart of the 
proposed STMDE algorithm is presented in Fig. 3, which depicts the entire learning process.

3.1 Initialization phase

 The initialization phase is divided into two steps: coding and the creation of an initial 
population. The coding step involves the fuzzy rules representing suitable sub-individuals for 
SE, whereas the population values are assigned before the evolution process begins. 

A. Coding step
 The first step of STMDE is the coding of each individual (rule) into an NFIN. Figure 4 
presents the parameter coding of the NFIN.

B. Creating initial population
 Before using the STMDE algorithm, every individual xi,g is randomly generated in the 
interval [0, 1], where i = 1, 2, ..., PS.

Fig. 3. Flow chart of proposed STMDE algorithm.
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3.2 Evaluation phase

 The fitness value (FV) of an NFIN is calculated using the suitable combinations of all 
selected rules. 
 Step 1: Randomly select F fuzzy rules (individuals) from each subgroup with size PS to form 
an NFIN.
 Step 2: Through Step 1, evaluate every NFIN to obtain an FV. In this study, the FV is 
described as follows:
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=
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  (7)

Here, yk is the network output of the kth data item, d
ky  is the target output of the kth data item, 

and Nt denotes the number of training data.
 Step 3: Compare the FV of each current NFIN with the FV of the best NFIN. If the FV of the 
current NFIN is higher than that of the best NFIN, then replace the best NFIN with the current 
NFIN.
 Step 4: Repeat Steps 1 to 3 until each rule of the NFIN has been selected a sufficient number 
of times.

3.3 Parameter-learning phase

 In the parameter-learning phase, the proposed STMDE algorithm conducts parameter 
learning to update all individuals. Then, the composed NFIN is evaluated to reveal each 
subpopulation, which allows each individual (rule) to develop itself. Figure 5 shows the 
individual structure in STMDE.
 The STMDE algorithm is divided into two major phases: parent choice and reproduction 
phases.

3.3.1 Parent choice phase

 To achieve a better evolutionary direction, the Taguchi method is commonly used to find the 
best parent combination, which is one of the popular optimization methods in robotic design 

Fig. 4. Parameter coding of NFIN model.
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processes. In an evolutionary algorithm, the Taguchi method can effectively lead the individual 
to evolve in a better direction. In our proposed algorithm, this experimental method is used to 
obtain an optimal parent combination in the learning algorithm. We describe how to obtain the 
best parent combination using the Taguchi method. The orthogonal array (OA) in the Taguchi 
method provides many reduced variances for the experiment with the optimal control parameter 
setting. An OA provides a set of well-balanced (minimum number of) experiments and helps in 
analyzing the factor efficiency and predicting the optimal parameter combination. A two-level 
OA is used in the proposed algorithm. The general symbol for a standard two-level OA is 

 Lp(qs), (8)

where p is the number of experiments, q is the level of each factor, and s is the number of 
affecting factors.

A. Experimental factor determination and OA creation
 For the ith individual in the gth generation xi,g, where i = 1, 2, ..., PS, three individuals  (xr1,g, 
xr2,g, and xr3,g) are randomly selected from the population, where r1, r2, and r3 ∈ {1, 2, ..., PS} 
and i ≠ r1 ≠ r2 ≠ r3. Therefore, a mutated individual ui,g is generated as follows:

 
1 2 3, , , ,( )i g r g r g r gu x C x x= + ⋅ − , (9)

Fig. 5. Individual structure in STMDE.
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where C is a scaling factor. To optimize the search direction and capability, a new method for 
mutating individuals is proposed and a mutated individual is redefined as follows:

 
1 2 3 1, , , , , ,( )(1 ) ( )i g r g r g r g best g r gu x C x x C x x= + − ⋅ − + ⋅ − , (10)

where C is the control rate of the evolved population and is equal to g/G, G is the number of 
generations, g is the current generation, and xbest,g is the best individual of the gth generation. 
Because the three parameters (r1, r2, and r3) of the evolutionary direction are closely related, 
these parameters are adopted as the affecting factors in the Taguchi method. Table 1 presents an 
L4(23) two-level OA in the proposed method. In the OA, the column “Experiment #” lists the 
experiments, where there are four experiments in this case. In the L4(23) OA, an experiment 
determines the influence of three different independent factors (r1, r2, and r3) with each factor 
having two levels. The column “Performance value” lists the values of ε used to evaluate each 
experimental result in terms of the signal-to-noise ratio (SNR).
 The SNR is widely used as a quality evaluation metric in communication engineering. Table 
2 presents the homologous table of the factors and their corresponding levels. Here, rf,l denotes 
the parent index, which is between 1 and PS.
 In the proposed algorithm, the tournament method is used to select the best individual. In this 
process, three individuals are randomly selected and the one with the best FV is selected. Then, 
this process is repeated three times until six different individuals from the population are 
obtained. 
 Next, the experiment is initiated in accordance with the created OA. Each individual requires 
four separate experiments, and the offspring individuals vi for each individual are generated by 
executing some evolutionary steps (mutated individual creation, crossover mutation). In the 
following paragraph, we discuss the experimental analysis. 

B. Experimental analysis
 Although the SNR in the Taguchi method is used for quality evaluation, it involves three 
types of transformations: larger-the-better, nominal-is-best, and smaller-the-better. In this study, 
larger-the-better is used and calculated with the following equation: 

Table 1
Two-level OA.

Experiment # Factors Performance value 
(SNR)r1 r2 r3

No. 1 1 1 1 ɛ1
No. 2 1 2 2 ɛ2
No. 3 2 1 2 ɛ3
No. 4 2 2 1 ɛ4

Table 2
Homologous table of factors and their corresponding levels.

Level # Factors
r1 r2 r3

Level 1 r1,1 r2,1 r3,1
Level 2 r1,2 r2,2 r3,2
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Here, yk denotes the network output of the kth data item, d
ky  denotes the target output of the kth 

data item, and Nt denotes the number of training data. The affecting factors are described as 
follows:

 , ,      ,f l iAF level l at factor fε= ∑ ∀  (12)

where i is the number of experiments, f is the factor name, and l is the number of levels. 
Therefore, on the basis of the effects of the various factors, the level of the best performance of 
each factor can be determined. Table 3 presents the performance results obtained under the 
assumption that all experiments have been completed. The best level (BL) in this generation is 
described as follows:
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 For example, Table 3 shows that the value of AF1,2 is higher than that of AF1,1 and that the BL 
of factor 1 is equal to level 2. Therefore, the best combination of the parents (r1,2, r2,1, and r3,1) 
can be obtained.

3.3.2 Reproduction phase

A. Offspring generation
 According to Eq. (8), the TMDE algorithm adopts a differential method to produce a mutated 
individual ui,g. To supplement the differential search operation, a discrete recombination 
operation called a crossover operation is used. The mutated individual ui,g in the crossover 

Table 3
Two-level OA.

Experiment # Factors Performance value (SNR)r1 r2 r3
No. 1 1 1 1 −1.93
No. 2 1 2 2 −3.06
No. 3 2 1 2 −1.02
No. 4 2 2 1 −1.59
AFf,1 −4.99 −2.95 −3.52
AFf,2 −2.61 −3.65 −4.08
Best level (BL) 2 (r1,2) 1 (r2,1) 1 (r3,1)
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operation mates with xi,g to generate the offspring vi,g. The individual vi,g  inherits from xi,g and 
ui,g and is determined using a crossover probability (CR).
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≤=  >
 (14)

Here, Rand(d)∈[0, 1] represents the dth evaluation by using a random number generator, the CR 
value is between 0 and 1, and d = 1, 2, ..., D represents the dth element of individual vectors. 
Figure 6 illustrates the crossover mechanism with eight-dimensional vectors.

B. Mutation
 To avoid the proposed STMDE algorithm becoming trapped at local optima, a mutation 
scheme is adopted to maintain the population diversity and increase the search ability. We adopt 
a one-point operation in the proposed algorithm. If the element xd in x = (x1, x2, ..., xd, ..., xD) is 
randomly selected, the resulting offspring is x = (x1, x2, ..., x’d, ..., xD). Therefore, the newly 
generated element x’d is randomly set between 0 and 1.

C. Survivor selection
 The STMDE algorithm only applies the selection process to select survivors. Therefore, the 
FV of the current composition of the NFIN, the FV of the trial composition of the NFIN, and the 
FV of the best NFIN are compared. If the FV of the current composition of the NFIN is greater 
than that of the best NFIN, the current composition of the NFIN replaces the best NFIN. If the 
FV of the trial composition of the NFIN is greater than that of the best NFIN, the trial 
composition of the NFIN replaces the best NFIN.

Fig. 6. (Color online) Crossover operation for D = 8 parameters.
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3.4 Aging mechanism

 All individuals are evolved using the best NFIN, and the subpopulations of the network may 
be similar to each other. To improve the proposed method, we propose an aging mechanism to 
overcome the problem of trapping at local optima. Here, a counter value (CV) is used to record 
the number of times the FV of the individual obtained in the current generation is lower than that 
in the previous generation. If the CV is larger than a threshold value ε, a neighborhood value is 
generated to maintain solution variation. This situation can prevent the occurrence of premature 
convergence. A new individual is generated in a suitable space and is in the neighborhood of the 
previous individual as follows.

 xi,g+1 + 1 = xi,g + α (15)

Here, α represents a control parameter used to determine the distance between the previous and 
new individuals. The value of α is between 0.001 and −0.001. If a new individual is generated, 
the CV is set to zero. When all individuals are updated, the generation should be inspected to 
determine whether it should be continued. If the generation does not achieve the terminal value, 
then the execution process returns to the fitness evaluation step.

4. Water Bath Temperature Control

 To determine the performance of the proposed STMDE algorithm, we conduct a control 
experiment. As the initial parameters considered in this experiment, the number of generations 
is 1000, the number of fuzzy systems (N) is 100, CR is 0.9, the mutation rate is 0.3, and ε is 3. 
Each problem is simulated on an Intel Pentium Core i7 3.00-4.70 GHz desktop computer and the 
program is developed using Visual C++ 6.0.
 The target of this example is water bath temperature control according to the following 
expression:

 0 ( )( ) ( ) T y tdy t u t
dt U HU

−
= + . (16)

 Here, y(t) denotes the output temperature and is obtained using a temperature sensor, u(t) 
represents the heat flowing into the water bath system, and H and U are constant values. The 
discrete-time equation of the water bath system is

 00.5 ( ) 40
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( 1) ( ) ( ) [1 ]
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b e
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− −
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where a and b are constant values (a = 1.0015e−4, b = 8.67973e−3), T0 is room temperature 
(25.0 °C), S is the sampling period and set as 30, and u(k) is set between 0 and 5 V. 
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 Figure 7 shows the proposed training method of the control system. This method is divided 
into the learning and control parts. In the learning part, we connect switches S1 and S2 to points 
1 and 2, respectively. In the learning process, y(k) = [yp(k + 1) yp(k)] is used as the input of the 
training data and u(k) is used as the desired output of the training data. The general inverse 
modeling(16) training method is adopted for the NFIN controller. In the control part, we connect 
switches S1 and S2 to points 3 and 4, respectively. 
 The input u(k) is entered into the water bath system in accordance with Eq. (17) by the 
training method. Moreover, we select 120 training data on the basis of the input–output features 
to cater to the reference output. The water temperature gradually increases from T0 = 25.0 °C 
after the random input signal is injected.
 In this study, we compare the proposed STMDE and TMDE algorithms with the DE,(14) 
immune algorithm (IA),(12) and GA.(11) The following performance measures are used in this 
study: regulation performance, noise rejection ability, parameter variation of the controlled 
system, and controller tracking capability.
 In the first simulation, the water bath system is controlled to track three temperatures.
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75 C, for 80 120
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y k k
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° ≤
= ° < ≤
 ° < ≤

 (18)

 Figure 8(a) shows the regulation results of the STMDE learning algorithm. The regulation 
performances of the TMDE algorithm, DE, IA, and GA are also evaluated. Figure 8(b) shows the 
error results of the STMDE algorithm, TMDE algorithm, DE, IA, and GA, indicating that the 
STMDE algorithm exhibits the least error among the compared algorithms. The evaluation 
index, namely, the sum of the absolute errors (SAE), is used to further test the regulation 
performance. This index is defined as

 ( ) ( )refkSAE y k y k= −∑ , (19)

where y(k) and yref(k) are the model and reference temperatures of the water bath system, 
respectively. The SAE values of the STMDE algorithm, TMDE algorithm, DE, IA, and GA are 
356.79, 361.36, 387.61, 470.84, and 452.67, respectively (Table 4, second row). The proposed 
STMDE algorithm exhibits a much better SAE value than the TMDE algorithm, DE, IA, and 
GA. 

Fig. 7. Training method of the water bath system.
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 The second simulation is implemented to evaluate the anti-noise ability of the five algorithms 
under conditions that involve unknown impulse noise interfering with the execution processes. 
A noise with −5 °C is injected to the water bath system output at the 60th sample time. 
Consequently, a set point of 50 °C is adopted in this simulation. Figures 9(a) and 9(b) show the 
control of the STMDE algorithm and the error results for all five algorithms under an impulse 
noise in the controller, respectively. The SAE values of the STMDE algorithm, TMDE algorithm, 
DE, IA, and GA are 247.83, 251.24, 259.53, 408.58, and 523.33, respectively (Table 4, third row). 
The STMDE algorithm exhibits superior performance to the other algorithms and recovers 
rapidly after the impulse noise. 
 In many industrial control processes, plant parameters usually vary unpredictably. In this 
study, a 0.6 × u(k − 2) signal is added to the water bath system input after the 60th sample time in 
the third simulation to evaluate the robustness of the algorithms against disturbance. The 50 °C 
set point is also adopted. Figure 10(a) shows the robustness of the STMDE algorithm against 
disturbance. Figure 10(b) shows the corresponding errors of all five algorithms. The SAE values 
of the STMDE algorithm, TMDE algorithm, DE, IA, and GA are 356.79, 361.36, 387.61, 470.84, 
and 452.67, respectively (Table 4, fourth row). The results demonstrate the robustness against 
disturbance of the STMDE learning algorithm.
 In the final simulation, ramp-reference signals are used to evaluate the tracking capability of 
the STMDE algorithm. The following values are defined:

Fig. 8. (a) Regulation results of NFIN controller with the proposed STMDE learning algorithm in a water bath 
system. (b) Error results of STMDE algorithm, TMDE algorithm, DE, IA, and GA.

(a) (b)

Table 4
Comparison of results of various existing algorithms.

120
1 ( ) ( )refkSAE y k ky

=
= −∑ STMDE TMDE DE(14) IA(12) GA(11) 

Regulation performance 356.79 361.36 387.61 470.84 452.67
Influence of impulse noise 247.83 251.24 259.53 408.58 523.33
Effect of change in plant dynamics 234.86 238.27 247.82 424.63 565.59
Tracking performance 31.68 39.15 65.11 281.04 272.34
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 Figure 11(a) shows the tracking capability of the STMDE algorithm. In addition, Fig. 11(b) 
shows the tracking error results of all five algorithms. The SAE values of the STMDE algorithm, 
TMDE algorithm, DE, IA, and GA are 31.68, 39.15, 65.11, 281.04, and 272.34, respectively 
(Table 4, fifth row).

Fig. 10. (a) Results of NFIN controller with STMDE learning algorithm under a disturbance rejection. (b) Error 
results of STMDE algorithm, TMDE algorithm, DE, IA, and GA.

Fig. 9. (a) Results obtained for NFIN controller with STMDE learning algorithm after the impulse noise. (b) Error 
results of STMDE algorithm, TMDE algorithm, DE, IA, and GA.

(a) (b)

(a) (b)
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 The learning curves of the STMDE algorithm, TMDE algorithm, DE, IA, and GA are 
illustrated in Fig. 12, revealing the highest FV value of the proposed STMDE algorithm in the 
water bath system. The four performance measure results are presented in Table 4. In this table, 
the results show that the NFIN with the STMDE algorithm outperformed the other algorithms.

5. Conclusions

 We proposed an NFIN based on an STMDE algorithm to solve nonlinear temperature control 
problems. In the NFIN, a nonlinear combination of inputs is adopted as the consequent part of a 
fuzzy rule and the STMDE algorithm is used to optimize the controller parameters. The 
proposed STMDE algorithm uses SE to find suitable rule combinations. Then, an aging 

Fig. 11. (a) Tracking results of NFIN controller with the proposed STMDE learning algorithm. (b) Error results of 
STMDE algorithm, TMDE algorithm, DE, IA, and GA. 

Fig. 12. Learning results of STMDE algorithm, TMDE algorithm, DE, IA, and GA.

(a) (b)
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mechanism is applied to prevent the solution from falling into a local optimum. This STMDE 
algorithm improves the convergence speed and accuracy. To determine the performance of the 
proposed STMDE, we conducted a temperature-sensing control experiment, where the 
temperature of the water bath system was measured using a temperature sensor. The obtained 
SAE values of the proposed STMDE algorithm were 356.79, 247.83, 234.86, and 31.68 for the 
regulation, anti-noise ability, robustness to parameter variation of the controlled system, and 
tracking capability of the controller, respectively. These values were also lower than those of 
other algorithms. In future work, the NFIN based on the STMDE algorithm can be implemented 
in a system on a chip to achieve high-speed operations in real-time temperature control 
applications.
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