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	 Autonomous driving technology is significantly based on the fusion of high-definition (HD) 
maps and sensors. Therefore, the construction and update of HD maps must be emphasized to 
achieve full driving automation. Herein, a method is proposed to detect road facilities using 
object detection with images, particularly for HD map updates utilizing the You Only Look 
Once version 3 (YOLOv3) algorithm. The proposed approach, a deep-learning-based object 
detection method, utilizes transfer learning, which can detect objects in road facilities and record 
road sections that require maintenance. To test the effectiveness of the detection method, we 
analyze video footage captured in the Korean road environment. The experimental results show 
that this method achieves a mean average precision (mAP) of 58 and can update HD maps using 
a crowdsourcing framework.

1.	 Introduction

	 Autonomous driving technology is currently being developed owing to industry demand for a 
more robust detection system to ensure safety during driving. An example of such a detection 
system is the high-definition (HD) map.(1) HD maps contain a 3D layout of environmental 
information regarding roads in advance, afforded by the use of a driving vehicle equipped with a 
mobile mapping system (MMS) that includes sensors such as an inertial navigation system, 
radio detection and ranging sensors, light detection and ranging (LiDAR) sensors, cameras, and 
global navigation satellite systems. In addition, HD maps further enhance the features of the 
detection system. In complex road environments, HD maps enable one to recognize road 
facilities (e.g., road signs or traffic lights) and be aware of a vehicle’s surroundings. However, 
most HD map construction processes are currently performed manually, which is both costly 
and time-consuming. Hence, methods to achieve automatic HD map construction are being 
investigated actively. In particular, a system that automatically detects any changes on roads and 
corrects them synchronously on a map is highly recommended. Research pertaining to HD map 
updating focuses on real-time systems that use a crowdsourcing framework.(2–5) Although a 
significant amount of time and money is required to complete HD maps, updates to reflect 

mailto:mhjeong@chosun.ac.kr
https://doi.org/10.18494/SAM3732
https://myukk.org/


252	 Sensors and Materials, Vol. 34, No. 1 (2022)

volatile road conditions in real time are necessary to ensure safety during autonomous driving. 
This framework can be categorized into two stages: the stage of recognizing objects to identify 
changes and the stage of updating HD map features via an Internet server. This study aims to 
improve the initial detection stage of identifying changes through object recognition and realize 
an HD map updating system for autonomous driving in the Republic of Korea. In particular, the 
proposed method explicitly addresses Korean road facilities based on the road and traffic signs 
of the Republic of Korea. Methodologies for developing an efficient change detection system in a 
road environment are tested in this study. Notably, the You Only Look Once version 3 (YOLOv3) 
algorithm was utilized via transfer learning to detect traffic signs, road signs, and traffic lights 
in a video featuring a road environment in real time.
	 In Sect. 2, the features of our approach are reviewed on the basis of previous relevant studies. 
Section 3 presents the experimental data and the proposed method. Section 4 presents and 
discusses the results of the study. Finally, Sect. 5 provides conclusions, including suggestions for 
future research.

2.	 Background

	 HD maps provide road environment information and point of interest information, such as 
road alignment, lane classification, and road signs required for autonomous driving. To update 
these maps promptly and periodically, studies pertaining to the automatic detection of object 
changes are currently being conducted using LiDAR data and camera image data from sensor 
information to perform partial corrections. Road facility object detection using LiDAR data has 
been investigated extensively.(6–10) Hata and Wolf detected lanes by categorizing LiDAR point 
data for lanes and asphalt,(6) and Jo et al. attempted to identify whether a traffic sign has 
disappeared or has been added.(7) Ma et al. increased the accuracy of detecting and classifying 
road markings by applying a deep learning framework.(8) Pannen et al. constructed a framework 
that recognizes changes by detecting lanes and immediately providing a crowdsourced updated 
HD map.(9) Kim et al. used a point unit to determine whether shape change has occurred as well 
as to apply the change immediately; however, they did not specify the changed object.(10) 
Although using LiDAR data in such a manner provides outstanding accuracy in identifying the 
shape of an object, to maintain the up-to-dateness of the map, many vehicles equipped with 
MMS equipment in addition to LiDAR sensors are required to observe all roads in a wide area. 
However, the use of LiDAR equipment is costly and, therefore, not optimal for updates. By 
contrast, because modern cameras offer a relatively high resolution, the footage captured 
through mobile devices can be easily used in image detection systems. Higher resolution footage 
enables the easy identification of objects using a single device while minimizing costs. 
Therefore, object detection research using camera footage data is being actively pursued.(11–15) 
Cai et al. conducted an accurate vehicle localization study by detecting lanes through a camera 
and matching the results with existing HD maps and global navigation satellite system results.(11) 
Choi et al. identified and utilized lane, lane endpoint, and road signs for localization, and Elfring 
et al. detected traffic signs.(12,13) Alcantarilla et al. detected changes via masking and performing 
a pixel-by-pixel comparison of road facility objects in an image; however, the method was 
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limited by insufficient object identification.(14) Heo et al. detected changes by comparing the 
vector-type object of the HD map and the road facilities of camera image data through 
adversarial learning for HD map updates.(15) However, the method is not applicable to road signs 
and traffic lights and can only detect changes in road markings. The aim of this study is to 
simultaneously detect specific road facilities such as road surface markings, traffic lights, and 
signs, among other components of the HD map, using a single camera for HD map updates.

3.	 Materials and Methods

3.1	 Area of study and data

	 To conduct the research, we used the road environment panoramic image artificial 
intelligence (AI) data provided by the AI Hub site of the Korean Intelligence Information Society 
Agency.(16) These data are composed of 2711280 images of 189 types of static road environment 
objects obtained while driving a total of 3400 km on the major roads in Seoul, the Republic of 
Korea, and are used to obtain training data for automatic recognition models. Among them, 
14184 images with objects were used for transfer learning to complete the algorithm for detecting 
road facilities. Excluding objects that are insufficient for performing deep learning among the 
objects in the image, Table 1 shows a total of 12 objects managed in the HD map.
	 The Ministry of Land, Infrastructure and Transport in Korea defined 14 layers, including 189 
road facilities for HD maps. This research focused on just 12 road facilities. Our experimental 
data did not include all training images of the 189 road facilities. We selected 12 road facilities 
among the experimental data because they provided enough training data. The 12 road facilities 
covered three layers: road surface markings, traffic lights, and safety signs.
	 High-performance computation is required to complete an algorithm that automatically 
detects road facilities by deep learning using camera footage. Amazon Web Services (AWS) was 
first used to upload and store the data in an S3 bucket, which is a storage space for AWS. 
Subsequently, a Python environment was established in AWS for data preprocessing and deep 
learning implementation via elastic cloud computation. This process is shown in Fig. 1. The 

Table 1
Overview of variables used in this study.
Variables Class code

Signs

No-Parking-or-Stopping
No-Parking

Maximum-Speed-Limit
Towing-Zone

Road marks

Speed-Limit
Right-Turn
Left-Turn
Straight

Straight-or-Right
Crosswalk

Pedestrian-Crossing-Ahead
Traffic light Traffic-Light
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AWS instance option selected for this study was p2.xlarge [i.e., random access memory 61 GiB 
and graphics processing unit (GPU) 11441 MiB]. In addition, CUDA version 10.0 was used as 
the GPU, and deep learning was implemented using Keras.

3.2	 YOLOv3

	 Unlike other object detection techniques, YOLO is a one-stage detector that detects objects in 
an image by simultaneously performing localization, computation of the location of an object in 
the image, and classification to identify the object. It is a detection technique that enables real-
time detection via processing.(17) In addition, owing to its high accuracy, it is well known as an 
exceptional deep-learning-based object detection algorithm. The localization process first 
involves the indication of an object’s position based on its location and boundaries by a bounding 
box. YOLO is based on partitioning an image into several grid cells and detecting one object for 
each cell as illustrated in Fig. 2.
	 The process of YOLO determining the x,y coordinates (bx, by) of the center of the bounding 
box, and the width (bw) and height (bh) of the bounding box are as follows:

	 σ(to) = Pr(object) · IoU(b, object),	 (1)

	 bx = σ(tx) + cx,	 (2)

	 by = σ(ty) + cy,	 (3)

	 wt
w wb p e= ⋅ ,	 (4)

	 ht
h hb p e= ⋅ ,	 (5)

Fig. 1.	 (Color online) System architecture.



Sensors and Materials, Vol. 34, No. 1 (2022)	 255

where σ(to) is first calculated to obtain the final x,y coordinates of the bounding box, and it is 
determined as a value between 0 and 1 by considering whether it is an object using logistic 
regression and multiplying the corresponding IoU value. Subsequently, the result is added to cx 
and cy. cx and cy are the x- and y-coordinates of the upper left of each grid cell, respectively. tx, ty, 
tw, and th refer to the predicted model offset values; tx is the box center x-coordinate; ty is the box 
center y-coordinate; tw is the box width; th is the box height shift to obtain the final x- and 
y-coordinates of the bounding box. pw and ph are the width and height of the anchor box, 
respectively. During learning, tw and th attempt to be approximately 0; if they are 0, then wte  and 

hte  are obtained. Subsequently,  wte  and hte  return 1 and become the same as the prior value.
	 Figure 3 shows the classification stage, which is the process of classifying and differentiating 
the background and object and then determining the object. YOLOv3 detects an object under the 
assumption that the object exists in each grid cell and predicts the final class of the cell based on 
the binary cross-entropy loss. In this process, the classification of hierarchical classes such as a 
person and their gender (man/woman) is enabled using an independent logistic classifier. The 
independent logistic classifier is used instead of a softmax classifier, and it differentiates classes 
using values for each class as class probabilities. In addition, it is expressed as a value between 0 
and 1 in terms of the objectness score, which conveys the confidence in the final prediction 
class. Subsequently, it is determined whether it should be recognized as an object. This model 
was trained on the Microsoft Common Objects in Context (MS COCO) dataset.(18) These data 
contained a set of various daily life photographs created for computer vision learning, in which 
each object is segmented and labeled.

3.3	 Transfer learning

	 The existing YOLOv3 can recognize objects with up to 80 features, including men, women, 
and dogs. However, owing to the lack of usable training images for recognizing facilities in a 
road environment, the model must be further trained using these additional images. Therefore, 

Fig. 2.	 (Color online) Bounding boxes with location prediction.(17)
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transfer learning was utilized in addition to facilitating the training of the YOLOv3 algorithm to 
recognize objects in the road environment, such as road surface markings, traffic lights, and 
road signs. Using this method, we successfully maintained the framework of YOLOv3 and 
enabled the algorithm to detect new objects while maintaining its advantages. Transfer learning 
does not solely involve newly learning an entire convolutional neural network (CNN) that 
extracts features, but uses the weights obtained when completing YOLO in advance to learn new 
target data. Subsequently, the new target data are learned only in the fully connected layer, 
thereby completing the algorithm in a shorter time. Hence, transfer learning is an ideal algorithm 
for establishing an object detection model for individual datasets. Even in an environment where 
sufficient data for training are difficult to obtain, transfer learning can be implemented using the 
generated results, providing a relatively high precision.(19–23) Furthermore, according to 
Yosinski et al., if an entire CNN is trained only with individual datasets, then the model may be 
biased.(24) Hence, transfer learning was considered appropriate for the analysis. Fine-tuning was 
performed to find the optimal hyperparameters of transfer learning by adjusting the size of 
training images, the batch size, and the number of epochs. Among the various experiments, two 
sets of the initial and final values are presented for comparison in Fig. 4. Table 2 presents the 
optimal learning rates found through the Keras callback function in the learning process.

4.	 Results

	 The image data for 12 types of static objects were transferred to YOLOv3 to detect road 
facilities. Consequently, the newly created YOLOv3 accurately detected the object when 
applied to the general road footage, which was not used for learning, as shown in Fig. 5. The 

Fig. 3.	 (Color online) Multilabel classification.
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detection performance was evaluated by a confidence score, presented next to the class 
name. This value was obtained by partitioning the intersection area of the bounding box 
predicted via object detection and the ground-truth bounding box based on the union area of 
the two bounding boxes, which resulted in a value between 0 and 1. The object detection 
result of the algorithm was returned as a text result in the form of [class name, confidence 
score, bounding box top left coordinate, bounding box bottom right coordinate], and the 
visualization result obtained by matching it with the image is shown in Fig. 5.

Fig. 4.	 (Color online) Curves of training loss for different hyperparameter settings.

Table 2
Loss of transfer learning to YOLOv3.

Check point 1 Check point 2 Check point 3 Check point 4 Check point 5
Loss 17.9966 7.5566 6.9730 6.7041 6.6980
Validation loss 18.7987 7.9946 7.6314 7.2628 7.1726

(a) (b)

Fig. 5.	 (Color online) Road facilities detection: (a) straight and straight or right road marks and (b) traffic light and 
maximum speed limit sign.
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	 As shown in Fig. 5(a), the straight arrow marking on the road surface and the straight and 
right turn arrow markings were detected accurately. Moreover, Fig. 5(b) shows that the 
maximum speed limit sign and two traffic lights were detected. Figure 6(a) shows the result 
of detecting the crosswalk-ahead warning sign and traffic lights, whereas Fig. 6(b) shows 
that the speed limit road surface marks and traffic lights were detected accurately.
	 Figure 7 shows the results of quantifying the performance of the object detection model 
for the 12 classes used to detect the road surface, signs, and traffic lights mentioned in Table 
1 by the average precision (AP). AP is an index used to consider both recall and precision, 
and its value is derived from a precision–recall curve and the calculated area under the 
curve. In object detection, precision refers to the class matching accuracy of the discovered 
object, which is important; however, the recall of matching the number of objects in the 
image is equally important. Although a tradeoff exists between these two scores, they 
ensure that the model generates relevant results in proportion to the number of predictions. 
Figure 7(a) shows the 12 classes used as ground truth in 2836 test image files, as well as the 
number of objects per class in the image. Figure 7(b) shows the AP for each class and the 
mean average precision (mAP). When evaluating the mAP, evaluation criteria may differ 
depending on the number of objects present in the image and the difficulty in distinguishing 
between objects. On the basis of an evaluation, the target road facility object detection 
model of this study indicated a mAP value of 56.56, which afforded a performance level 
similar to that of the existing YOLOv3 (mAP value of 57.9), while completing the algorithm 
for detecting road facilities in real time.
	 On the basis of the AP values for each class in Fig. 7(b), although most road facility 
objects were detected accurately, it was confirmed that the object corresponding to a specific 
road surface and the traffic light demonstrated low performance. In most cases, the inferior 
detection performance was due to the annotation of smaller objects that were difficult to 
observe with the naked eye. In particular, it was confirmed that the detection performance 

(a) (b)

Fig. 6.	 (Color online) Road facility detection: (a) pedestrian crossing ahead and traffic lights and (b) speed limit 
road marks and traffic light.
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was worse than that of the sign because the road surface markings were affected by 
perspective; therefore, it was difficult to discern the shape of the object owing to distance.

5.	 Conclusions

	 A rapid and accurate update of the HD map is required to promote and implement a safer 
autonomous driving system. For this HD map update, we conducted a study to identify a method 
to automatically recognize objects in a road environment. A deep-learning-based object 
detection model was constructed to detect objects in the HD map with the precision from road 
driving footage. The evaluation of the model indicated a mAP value of 56.56 as a result of 
transfer learning using images containing 12 types of road facilities. This study enables the 
presence or absence of change to be determined by comparing it with the existing HD map by 
accurately discovering objects in real time using a single camera. Applying this method to the 
crowdsourcing framework enables simultaneous updates to many vehicles on a road by changing 
the road environment information. However, owing to the rapid development of state-of-the-art 
object detection algorithms, we plan to conduct further studies using advanced algorithms to 
improve the detection of objects on road facilities.
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