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 Fruit quality classification in the consumer market has become a considerable burden 
following the decrease in the young adult population engaged in agriculture in Taiwan owing to 
its labor-intensiveness. We propose a system to identify the external quality of fruit, which  
utilizes a camera as an image sensor and an artificial intelligence algorithm as a classifier. This 
application is suitable for real operating environments. Fruits are mainly detected by the “you 
only look once” (YOLO)-V3 algorithm, with the designated fruit continuously tracked using the 
characteristics of the image, such as size, height, width, etc., and the quality of fruit is detected 
during the tracking process. Finally, the switching gap of the application distinguishes fruits of 
different quality. The proposed application detects round fruit such as apples, oranges, and 
lemons using our newly developed process. We also provide a graphical user interface to control 
and collect data, evaluate models, and monitor the entire system operation to improve the 
efficiency of the proposed application. The experimental results show that the proposed 
application achieves an accuracy rate of up to 88% after testing on 6000 fruit images. 

1. Introduction

 In recent years, the miniaturization of chips and the technological advancement of image 
sensors have proceeded. Artificial intelligence algorithms have also been rapidly developed and 
applied in various fields. Among them, machine learning and deep learning have been 
extensively used in image processing as their pattern recognition capabilities are compatible 
with human vision. In machine learning and deep learning, features can be captured from data 
through training. We can apply feature operations in fruit detection and recognition to implement 
automatically controlled gateways for fruit quality classification with supervised learning. 
 We have been investigating deep learning applications in machine learning and their 
application to fruit quality classification, which is an essential but labor-intensive process in 
agriculture because human vision and manual screening are often required. Hence, we have 
designed a classification application for automatically sorting fruits according to their quality to 
help farmers. Furthermore, we aim to implement the system with a reduced hardware cost.
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2. Literature Review

 Krizhevsky et al. proposed the training of a large, deep convolutional neural network (CNN) 
with high-resolution images from the ImageNet image database.(1) In 2017, Howard et al. 
proposed a highly effective convolution computation, depthwise (DW) convolution, which 
reduces the number of parameters and computation.(2) When the input consists of three channels, 
each channel is computed using a single convolution kernel. The main difference from the 
convolution computation of Krizhevsky et al. is that the DW convolution is performed on a 2D 
plane. In addition, the size of the filter must be the same as the input channel of the previous 
layer. Finally, the size of the output tensor from the figure must be consistent with the number of 
filters.
 Chollet also proposed the use of a type of convolution computation, referred to as the DW 
separable convolution, which is composed of two architectures: the first architecture is the same 
as the DW convolution mentioned above, and the second architecture is called the pointwise 
(PW) convolution.(3) In 2018, Sandler et al. proposed a network architecture that is a continuation 
of Chollet’s research.(4) In this architecture, there are two modes to be set. In the Stride=1 mode, 
the pace of each movement is one pixel and convolution is performed with the convolution 
kernel. The input features and the completed features are summed to solve the gradient value 
disappearance problem. In the Stride=2 mode, no summation is performed. Instead, a linear 
activation function is used when a 1 × 1 kernel is used for convolution. Chen et al. proposed the 
octave convolution, in which, unlike the CNN, a new alpha hyperparameter is added to set the 
size of its value.(5)

 Apte et al. applied the “you only look once” (YOLO) algorithm to a mobile app in 2017, 
where the algorithm was used to classify images taken by the phone.(6) The authors modified the 
YOLO feature extraction network model to enhance the inference speed of the model. Their 
work built on that of Iandola et al., who applied a fire module layer to significantly reduce the 
number of parameters and increase the image detection speed.(7) In 2018, Redmon and Farhadi 
proposed the YOLO-v3 algorithm, which is an improvement of the YOLO-v1 algorithm proposed 
by Apte et al.(8) The YOLO-v3 algorithm was able to process 608×608 images on an NVIDIA 
Titan X graphics card at a speed of up to 20 frames per second. Santad et al. proposed the use of 
camera images to enhance security monitoring systems and achieve tracking through object 
movements.(9) The proposed system used the YOLO algorithm to detect luggage and analyze its 
association with its owner.
 Yogesh and Dubey established a feature database containing the external properties of fruit 
(such as color, size, shape, and texture), wherein images were first segmented and a speeded-up 
robust features algorithm was applied to the segmented images. The feature database was then 
used to detect fruit defects.(10) In 2018, Khaing et al. proposed the use of the backpropagation 
algorithm to train a CNN for the identification and classification of fruit using an automatic 
classification system based on vision.(11) Since object detection using artificial intelligence 
algorithms requires numerous images for training, Jeong et al. proposed the use of the YOLO 
algorithm to construct an image preprocessing system and demonstrated its capability of highly 
efficient training.(12) In 2019, Hendry and Chen proposed the use of the YOLO-Darknet deep 
learning framework for car number plate detection. The authors used the YOLO algorithm with 
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seven convolution layers to detect a single class.(13) The detection method is a sliding-window 
process. In the same year, Sachin et al. proposed a method to detect and classify three green 
vegetables of different types and sizes. The method used the YOLO algorithm with TensorFlow 
and OpenCV for image recognition. OpenCV was primarily used to preprocess the images 
before training, and the YOLO algorithm was used for detection and classification.(14) In 2020, 
Liu et al. proposed the use of the YOLOv3 to improve a tomato detection model. The model 
replaced the traditional rectangular box (R-Bbox) with a circular box (C-Bbox) for tomato 
localization.(15) Chen et al. proposed the combination of an artificial intelligence algorithm and 
microprocessors to control the gateway switch of a conveyor.(16) The platform was used to build 
a small fruit/vegetable quality classification system.

3. Structure of System

3.1 System overview

 The proposed system combines appropriate equipment and technologies, such as the YOLO 
object detection algorithm, an STM32 microprocessor, a graphical user interface, and an 
MG996R servomotor, to recognize and classify the quality of fruit. The system’s functions 
include fruit detection, quality recognition, and fruit tracking and control. 
 The system is coupled with a graphical user interface to display the current location of the 
fruit and the classification status. Cameras are integrated to perform fruit image detection and 
image preprocessing. By using the YOLO algorithm for fruit detection, overlapping objects can 
be separated, and the detected fruit image can be tracked continuously. A fruit recognition 
model is designed to recognize the quality of the fruit and perform classification. Another model 
is then used to determine whether the quality of the fruit is satisfactory.
 Figure 1 shows the structure diagram of the fruit quality classification system, which uses a 
neural network model trained by two supervised learning methods. Model-A uses the YOLO 
algorithm to perform object detection model training; Model-B uses the CNN architecture to 
design the recognition model. The model is trained to search for functions fitting the features in 
the data. After evaluating the completed model, the model is integrated into the system 
architecture.

3.2 Software architecture

 The fruit quality classification system is divided into four parts. The first part consists of the 
software control of the front and back gateways. The second part is the network model built by 
the CNN method, where Model-A uses Tiny-YOLO to detect fruit on the conveyor platform and 
Model-B recognizes the type of fruit and checks for defects.
 The third part consists of the comparison and elimination algorithm used to eliminate the 
repeated bounding boxes. The fourth part is the tracking algorithm used to track the fruit on the 
conveyor platform. Finally, TensorRT is applied to compress the model. Figure 2 shows a 
software diagram of the fruit quality classification system.
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4. Research Methods

4.1 Object detection model

 In this work, the system is designed with the Tiny-YOLO algorithm as the baseline, and 
different feature acquisition networks are designed. In the proposed system, we classify the good 

 Fig. 1. (Color online) Structure diagram of fruit quality classification system.

  Fig. 2. (Color online) Software diagram of fruit quality classification system.
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fruit in one category and the defective fruit in another category. The time required for 
classification can be reduced using the designed classification method, which helps the model to 
converge and generate the fruit dataset faster. Fruit detection is then performed on the trained 
model.
 The Tiny-YOLO architecture is composed of the CNN and Maxpooling. Figure 3 shows the 
complete Tiny-YOLO architecture. A batch normalization (BN) layer is added after each 
convolution layer to normalize the parameters, facilitate model learning, and accelerate training.

4.2 Comparison and elimination algorithm

 We have implemented an algorithm to compare the distance of each box and the nearest 
bounding box one by one, which eliminates repeated boxes and reduces errors in object tracking 
due to fruit defects being occluded by the good parts. The elimination principle is to eliminate 
the object bounding box without defects when both an object bounding box with defects and an 
object bounding box without defects appear simultaneously, as shown in Fig. 4.

 Fig. 3. (Color online) Complete Tiny-YOLO architecture.
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4.3 Object tracking algorithm

 The proposed object tracking algorithm achieved a short computation time by using the size, 
width, and height of the received image and the confidence level of the detected object to 
perform a numerical comparison and perform tracking without image information. In addition, 
we track a fruit to improve the classification accuracy since the fruit is rolled during the delivery 
process. By detecting each fruit surface, the damaged parts can be detected for recognition. 
Statistics are calculated before the fruit leaves the platform to find the highest number for 
channel separation. Figure 5 shows the fruit tracking process.

4.4	 Classification	recognition	model

 Using an object detection model to output the images required by the architecture reduces the 
time and labor costs. In addition, two architectures, a fully connected architecture and an 
autoencoder, are used to build this model, which is followed by a damage recognition process. 
An interpolation method is used to demagnify the image and reduce the time for model training 
and detection. In the future, this method can be adapted to expand its application to different 
types of fruit.

4.4.1 Convolution layer and fully connected architecture

 The architecture uses four convolution layers, as shown in the red box on the left of Fig. 6. 
The green box is the fully connected architecture used for classification. All parameters and 
weights can be trained when using such an architecture. Finally, there are six nodes in the 
output, which coincide with the six categories of fruit used for testing in this study.

4.4.2 Convolution layer and deconvolution layer architecture (autoencoder)

 Figure 7 shows the convolution and deconvolution architecture, also referred to as the 
autoencoder architecture. The red part consisting of an asymmetric architecture is the encoder 
and the green part is the decoder. This architecture first compares the similarity between the 
result obtained by automatic feature extraction and the result entered initially. If the similarity 
requirement is satisfied, the encoder output features are input to the classification layer.

 Fig. 4. (Color online) Example of eliminating repeated boxes.
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5. Experimental Results

5.1 Recognition model evaluation and training

 The fruit identification model uses the YOLO algorithm to process the dataset. The YOLO 
object detection algorithm circles the fruit and crops out the part containing the fruit from an 
image or video, similar to the region of interest (ROI) method. The photos are classified into six 
categories. The training and verification picture ratios are both set to 0.2. The classification 
method assigns labels of 0 to 5 for apples, oranges, lemons, defective apples, defective oranges, 
and defective lemons, respectively, as shown in Table 1.
 The two trained recognition model architectures are configured with a batch size of 256 and 
50 epochs. The first architecture is the fully connected architecture and the second is the 
autoencoder architecture. Categorical cross-entropy is used as the loss function, and Adam is 
used as the learning optimizer. The initial established default learning rate α is 0.001. Training is 

Fig. 5. (Color online) Object tracking using the image.

Fig. 6. (Color online) Convolution layers and fully connected layer architecture.

Fig. 7. (Color online) Autoencoder architecture.
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stopped when the new loss value is not lower than the original loss value more than 10 
consecutive times.

5.2 Training model

5.2.1 Convolution layer and fully connected architecture

 In this architecture, all network layers are configured to be trainable from start to finish. All 
network layers change with each training session due to the influences of the forward and 
backward propagation algorithms.

5.2.2 Convolution layer and deconvolution layer architecture (autoencoder)

 This framework uses a two-stage training model. The first stage encodes the eigenvalues in 
an automatic encoder and decodes the encoded eigenvalue. The loss function uses the mean 
squared error (MSE), and the learning optimizer is RMSprop, which is an adaptive learning rate 
method. The MSE is used to calculate the coder input and decoder output. As shown in Fig. 8, 

Fig. 8. (Color online) Loss value of autoencoder.

Table 1
Number of pictures in the dataset.

Apples Oranges Lemons
Defective  

apples
Defective  
oranges

Defective  
lemons

Training and verification 280 405 267 348 291 324
Testing 745 878 638 736 720 749
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both the training loss and validation loss decrease towards zero, which means that the model is 
learning.

5.3 k-fold cross-validation

 With Fig. 9 as an example, the data are randomized and divided into k (=3) equal parts. One 
part of the data is treated as the validation data and the remaining k − 1 equal parts are treated as 
the training data. The procedure is repeated until the training data are used as validation data. 
Finally, the cross-validation is repeated k times, and the sum and average of each result are 
calculated. The benefits of this method are that it learns from the data in multiple directions to 
avoid becoming trapped in a localized suboptimal solution and avoids overfitting.
 Figure 10 shows the accuracy of k-fold evaluation obtained by the fully connected layer 
architecture with all parameters and weights of the model trained directly from scratch. 
Figure 11 shows the accuracy obtained by the autoencoder. The accuracy of the fully connected 

Fig. 9. (Color online) Segmentation in k-fold cross-validation.

Fig. 10. (Color online) Cross-validation accuracy of fully connected architecture.
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layer architecture increases from zero, whereas that of the autoencoder starts at around 80%. 
Moreover, in exceptional cases, the accuracy starts at zero and increases, as shown by the black 
line in Fig. 11. This means that these test data are very different from the other test data. The 
distribution of the randomly selected data is significantly different from that of the training data. 
However, the average accuracy approached 87% with increasing number of epochs for both 
architectures. Nevertheless, the autoencoder shortens the model training time.

5.4 Confusion matrix

 The confusion matrix is used to evaluate the accuracy of supervised learning algorithms. The 
matrix compares test data with the data after model prediction and uses various indices to 
measure the classification effect. There are four possible situations when using binary 
classification as an example, as shown in Table 2.
 Tables 3 and 4 provide the numerical evaluations for the confusion matrix for the fully 
connected and autoencoder architectures, respectively. Both architectures achieved 88% 
precision and recall. However, for Class 4 (defective oranges), the recall rate was relatively low, 
with an assessed value between 65% and 68%, about 15% lower than those of the other 
categories. The low recall rate was because the images of Class 3 (defective apples) and Class 4 
(defective oranges) in Dataset 1 were very similar, causing defective oranges to be identified as 
defective apples and leading to misjudgment.
 Figures 12 and 13 show the resultant graphs for the correctly identified number of pictures 
using the confusion matrix for both architectures. The numbers of misjudgments were higher in 
both architectures for the classification of Class 4 (defective oranges), but overall, there are very 
few differences between the two architectures.

Fig. 11. (Color online) Cross-validation accuracy of autoencoder architecture.
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Fig. 13. (Color online) Number of pictures for the 
confusion matrix of the autoencoder architecture.

Fig. 12. (Color online) Number of pictures for the 
confusion matrix of the fully connected architecture.

Table 4
Numerical evaluation for the confusion matrix of the autoencoder architecture.

Precision Recall F1-score Support
Class 0 0.85 0.88 0.86 754
Class 1 0.92 0.95 0.94 878
Class 2 0.94 0.95 0.94 638
Class 3 0.83 0.93 0.88 736
Class 4 0.85 0.68 0.76 720
Class 5 0.89 0.89 0.89 749
Avg./Total 0.88 0.88 0.88 4466

Table 3
Numerical evaluation for the confusion matrix of the fully connected architecture.

Precision Recall F1-score Support
Class 0 0.84 0.92 0.88 754
Class 1 0.89 0.97 0.93 878
Class 2 0.94 0.97 0.95 638
Class 3 0.88 0.87 0.87 736
Class 4 0.84 0.65 0.74 720
Class 5 0.92 0.93 0.93 749
Avg./Total 0.89 0.89 0.88 4466

Table 2
Description of the confusion matrix.

Predictive value
0 1

Actual value 0 True negative (TN) False positive (FP)
1 False positive (FP) True negative (TN)
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6. Conclusion

 In this research, we applied the Tiny-YOLO neural network model to perform object detection 
and compared several other models in terms of structural performance. We developed a system 
by building the model architecture with the TensorFlow and Keras frameworks. In addition, we 
acquired the images used in the dataset by using a camera as an image sensor.
 With a four-layer convolution network for object detection, the fruit recognition model for 
classification of the fruit quality achieved an accuracy of 88%. In an experiment, the complete 
system was implemented with a graphical user interface for user-friendly operation. In this 
work, a relatively large model was used to classify the three types of fruit. If the model is applied 
to a more compact development board, then a single classification model can be used for each 
type of fruit.
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