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 Recently, compound image sensor devices have been widely used to construct many next-
generation human–machine interaction applications, including hand gesture action recognition. 
Such devices, generally known as RGB-D devices, contain an RGB color camera and a depth 
sensor set. The depth sensor in RGB-D devices is essentially a set of a specific type of sensor 
and comprises one IR projector and one IR camera. This structure of the depth sensor inevitably 
generates an undesired shadow effect, adversely affecting hand gesture recognition. To tackle 
this issue and alleviate the shadow effect on hand gesture recognition, we have developed a 
serial binary image extraction approach. The proposed approach is essentially composed of two 
consecutive computation phases, phase-1 and phase-2 binary image extraction. In this work, the 
Kinect compound sensor device is employed to capture hand gesture depth images. The deep 
learning model, a visual geometry group (VGG)-type convolutional neural network (CNN), i.e., 
the well-known VGG-CNN, is utilized to evaluate the recognition effectiveness of improved 
hand gesture depth images derived from serial binary image extraction. Ten hand gestures that 
are common in daily life are chosen to evaluate depth-sensor-based interactive action 
recognition. Experimental results show that the proposed serial binary image extraction can 
effectively eliminate the undesired shadow region in hand gesture depth images and significantly 
improve the recognition accuracy of VGG-type CNN hand gesture recognition. The proposed 
depth-sensor-based hand gesture recognition approach can benefit people requiring interaction 
action recognition and further promote smart gesture communication.

1. Introduction

 The compound image sensors of RGB-D devices have promoted important developments in 
image processing techniques and creative human–machine interaction (HMI)(1–3) and 3D 
sensing recognition applications.(4–9) Well-known RGB-D sensor devices, such as Microsoft 
Kinect,(10) Leap Motion Control (LMC),(11) and ASUS Xtion,(12) contain two different modalities 
of sensors for image capture: RGB color and depth image sensors. Generally, the RGB sensor 
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cannot acquire standard images under low illumination. In contrast, the depth sensor has strong 
light tolerance and therefore its performance is satisfactory even in a dark environment. 
Therefore, depth-sensor-derived images have been employed to develop integrated applications 
or specific systems in most studies.(13–24)

 Among the depth-sensor-based works, such as depth-based scene map construction for robot 
operations(13–16) and depth-based human body gesture image acquisitions for human body 
analysis,(17–19) little attention has been paid to the property of depth-grayscale images for 
recognition due to the relatively long sensor capture distance. However, for studies in which a 
depth sensor is used to develop a hand gesture recognition system,(20–24) the depth-sensor-based 
hand gesture recognition system will be extremely sensitive to the characteristics of depth-
grayscale hand gesture images captured by the sensor. This is because a very short distance 
between the active hand and the depth sensor is required to obtain the complete hand gesture 
information. Such short-distance hand gesture image acquisition by the depth sensor will 
unavoidably cause a serious shadow effect. The shadow effect is not expected to appear in 
recognition systems (especially in deep-learning-based recognition systems) and adversely 
affects recognition accuracy, as described in detail in Sect. 2. Most depth-sensor-based hand 
gesture recognition systems have been targeted at developing improved deep learning models for 
deep neural networks (DNNs) and integrating intelligent systems in specific application 
fields.(20–24) An improved regression network for depth hand pose estimation was proposed by 
Xu et al.(20) Lai and Yanushkevich(21) developed a dynamic hand gesture recognition system 
where two different deep learning schemes based on a convolutional neural network (CNN) and 
a recurrent neural network are adopted to analyze both the skeleton information and the spatial 
information from depth images. Otberdout et al. proposed a hand pose estimation approach 
based on a deep-learning depth map for hand gesture recognition.(22) A CNN and a generative 
adversarial network were used for depth-sensor-based hand gesture recognition and hand pose 
estimation, respectively.(23,24)

 However, the undesired phenomenon of the shadow effect caused by depth sensors deployed 
in an RGB-D device has scarcely been taken into consideration in current research on depth-
sensor-based hand gesture recognition. To overcome the problem of the shadow effect resulting 
from the RGB-D depth sensor and further evaluate the effectiveness of depth sensor data without 
the shadow effect on the recognition performance of a DNN, we have developed an RGB-D 
depth-sensor-based interactive hand gesture recognition system using a typical visual geometry 
group (VGG)-type CNN with improved data of shadow effect removal derived from serial 
binary image extraction. The proposed depth-sensor-based hand gesture recognition with the 
improved depth gesture image with removed shadow regions can ensure more reliable action 
recognition results, and such hand gesture recognition with satisfactory performance can then be 
used in real-life applications that require interactive gesture recognition for interaction, 
communication, or operations (e.g., gesture interaction between disabled and able-bodied 
people, the communication of actions between miners underground in low light, and hand 
gesture control in a smart factory/car/home). In this work, the Kinect sensor device illustrated in 
Fig. 1 is employed to capture depth-grayscale hand gesture actions. As mentioned, the Kinect 
device, which is a compound image sensor, has separate RGB and depth sensors. These two 
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image sensors, which are collectively referred to as a CMOS image sensor, and the time of flight 
can be used to capture color-RGB and depth-grayscale images simultaneously. Another feature 
of Kinect image acquisition is that either the RGB sensor or depth sensor is excited and can 
operate alone. In this work on RGB-D depth-sensor-based hand gesture recognition, only the 
Kinect depth sensor channel is operated. As can be seen in Fig. 1, the depth sensors in Kinect 
essentially include one IR projector and one IR camera, resulting in an adverse shadow effect, as 
described in detail in Sect. 2.
 The main contributions of this study are summarized as follows:
(1) Removal of undesired shadow effect of hand gesture depth images from the RGB-D depth 

sensor set comprising one IR projector and one IR camera by the proposed serial binary 
image extraction.

(2) Effectiveness demonstrations of improved hand gesture depth images without shadow effect 
on recognition of CNN deep learning.

(3) Development of RGB-D depth-sensor-based hand gesture recognition by VGG-type CNN 
incorporated with serial binary image extraction for smart gesture communication.

2.	 Undesired	Shadow	Effect	of	Typical	Depth	Sensors	in	Gesture	Recognition

 A typical depth sensor uses both an IR projector and an IR camera to capture the depth image 
of a target. As mentioned before, popular RGB-D sensor devices generally have RGB and depth 
sensors. The depth sensor in the RGB-D sensor device is composed of one IR projector and one 
IR camera. During image capture or recording, both the IR projector and the IR camera are 
simultaneously used to capture the depth image of the target. Figure 2 depicts the projection and 
reception of Kinect depth-sensor-derived IR light beams. As can be seen in Fig. 2, the captured 
depth image representing the target object has a shadow region with black pixels. This is the so-
called shadow effect of the depth sensor, and the shadow region that appears in the captured 
depth image mainly consists of black pixels. According to the analysis of Danciu et al.,(25) there 
are two causes of the shadow region: (1) unexpected object occlusion and (2) optical refraction 
and reflection. The rationale behind the first cause is that an unexpected object can act as an 
obstacle to the target object located behind it. Regarding the second cause, reflection or 
refraction will occur when the IR light emitted by the IR projector reaches the target object. In 
this case, depending on the material and the degree of light absorbance of the target object, 

Fig. 1. (Color online) Popular Kinect RGB-D image sensor device with set of depth sensors comprising IR 
projector and IR camera.
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different reflection or refraction phenomena will occur. Owing to the design limitations of such 
depth sensor devices, when constructing a depth sensor image-based application system, black 
shadow regions will inevitably exist in captured depth images. The effect of the black shadow 
region on the captured image will significantly depend on the relative distance between the 
depth sensor device and the desired target object. When the distance is relatively large (such as 
human body or skeleton detection for human gesture recognition applications), the effect of the 
black shadow region will be small. However, when a relatively small distance is required for fine 
image capture (e.g., recognition of hand gesture communication actions carried out in this 
study), the effect of the unwanted black region in the overall captured depth image will greatly 
increase. Figure 3 illustrates the unwanted black shadow segment located around a real hand 
segment with depth-grayscale information. It can be clearly seen in Fig. 3 that the black hand 
shadow region has a large effect on the intended depth-grayscale hand region, which will be a 
serious problem in hand gesture recognition with high recognition accuracy.
 For depth-sensor-based applications, the above-mentioned shadow effect adversely affects 
the system performance and is undesired. In this work, the Kinect depth sensor is used to 
recognize hand gesture communication actions, and a large black shadow region in the captured 
hand gesture depth image will clearly reduce the recognition accuracy of the established system. 
To alleviate the shadow effect, a serial binary image extraction approach is proposed to obtain 
improved hand gesture depth data for VGG-type CNN deep learning and recognition, as 
described in detail in Sect. 3.

3.	 Deep	 Learning	 of	 Depth	 Images	 with	 Shadow	 Effect	 Removal	 for	 RGB-D	
Depth-sensor-based	Interactive	Hand	Gesture	Recognition

 Figure 4 shows the overall framework of the constructed hand gesture communication action 
recognition system using the Kinect sensing device with depth sensors comprising one IR 
projector and one IR camera. Using the developed recognition system, 10 hand gesture 
communication actions that are commonly used for interactions can be categorized. When 
performing recognition on a dynamic hand gesture action, continuous-time hand gesture images 
(frames) are obtained from the Kinect depth sensor. As shown in Fig. 4, for the acquired depth 

Fig. 2. Illustrations of the undesired shadow effect of the depth sensor set (greater effect at a shorter distance).
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sensor images, the region of interest (ROI) is first extracted to derive the significant image 
segment of active hand gesture regions, referred to as the ROI-depth image. As mentioned in the 
previous section, such depth-sensor-derived images are not ideal at this stage and have a 
relatively large shadow region. The proposed serial binary image extraction scheme is effectively 
applied to the ROI-depth image to eliminate most of the shadow region and alleviate the shadow 
effect. After removing the shadow from the ROI-depth image, the improved depth sensing data, 
referred to as ROI-depth + binary-values or ROI-depth + binary-values + binary-values, will 
further be used for the training and recognition test of the VGG-type CNN deep learning model, 
as described in Sects. 3.1 and 3.2.

3.1	 Shadow	effect	removal	of	depth	images	using	serial	binary	image	extraction

 Each pixel in the ROI-depth image has a grayscale value between 0 and 255, which indicates 
the degree of closeness between the depth sensor and the point. Assuming that the size of the 
ROI-depth image is n (width) by m (height), there will be n m⋅  depth degree values determined 
directly from the Kinect software development kit (Kinect-SDK). Each of these n m⋅  values 
represents the depth-grayscale value of the corresponding pixel (x, y), denoted as Depth degree 
value(x, y). Equation (1) shows the calculation of Depth degree value(x, y). Note that the value of 
Threshold is generally set as 4000, corresponding to the maximum sensing distance of the 
Kinect depth sensor of 4000 mm (i.e., 4 m). When the distance of the object is greater than 4 m, 
the value of all pixels in this object will be 255 (‘white’). Conversely, if the object is much closer 
to the depth sensor (i.e., an extremely small value of Distance), then Depth degree value(x, y). 
will be close to 0 (‘black’). The depth-grayscale degree varies linearly in the range of Threshold.

Fig. 3. (Color online) RGB and depth images with the undesired shadow region obtained with the Kinect RGB-D 
device (interactive hand gesture “what?”).

Fig. 4. (Color online) Framework of depth-sensor-based interactive hand gesture recognition with deep learning of 
depth images and shadow effect removal.
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 By using the estimated value of each Depth degree value(x, y) of the ROI-depth image, the 
proposed serial binary image extraction method removes the undesired shadow region in the 
ROI-depth image. The proposed process of serial binary image extraction for shadow effect 
removal is composed of two stages of binary value estimation, called phase-1 and phase-2. 
Phase-1 binary image extraction is performed using the following equation:
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 In the phase-1 extraction, the data of the ROI-depth image with each Depth degree value(x, y) 
determined by Eq. (1) are further converted to binary-valued information. As can be seen in Eq. 
(2), the grayscale-degree value of each pixel in the ROI-depth image is transformed to an 
estimated binary value. Hand gray level in Eq. (2) represents the depth-grayscale value of the 
hand region of the ROI-depth image, and its value is computed using the algorithm in Fig. 5 
expressed in pseudo-code. In Eq. (2), the value of 255 represents a white pixel, i.e., no degree of 

Fig. 5. Algorithm to determine Hand gray level (grayscale value of hand regions) in shadow effect removal of 
depth images by serial binary image extraction.
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grayscale appears in this pixel. The proposed algorithm for determining Hand gray level is 
conceptually simple and computationally fast. In the algorithm, the input is the ROI-depth 
image, and the main purpose of this algorithm is to find significant regions including the hand 
region, each of which has numerous pixels with the same depth-grayscale value. The depth-
grayscale value of the estimated hand region is finally returned. As can be seen in Fig. 5, the 
values of Gray-0, Gray-1, …, Gray-255 are set to zero in the initialization step. Gray-0, Gray-1, 
…, Gray-255 denote the vote boxes that accumulate votes of pixel grayscale values of the input 
ROI-depth image. When serial binary image extraction is performed on an ROI-depth image 
with a size of n by m, a total of n ∙ m pixels are required to vote among Gray-0, Gray-1, …, Gray-
255. Note that the pixel grayscale values are in the range of 0 to 255. If an image pixel has a 
grayscale value of i, the vote box of Gray-i is then increased by one. Also note that in Eq. (2), if 
the value of Depth degree value(x, y) is located between Hand gray level and 255, this pixel is 
directly set to 0. The operations in Eq. (2) transform the ROI-depth image to a binary-valued 
image. In the transformed image, the hand region retains the same depth-grayscale value, and 
the pixels in the other regions of the image are black. The black shadow region is therefore not 
distinguishable and is discarded (see Fig. 6).
 Equation (3) describes phase-2 binary image extraction. The main operation of phase-2 
binary image extraction is to further convert the output binary image derived from phase-1 
binary image extraction to different categorizations of binary images. As can be seen in Fig. 5, 
by setting Gray degree = 255 in Eq. (3), all pixels in the hand region become white. The 
transformed image is a binary-valued black-white image. Note that Gray degree in Eq. (3) is 
variable and adjustable. To achieve the optimal recognition performance of the recognition 
system with the depth sensor, using a trial-and-error approach, a grayscale value between Hand 
gray level and 255 (white) is appropriately chosen and given to Gray degree. Images with 
various settings of Gray degree are illustrated in Fig. 7.
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 As a result of the proposed serial binary image extraction, the ROI-depth data with the 
shadow effect removed can be obtained, which are then used in the training and recognition of 

Fig. 6. Shadow effect removal of depth images by serial binary image extraction (from left to right, original depth 
with shadow regions and improved depths after phase-1 and phase-2 binary image extraction).
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the deep learning VGG-type CNN model. For simplicity, the improved image data after phase-1 
and phase-2 binary image extraction calculations are referred to as ROI-depth + binary-values 
and ROI-depth + binary-values + binary-values, respectively.

3.2	 Deep	learning	and	recognition	of	interactive	hand	gestures	of	depth	images	without	
shadow	effect

 We employ the VGG-16 CNN(26) to construct a system for hand gesture communication 
action recognition using the depth sensor. As mentioned, the improved data of the depth-sensor-
derived image without the shadow effect, ROI-depth + binary-values or ROI-depth + binary-
values + binary-values, are used to perform training and recognition in the VGG-16 CNN. As 
shown in Fig. 8, the deep learning model of the VGG-16 CNN is composed of 16 processing 
layers: 13 layers for the deep learning and extraction of color characteristics of input image data 
and three layers for the classification of the extracted image feature. Note that these 13 layers for 
image feature estimation mainly perform a series of computations of convolutions and max-
pooling. The final three layers in the VGG-16 CNN, which act as a general artificial neural 
network, are composed of two fully connected (FC) layers and one classification layer.
 For typical VGG-16 CNN deep learning calculations, the size of the input image is fixed at 
224 by 224. As can be seen in Fig. 8, in this work, the final layer of the VGG-16 CNN is designed 

Fig. 8. Typical VGG-16 CNN used in depth-sensor-based hand gesture recognition for deep learning of depth 
images with shadow effect removal.

Fig. 7. Depth-grayscale values of 80, 140, 170, and 255 (from left to right) set in the hand region in the phase-2 
binary image extraction approach.
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to have 10 calculation nodes, each of which denotes the categorization scores of the 
corresponding type of hand gesture communication actions (as mentioned above, 10 different 
classes of common hand gesture actions for interactions in daily life are considered in this 
study).

4.	 Experiments	and	Results

 Experiments on depth-sensor-based interactive hand gesture recognition are carried out in a 
laboratory environment. The test user is requested to make 10 specific hand gestures that are 
widely used for interaction. These 10 different actions are labeled as Action-1, Action-2,… and 
Action-10. Table 1 shows each of these 10 hand gesture actions. For briefness and readability of 
the paper, only the first frame (image) of the specific action is shown as the representative in 
each of these 10 continuous-time gesture actions in this work, which can be clearly seen in Table 
1. When performing VGG-16 CNN recognition with improved data of depth-sensor-derived 
images, all images contained in each of these 10 continuous-time actions will still be considered. 
A hand gesture action database established in the laboratory with the Kinect sensor device 
contains 3000 images, half of which are used for training of the VGG-16 CNN, and the other 
half of which are used for testing the constructed VGG-16 CNN model. For the experimental 
database of 3000 images, the test user is requested to make 50 actions for each of these 10 
different categorizations of hand gesture actions. Each action contains 60 frames (2 s), in which 
the frame rate of the Kinect depth sensor is 30 (i.e., 30 depth sensing frames are captured by 
Kinect per second).
 As shown in Table 1, for each of these 10 different types of hand gesture actions, the original 
depth image obtained from Kinect, the ROI-depth image, the improved data of ROI-depth + 
binary-values, and the improved data of ROI-depth + binary-values + binary-values are 
provided. It can be observed that, by using the proposed serial binary image extraction approach, 
the undesired black shadow region existing in ROI-depth is greatly reduced in both ROI-depth + 
binary-values and ROI-depth + binary-values + binary-values. Figures 9 and 10 depict ROI-
depth + binary-values and ROI-depth + binary-values + binary-values frame sequences of a 
specific hand gesture categorization, Action-3 (denoting “Goodbye”), for training and 
recognition of the VGG-type CNN, respectively. Table 2 gives the recognition accuracy of 
VGG-type CNN hand gesture communication action recognition using depth sensing data with 
and without shadow effect removal. Three recognition performance results are compared, 
training accuracy, validation accuracy, and test accuracy, in the phases of model training, model 
validation, and model testing, respectively, with images of ROI-depth, ROI-depth + binary-values 
and ROI-depth + binary-values + binary-values. It can be clearly seen that the proposed serial 
binary image extraction approach has a positive effect on the recognition performance. Without 
the removal of black shadow regions, the average accuracy of VGG-type CNN recognition with 
ROI-depth is only 72.95%. In contrast, the improved data ROI-depth + binary-values derived 
from phase-1 binary image extraction and the improved data ROI-depth + binary-values + 
binary-values obtained from phase-2 binary image extraction give better performances for 
VGG-type CNN recognition of 78.54 and 78.01%, respectively. Note that in the phase-2 binary 
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Table 1
Ten common hand gesture actions with various image types for deep learning and recognition.
I nte rac t ion 
actions Original  RGB-D depth ROI-depth

ROI-depth + binary-
values

ROI-depth + binary-
values + binary-values

Action-1
(1st frame)

Action-2
(1st frame)

Action-3
(1st frame)

Action-4
(1st frame)

Action-5
(1st frame)

Action-6
(1st frame)

Action-7
(1st frame)

Action-8
(1st frame)

Action-9
(1st frame)

Action-10
(1st frame)
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Fig. 9. Continuous-time data streams of interaction hand gestures (Action-3, “Goodbye”) with improved data of 
ROI-depth + binary-values for deep learning and recognition.

Fig. 10. Continuous-time data streams of interaction hand gestures (Action-3, “Goodbye”) with improved data of 
ROI-depth + binary-values + binary-values for deep learning and recognition.

Table 2 
Recognition accuracy comparisons of VGG-type CNN hand gesture recognition using depth images with and 
without shadow effect removal.
Data categorization Data with shadows Data with shadow effect removal

Data for VGG-type CNN ROI-depth (%) ROI-depth + binary-values (%) ROI-depth + binary-values 
+ binary-values (%)

Training accuracy 100 100 100 
Validation accuracy 100 100 100 
Test accuracy 72.95 78.54 78.01 
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image extraction, the item Gray degree in Eq. (3) is set to 255, which corresponds to all white 
pixels distributed in the hand region. As mentioned, the depth-grayscale degree of the hand 
region is adjustable by appropriately setting Gray degree, and the optimal recognition accuracy 
can be acquired by trial and error. In addition, the recognition accuracy and loss value curves of 
VGG-16 CNN recognition with ROI-depth, ROI-depth + binary-values, and ROI-depth + binary-
values + binary-values in the training phase of the deep learning models are also observed, as 
shown in Figs. 11–13, respectively. It can be observed by comparing the figures that the improved 
depth data of ROI-depth + binary-values + binary-values have the most satisfactory performance, 
i.e., both the highest recognition accuracy and the lowest loss function value after a small 
number of iterations of model learning, followed by the improved depth data of ROI-depth + 
binary-values. The ROI-depth images, which still have the undesired black shadow regions, have 
the lowest performance.

Fig. 13. (Color online) Accuracy and loss value curves of VGG-type CNN hand gesture recognition using ROI-
depth + binary-values + binary-values over 60 iterations of model training in deep learning.

Fig. 12. (Color online) Accuracy and loss value curves of VGG-type CNN hand gesture recognition using ROI-
depth + binary-values over 60 iterations of model training in deep learning.

Fig. 11. (Color online) Accuracy and loss value curves of VGG-type CNN hand gesture recognition using ROI-
depth over 60 iterations of model training in deep learning.
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5.	 Conclusions

 Hand gesture depth images obtained from the RGB-D depth sensor include an undesired 
shadow effect, adversely affecting hand gesture recognition. In this study, a serial binary image 
extraction approach containing two consecutive phases of well-designed binary value image 
process schemes was employed to effectively remove the black shadow regions in hand depth 
images. Depth-sensor-based hand gesture interaction action recognition was developed by 
VGG-type CNN deep learning with improved depth data with removed shadow regions.  
Experimental results clearly show that in terms of the recognition accuracy of 10 common hand 
gesture interaction actions by VGG-type CNN deep learning, the improved hand depth data 
derived from the binary image extraction calculations of the two phases are superior to the 
original depth images acquired from the depth sensor.
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