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 Cardiovascular disease (CVD) has been the most common factor of death for decades, and 
one method to detect CVD is through heart sound auscultation. Numerous studies have 
investigated improvements in precision and accuracy for heart sound classification using 
machine learning. Nonetheless, most methods utilize many features in their machine learning to 
increase the accuracy of their predictive model to address challenges associated with signals 
acquired through sensors placed at different locations. In this paper, we propose the use of heart 
sounds segmented into three frequency bands and the extraction of features, namely, the 
Shannon entropy and spectral entropy of each frequency band, to serve as an input to our 
support vector machine (SVM). The focus of the study is to examine the use of only six features 
to achieve a satisfactory score in heart sound classification. The technique is assessed using an 
online heart sound database. The features that were extracted are trained and tested using the 
SVM to predict normal and abnormal heart sounds. Results demonstrated accuracies of 95 and 
78% for normal and abnormal heart sounds, respectively. Subsequently, the testing results 
achieved an overall accuracy of 82.5% with a sensitivity of 85% and a specificity of 80%.

1. Introduction

 Despite encouraging advances in the prevention and treatment of diseases, cardiovascular 
disease (CVD) continues to be the leading factor of death and disability worldwide. Subsequently, 
as the incidence in low- and middle-income countries increases, CVD will continue to become 
more prevalent.(1) According to the World Health Organization (WHO), more than 17.9 million 
deaths worldwide were due to CVD in 2016, representing 31% of all global deaths.(2) Owing to 
the rapid development of modern technology, machine learning algorithms can be used to 
predict heart sound recordings. To classify heart sounds, we have been searching for abnormal 
signal features such as those corresponding to mitral stenosis, mitral insufficiency, aortic 
stenosis, aortic insufficiency, tricuspid stenosis, and tricuspid insufficiency.(3) To achieve this, 
heart sound data were acquired from sensors placed in different locations. A large amount of 
research on extracting these features of heart sounds has been carried out. Many of these 
features used different signal processing methods. For example, Goda and Hajas(3) used wavelet 
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envelope features and a support vector machine (SVM), attaining an accuracy of 81.2%. Uğuz(4) 
used an artificial neural network (ANN) based on the discrete wavelet transform (DWT) and a 
fuzzy logic approach, achieving an average accuracy of 98.33%. Springer et al.(5) employed a 
hidden semi-Markov model (HSMM) and logistic regression for the accurate segmentation of 
heart sound recordings. Chen et al.(6) proposed the usage of Mel-frequency cepstral coefficients 
(MFCCs) after the segmentation of S1 signals, then applied a deep neural network, achieving an 
accuracy of 91%. Hamidi et al.(7) used fractal dimension features with MFCCs to improve the 
classification of heart sounds, gaining an accuracy of 92%. Because of the many input features 
used in machine learning algorithms, predictive tasks are challenging to model(8) and the 
computational burden may be high. The aim of this study was to test the feasibility of classifying 
heart sounds using a small number of features, namely, Shannon entropy and spectral entropy.

2. Methodology

 Figure 1 illustrates the process flow to classify normal heart sound (NHS) and abnormal 
heart sound (AHS) signals. First, each heart sound is preprocessed by detrending the signal, then 
a low-pass Butterworth filter with a frequency range of 0 to 400 Hz is used to remove unwanted 
signals. Murmurs are abnormal signals that are often heard in the mid- to high-frequency region 
(120–600 Hz),(9) while typical NHS signals such as S1 and S2 are heard in the low-frequency 
region (0–250 Hz).(9, 10) Because of their pitch variations, NHSs and AHSs can be distinguished 
from their differences in frequency. The frequency band intervals considered in this study are 
0–138, 138–276, and 276–400 Hz. A total of 121000 samples of filtered data obtained from heart 
sound recording datasets are used in this study. Second, two features are extracted from the 
filtered data, namely, Shannon entropy and spectral entropy, to calculate the similarities and 
differences of heart sound data. Lastly, the performance of the proposed method in evaluating 
heart sound abnormality is evaluated using an SVM. 
 Since feature extraction is the key to extracting the characteristics found in signals, we assess 
signals in terms of their pattern and the overall behavior based on the selected features, namely, 
Shannon entropy and spectral entropy. Shannon entropy (H) is a measure of randomness and 
complexity in the time domain, and is defined as
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where P(xi) is the probability weighting associated with xi. The logarithm base is 2 since it is 
used in communication or information. Note that H is non-negative and that the sum of the 
probabilities must be 1.(11)

Fig. 1. (Color online) Flow chart of the proposed method.
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 Spectral entropy (SE) is the power distribution in the frequency domain and is defined as
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where Xi, i = 1, 2, …, N is the Fourier transformation of the signal, and pi is the probability 
distribution.(11)

 To better understand the distribution of the entropies, the next step is to visualize the features. 
Thus, we implement t-distributed stochastic neighbor embedding (t-SNE) to visualize how the 
features of NHSs and AHSs are clustered. t-SNE collects high-dimensional datasets into low-
dimensional datasets while maintaining the structure of the high-dimensional data. It models 
each high-dimensional data into a 2D or 3D point in such a way that similar data are clustered 
together and dissimilar data are clustered at points distant from each other. The t-SNE algorithm 
consists of two main steps. First, we compute the input similarities xi and xj of the given set of 
high-dimensional data N to construct a conditional probability |j ip  that similar data are assigned 
to a higher probability and dissimilar data are assigned to a lower probability. We define the 
probability as 
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where σi is the bandwidth of the Gaussian kernel so that the condition has a fixed perplexity for 
the model to adapt to different densities. To symmetrize the conditional probability distribution 
of the high-dimensional space, we use pij defined as
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 Second, t-SNE defines a similar probability distribution of the low-dimensional map points 
as
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 To measure the similarities of the high-dimensional space pij and the low-dimensional space 
qij so that the structure of the low-dimensional map is the same as that of the original high-
dimensional map, we use the Kullback–Leibler divergence defined as(12)
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 Several machine learning classifiers such as the SVM can be used for signal processing to 
classify heart sound signals.(9) The SVM has been predominantly used in complex situations 
because it excels at solving nonlinear learning problems as well as sample learning problems.(13) 
When dealing with a nonlinear algorithm, various types of SVM kernels can handle high-
dimensional data such as cubic, fine Gaussian, and medium Gaussian data. The computation in 
this study is performed on a computer with a Windows 10 operating system and a clock speed of 
2.4 GHz. The tool used for the computation is MATLAB version R2019b. 

3. Experimental Results

 The CVD database employed in this study utilized the datasets from PhysioNet – Computing 
in the Cardiology Challenge 2016, which comprises more than 3000 datasets. The database 
consisted of a total of 3241 heart sound recordings with a duration from 5 to 121 s and a sampling 
frequency of 2 kHz. Furthermore, the heart sound recordings were collected from typical 
locations for heart sound auscultation, including the aortic, pulmonic, tricuspid, and mitral 
areas. The database has two categories: NHSs from healthy subjects and AHSs from patients 
with confirmed coronary artery disease.(14,15) The data used in the training database were 
recording samples with durations from 10 to 121 s. Subsequently, each signal was segmented 
into three bands with intervals of 0 to 138 Hz, 138 to 276 Hz, and 276 to 400 Hz.  After 
segmenting the signals, the Shannon entropy and spectral entropy were applied to extract the 
features, thus obtaining six features that served as the input into the SVM. Then, 10-fold cross-
validation was conducted on the training dataset, where 90% of the dataset was selected at 
random for training and 10% was reserved for validation. In addition, the medium Gaussian 
SVM was chosen since it provides a higher accuracy than the cubic and fine Gaussian kernels. 
The classification results are summarized in Table 1. The results demonstrate that the accuracy 
of classifying both NHSs and AHSs using the six features was superior to that obtained by 
extracting only three features. Also, according to the results for the medium Gaussian SVM 
classifier in Table 1, using the combined features significantly increased the accuracy of AHS 
classification.
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 Figure 2 shows a visualization of the features of the NHS and AHS data. The feature graph 
visualization used t-SNE, which visualized the high-dimensional data as low-dimensional 
data.(16) In Fig. 2(a), only three features from the SE of the three frequency bands were used, 
while six features from both the spectral entropy and Shannon entropy in the three frequency 
bands were used in Fig. 2(b). t-SNE displays clustering across different heart sound categories 
and shows the shifting of symbols towards specific clusters. According to the visualization, Fig. 
2(b) creates a clearer distinction and better separation between NHSs and AHSs.  
 Table 2 shows the performance of the trained model. The testing dataset was taken from the 
validation folder of PhysioNet – Computing in Cardiology Challenge 2016, which consists of 
more than 3000 test datasets, and the outcome of machine learning was tested using a medium 
Gaussian SVM classifier. The performance of the proposed algorithm was analyzed by 
determining the sensitivity, specificity, and overall score of the classification results. These three 
parameters are essential indicators of the performance of diagnostic tests compared with those in 
other studies. Recent studies of Goda and Hajas(3) and Tang et al.(17) focused on the detection of 
NHSs and AHSs using an SVM classifier. The key characteristics of these studies were the use 
of 25 features, which included combined DWT, time, and frequency features, in Ref. 3, and the 

Table 1
Heart sound classifier accuracy using the proposed method.
Feature type Feature number Classifier Abnormal (%) Normal (%)

Spectral entropy 3
Cubic SVM 35 73

Fine Gaussian SVM 35 95
Medium Gaussian SVM 32 97

Shannon entropy 3
Cubic SVM 59 56

Fine Gaussian SVM 72 95
Medium Gaussian SVM 73 94

Spectral entropy
+

Shannon entropy
6

Cubic SVM 77 94
Fine Gaussian SVM 48 96

Medium Gaussian SVM 78 95

(a) (b)
Fig. 2. (Color online) t-SNE plots visualizing cluster assignment of heart sounds with the points representing 
NHSs and the crosses exhibiting AHSs.
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use of 515 features, which were extracted from multiple domains and included preprocessing by 
the ensemble of features, in Ref. 17. From Table 2, it can be observed that the performance of the 
proposed algorithm using the SVM as the machine learning classifier is comparable to that in 
the previous studies despite its smaller number of features. 

4. Conclusion

 Heart sound classification is very helpful and can be used to aid the physician in the early 
detection and diagnosis of patients suffering from CVD or other heart diseases. Various methods 
have achieved good performance in classifying heart sound signals. In this paper, we mainly 
focused on the effect of inputting a smaller number of features, namely, Shannon entropy and 
spectral entropy, in machine learning for heart sound classification on the classification 
performance. We successfully implemented a heart sound classification system based on a 
limited number of nonlinear time-frequency features using an SVM. The parameter performance 
obtained an overall accuracy of 82.5%, comparable to the results obtained in studies that 
employed many more features. In addition, the extraction of a smaller number of features will be 
beneficial for realizing compact systems with a limited number of sensors to assist in remote 
health monitoring. Furthermore, the heart sound classification approach proposed in this study 
can be improved by employing more datasets. Additional features can also be introduced to find 
new ways to realize a fast and efficient heart sound classification system.
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