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 In this study, we propose a relative and clustering analysis correction (RCC) technique 
capable of improving the location accuracy of a smartphone global navigation satellite system 
(GNSS). The RCC technique improves the accuracy of the Android GNSS by eliminating 
common error components from pseudoscope measurements as well as noncommon errors 
through cluster analysis using Android GNSS signal attributes. Cluster analysis was applied to 
the RCC technique using the optimal clustering method among the hierarchical clustering, 
K-means clustering, and neural network clustering methods. As a result of verifying the RCC 
technique, the following results were obtained. The distance error of a zero-baseline experiment, 
which was performed to check the relative accuracy and precision between smartphone GNSSs, 
was 0.572 m for two sessions, which showed that the noise-causing error of the Android 
smartphone GNSS used in the experiment occurred similarly in each session. Positioning 
accuracy was much lower in a multipath environment than in an open environment due to the 
reflection and refraction of satellite signals by obstacles, such as buildings around the receiver 
and multipath generation due to low-elevation non-line-of-sight satellite signals. However, 
observations confirmed that applying the RCC technology to the Android smartphone GNSS 
with errors of more than 5 m in multipath environments can secure high location accuracy, even 
in multipath environments.

1. Introduction

 The global navigation satellite system (GNSS) is a satellite-based positioning system 
developed in the early 1970s for determining a user’s location with an accuracy of several meters 
by receiving signals from at least four satellites. For decades, the GNSS has been used by experts 
for military and scientific purposes. However, owing to the advent of robust and inexpensive 
processors in the early 2000s, the satellite navigation system has naturally expanded from the 
domain of experts to the general private sector.
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 Recent smartphones have been equipped with GNSS chipsets, and location information can 
be obtained through an application programming interface (API).(1–3) In May 2016, Google 
announced that it would provide GNSS raw data for smartphones and tablets that support the 
Android 7.0 (Android Nougat) operating system. Smartphones equipped with GNSS chipsets 
running Android 7.0 or later can calculate not only a user’s location information (latitude, 
longitude, and elevation) but also the pseudodistance between the satellite and receiver as well as 
provide a direct signal timestamp that allows the user’s location to be calculated. Notably, GNSS 
raw data are now available.(4–6)

 In particular, the first dual-frequency GNSS chipset was released in June 2018 in a 
smartphone equipped with a BCM47755 location hub, which increased the availability of 
satellite signals and improved positioning accuracy. The provision of such GNSS raw data 
enabled the design of an advanced positioning algorithm and improved accuracy in a user-
centered location-based service (LBS).(7,8)

 Currently, programs and applications that can use GNSS raw data are being developed, and 
various studies related to the high positioning accuracy of smartphones are being conducted. For 
high-precision geodetic applications, precise point positioning (PPP) is well known to provide 
high positioning accuracy as evidenced in various research contributions.(6) The use of the dual-
frequency ionosphere free linear combination has typically defined conventional GNSS PPP 
processing.(8) However, owing to satellite modernization, the implementation of PPP has 
changed from the use of dual-frequency legacy measurements to a triple-frequency approach 
due to the addition of more signals.(9) The modernization of GNSS presents some challenges as 
well as opportunities, motivating PPP research on solution accuracy, convergence, reliability, 
and integrity.(10)

 However, for a smartphone GNSS, a positional accuracy of only ±2–3 m in an open 
environment without obstacles can be expected, which can be reduced to ±10 m or more in a 
multipath environment.(11) Various methods are being developed to improve the performance of 
the smartphone GNSS. For the convergence of the smartphone GNSS with various sensors, such 
as inertial measurement units including global positioning systems (GPSs), research related to 
location accuracy improvement using communication networks and WiFi is being actively 
conducted.(12–14)

 In this study, we propose a relative and clustering analysis correction (RCC) technique to 
improve positioning accuracy via multipath error cancelation through relative positioning 
between the smartphone and Android GNSS signal characteristic values using only smartphone 
GNSS signals without external communication or equipment. The effectiveness of this technique 
is verified by comparison with the results of point positioning.
 Recently, with the development of new devices, such as smartphones, wearable devices, 
drones, and autonomous vehicles, the demand for high-precision location information from low-
cost GNSS is increasing. Therefore, in this study, a user’s positioning accuracy is improved 
using the error information generated during positioning via the Android GNSS by making the 
GNSS correction information, which was only available in professional surveying equipment, 
available to the smartphone. It is expected that location determination with high stability and 
accuracy will be possible by applying this technique to various LBSs using GNSS.
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 Research on positioning accuracy using the Android GNSS has heralded research on 
positioning performance, signal processing algorithms, and signal characteristics through 
observation data of the smartphone GNSS. Realini et al.(15) used Google’s Nexus 9 tablet to 
evaluate the relative positioning accuracy of a smart mobile device with respect to a base station 
(continuously operating reference station), confirmed the positioning accuracy of 10 cm order 
for the Nexus 9 tablet, and evaluated the GNSS observation quality and location accuracy of 
Android smartphones to evaluate the carrier-to-noise density, pseudorange ratio error, and 
carrier ratio error; the average carrier-to-noise density ratio (CNo) was approximately 10 dB-Hz 
less than the values   obtained from the GNSS antenna and receiver used for surveying. Wu et 
al.(11) applied the PPP algorithm using the GPS L1/L5 signals and the Galileo E1/E5a dual-
frequency satellite based on a real-time kinematic library and GNSS analysis software for 
multiconstellation and multifrequency precise positioning (GAMP); then, the positioning 
performance of the Xiaomi Mi8 dual-frequency smartphone in static and dynamic modes was 
studied. As a result, in static mode, after convergence to 1 within 102 min, the root-mean-square 
(RMS) position errors of the dual-frequency smartphone PPP algorithm in the E·N·U directions 
were ±0.218, ±0.041, and ±0.110 m, respectively. Li and Geng(16) showed that GNSS signals 
generated by smart devices have nonuniform signal strength, rapid CNo changes, and low CNo 
values at high elevations and that the pseudorange noise was 10 times greater than that of a 
survey receiver. Weng et al.(17) proposed a differential GNSS infrastructure that independently 
calibrates the GNSS position of a smartphone using a reference station calibration. Guo et al.(18) 
confirmed that the CNo of smart devices was 4–11 dB-Hz lower than that of surveying receivers 
through the analysis of stationary and moving positions in open space in studies on the dual-
frequency GNSS observation data characteristics of the Xiaomi Mi8 in an urban environment. 
In addition, it was confirmed that the RMSs for the horizontal and vertical positions were ±1.0 
and ±1.5 m or less, respectively, using a single difference filter at the stop position. Paziewski et 
al.(19) showed that a weighting system based on CNo in the Android GNSS was superior to one 
based on the satellite elevation adopted in the general GNSS. Smartphone GNSS analysis in 
multipath areas is mainly used for surveying GNSS equipment, low-cost GNSS equipment, the 
u-blox device, and other sensors; alternatively, a 3D terrain model has been studied to improve 
accuracy through visible satellite classification.(20)

 In response to market demand, the theory and algorithms of smartphone location estimation 
have become one of the most frequently investigated and controversial topics in the GNSS field. 
This progress is driven by two main factors. The first is the remarkable improvement in the 
performance of recent popular commercially available GNSS chipsets. Initially, a single-
frequency, single-constellation signal can be obtained using these devices. However, to meet 
user needs for improved accuracy, manufacturers now provide a multi-constant, dual-frequency 
chipset that can track modernized GNSS signals. A key milestone was the launch of Broadcom’s 
first dual-frequency GNSS chipset, BCM47755, in September 2017.(9) This development was 
imitated by other producers such as u-blox, ST Microelectronics, and Qualcomm, who also have 
developed multifrequency, multi-conversion chipsets, i.e., F9, Teso, and Snapdragon X24 LTE.
 A second factor that brought smartphone positioning to the attention of the scientific 
community was the ability to provide both users and developers with raw observations retrieved 
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from the GNSS chipset of smart devices. As a result, carrier steps and Doppler GNSS 
measurements can now be accessed via Application Programming Interface 24 on devices 
running on Android NUGU 7.0 operating systems as well as code-like ranges. The availability 
of these smartphone-derived GNSS measurements has led to many studies of algorithm 
development and applications to improve the signal quality and positioning accuracy of mass-
market devices.(21)

 In previous studies, smartphone GNSS accuracy analysis suggested a method with improved 
accuracy that used a smartphone and other sensors together or a 3D topographic model. Such a 
method may cause problems due to visual synchronization with other sensors or the construction 
of 3D topographic model data. In this study, since additional sensors or topographic data are not 
required when classifying satellite signals that cause errors in relative positioning and distance 
using only a smartphone GNSS, a simpler method of improving accuracy than that in previous 
research methods is proposed.

2. Study Methods and Results

 The novelty of this study is that only a smartphone GNSS is employed to improve accuracy in 
a multipath environment without a 3D terrain model. To improve the accuracy of the Android 
GNSS, an RCC technique was used. The RCC technique increases the Android GNSS 
positioning accuracy by removing the common error component that occurs in the pseudorange 
measurement through the Android GNSS relative positioning method as well as the noncommon 
error component through cluster analysis using the Android GNSS signal characteristic values. 
Therefore, our research methodology is as follows (Fig. 1).
 First, GNSS signals were classified into normal signals and signals including multipath errors 
through the cluster analysis of signal characteristic values   of the Android GNSS. Second, 
correction information was obtained from a reference point for which the exact coordinates are 

Fig. 1. (Color online) Flowchart of proposed method.
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known using the classified GNSS signals. Afterward, the measurement point (unknown point) 
coordinates were corrected using the generated correction information. By comparing the 
corrected measurement point coordinates with the true measurement point coordinates, the 
effectiveness of the RCC technique for improving the accuracy of the smartphone GNSS was 
evaluated.

2.1 Strategies to improve accuracy using RCC techniques

 We examined the API of the Android GNSS and a method for calculating the pseudorange 
using various field values provided by the API, identified the signal characteristics of the 
Android GNSS, and proposed a technique that can use them to improve location accuracy.
 To improve the accuracy of the Android GNSS, we proposed an RCC technique to remove 
common error components from pseudodistance measurements through the Android GNSS 
counterparts as well as noncommon error components through cluster analysis using Android 
GNSS signal characteristics.
 Android GNSS relative positioning is a technique that improves location accuracy by 
correcting various errors included in code observations at a reference point (known point) to a 
pseudodistance and applying the correction amount to a measurement point (unknown point). 
Code-based correction information is generated by calculating the error included in a signal 
observed at an Android GNSS reference point whose 3D location is known. The Android GNSS 
measurement point can be used to determine the precise location accuracy by combining the 
correction information generated at the reference point with the Android GNSS observation 
information.
 The errors included in the distance can be divided into common errors, such as satellite orbit, 
satellite clock, convection layer, and ionization layer errors, and noncommon errors, such as 
receiver clock, receiver noise, and multipath errors; moreover, the pseudorange correction (PRC) 
can be calculated as follows:

 sv re gd sysPRC P PR δ δ δ δ= − − − − − ,  (1)

where PRC is the pseudorange distance correction information (m), P is the geometric distance 
between the satellite and receiver (m), PR is the distance between the satellite and receiver, δsv 
and δre are the satellite and receiver errors, respectively, δgd is the group delay, and δsys is the 
navigation system’s time offset.
 This study aims to increase accuracy by eliminating common errors, such as satellite orbit, 
satellite clock error, convection layer delay, and ionosphere errors, using code-based correction 
information generated at the Android GNSS reference point.

2.2 Android GNSS signal characteristic cluster analysis and RCC technology experiment

 Cluster analysis is a multivariate analysis technique that groups several clusters with similar 
characteristics from several variables observed for individuals, identifies the characteristics of 



354 Sensors and Materials, Vol. 34, No. 1 (2022)

the clusters, and analyzes the link between the clusters. In this study, hierarchical clustering 
(HC), K-means clustering (KMC), and neural network clustering (NNC), which are commonly 
used in cluster analysis, are compared to obtain the optimal method.
 After cluster analysis, the proposed RCC methodology proceeds as follows.
Step 1. Good satellite signals are extracted through cluster analysis.
Step 2.  Common satellite signals at the reference and measurement points are extracted using 

the good satellite signals extracted in Step 1.
Step 3. The reference point coordinates are calculated via a single measurement at the reference 

point using the common satellite signal.
Step 4. The calculated reference point coordinates are compared with the ground reference 

coordinates observed by a virtual reference station (VRS) to calculate and generate the 
correction amount of the reference point as the amount of error.

Step 5. The coordinates of the measurement point are calculated by exclusively positioning the 
common satellite signals extracted in Step 2.

Step 6. The calculated measurement point coordinates are combined with the correction 
amount generated in Step 4 to determine the final measurement point coordinates.

 Experimentally, we tested the location accuracy of Android GNSS smartphones in various 
environments by applying the proposed RCC technique in Yeungnam University, Gyeongsan-si, 
Gyeongsangbuk-do (Fig. 2).
 There were five study sites: two open environments (OP-1 and OP-2) and three multipath 
environments (MP-1, MP-2, and MP-3), and a zero-baseline experiment was performed on a 
building’s roof where the reference and measurement points were selected. To employ relative 
measurements for all observation points, the same smartphone model (Galaxy S21 Ultra) was 
used to minimize errors due to noise in Android GNSS receivers; moreover, to minimize errors 
due to the antenna direction, the smartphones were erected.
 The zero-baseline experiment was a quality analysis experiment on observational data of 
Android GNSS smartphones, and the accuracy and precision of the other party within the same 
session were confirmed by providing the same satellite reception environment. For the 
experiment, a reference point and a measurement point were selected with a distance of 6 m 

Fig. 2. (Color online) Detailed location of the study site.
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between them on a building’s roof at a location hardly affected by surrounding obstacles, and 
observation experiments were performed for two sessions using the same smartphone. To 
determine the exact ground reference point coordinates, a VRS survey was separately conducted 
on the reference and measurement points, and the results were used for location accuracy 
analysis. Figure 3 depicts the experimental setup and observation images for the zero-baseline 
experiment, and Table 1 summarizes the observation sessions and times of the zero-baseline 
experiment.
 Satellite signals can cause larger errors because the lower the elevation angle, the greater the 
thickness of the ionosphere and the convective layers that signals transmitted from the satellite 
must pass through before reaching the receiver. Setting signals transmitted from low-elevation-
angle satellites requires the setting of a threshold; in this study, the critical angle was set to 10° 
to reduce errors. In addition, the longer the observation time, the better the accuracy. In this 
study, the observation time was adopted as 7 min in consideration of the characteristic of the 
smartphone that the location was identified as the same place when the smartphone was not 
moved for a long time. Furthermore, since the orbiting cycle of GPS is 11 h 58 min in star time, 
if the time difference is 6 h, the satellite’s arrangement will completely change. In this study, 
considering these matters, the time interval between each session was set to 3 h 30 min in 
consideration of the arrangement of satellites, such as different satellites being employed in 
different sessions. Figure 4 shows the satellite deployment status during Sessions 1 and 2. 
Satellites with a critical angle of less than 10° were excluded from the coordinate calculation. 
The satellites labeled  were used for coordinate calculations and those labeled  were excluded 
by the critical angle.

Fig. 3. (Color online) Setup for the zero-baseline experiment.

Table1
Observation sessions and times (May 23, 2021).

Observation start time Observation time
Smartphone model

Reference point Measurement point

Session 1 14:30 7 min
(420 epochs) Galaxy S21 Ultra Galaxy S21 Ultra

Session 2 18:00 7 min
(420 epochs) Galaxy S21 Ultra Galaxy S21 Ultra
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 For Android GNSS smartphones, low-cost planar inverted-F antennas (PIFAs) are used, so 
even satellite signals received synchronously at similar locations show differences in signal 
intensity. The antennas mainly used in Android GNSS smartphones are inexpensive PIFAs and 
are generally microstrip antennas made using printed circuit boards. The characteristics of these 
antennas result in the loss of signal strength received due to the effects of linear polarization and 
radiation pattern directivity. In particular, directional effects may markedly reduce the intensity 
of other signals. From the statistical results of Table 2, the G08(L1) satellite signal showed a high 
average signal strength of 35 dB-Hz at the reference point, and the variance and standard 
deviation were less than 1, indicating that the change in signal intensity was small. However, the 
measurement point G08(L1) satellite signal measured at a similar location synchronously 
showed a relatively high average signal strength of 33 dB-Hz but had a large variance and 
standard deviation and a large change in signal intensity during the measurement time. At the 
reference point, the GLONASS R16 satellite signal of Session 1 showed an average signal 
intensity of 33 dB-Hz, and the variance and standard deviation were low, indicating that the 
change in signal intensity was small. However, R16 satellite signals at similar locations 
synchronously showed a relatively high average signal intensity of 31 dB-Hz, but the variance 
and standard deviation were larger than those of the R16 satellite signals at the reference point, 

Fig. 4. (Color online) Satellite layout: (a) Session 1 and (b) Session 2.

(a) (b)

Table 2
Satellite signal statistics in Session 1.

Satellite Average Variance Standard deviation

G08(L1) CNo Reference point 35.128 0.969 0.984
Measurement point 33.119 22.625 4.757

R16 CNo Reference point 33.211 1.311 1.145
Measurement point 31.463 3.075 1.753

C13 CNo Reference point 40.302 0.928 0.964
Measurement point 32.599 7.839 2.800

E24(Ela) CNo Reference point 40.210 0.674 0.821
Measurement point 39.127 0.968 0.984
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indicating that the change in signal intensity was relatively large during the measurement time. 
For the BeiDou C13 satellite signal, the average signal intensities at the reference and 
measurement points showed a large difference of 8 dB-Hz (Table 2); the satellite signal intensity 
changed significantly at the reference point. The Galileo E24(E1a) satellite signal also showed 
similar differences in variance and standard deviation, whereas it showed similar patterns at the 
reference and measurement points.
 As a result of the zero-baseline experiment for relative positioning verification, in Session 1, 
when comparing the errors for VRSs of the single and relative positioning, the error was reduced 
from 0.770 to 0.644 m in the X direction. In addition, in Session 2, when comparing the errors 
for the VRSs of the single and relative positioning, it was confirmed that the errors were reduced 
from 0.770 to 0.460 m in the X direction and from −0.710 to −0.323 m in the Y direction. 
According to the result of the two session observations, the noise errors of Android GNSS 
receivers used in the experiment were similar owing to similar corrections and error values.

2.3 Analysis of satellite signal characteristics

 Satellite signals measured in each experimental area were organized and their characteristics 
were analyzed. In an open environment, two areas with little multipath effect were selected as 
subjects for the experiment, which were designated OP-1 and OP-2. OP-1, the first experimental 
area, was 486 m from the reference point and was a playground without obstacles around it [Fig. 
5(a)]. To analyze satellite signals received from OP-1, the characteristic factors of CNo intensity, 
a tracking and data relay satellite system (TD RSS), pseudorange correction standard deviation 
(PR Std), and a multipath indicator were identified for each satellite signal.
 The experimental area OP-2 was located on a lawn with no obstacles around it, 284 m from 
the reference point on the roof of the building [Fig. 5(b)]. The factors of CNo intensity, TD RSS, 
PR Std, and multipath indicator were identified for all satellite signals received from OP-2 to 
analyze the received satellite signals and standardized data to determine their correlation.
 Areas with a high likelihood of multipath occurrence due to buildings and structures were 
selected as multipath environments. Three areas in Yeungnam University were tested, designated 

Fig. 5. (Color online) Locations of (a) reference point and OP-1 and (b) reference point and OP-2.
(a) (b)
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Fig. 6. (Color online) Locations of (a) MP-1 (b) MP-2, and (c) MP-3.

(a) (b) (c)

MP-1, MP-2, and MP-3. MP-1 was surrounded by buildings in the west and north–south 
directions and was 238 m from the reference point on the building’s roof [Fig. 6(a)]. MP-1 had 
reduced satellite visibility due to buildings located in the north and west according to the results 
obtained from receivers. In addition, buildings in the north and west received signals from 
satellites with an elevation of 40° or higher. In other words, the multipath phenomenon might 
often occur due to the non-line-of-sight (NLOS) signal covered by the building and the 
uncovered line-of-sight (LOS) signal. For the G01(L1) signal at this point, the TD RSS value was 
high but the other characteristic factors showed relatively good values; for the G19(L1), 
E08(E5a), and E26(E1a) signals, the CNo strength, PR Std, and multipath indicator values were 
all high.
 Buildings are located in the north and south directions of MP-2, which is the subject area and 
located close to the south building [Fig. 6(b)]. It was 112 m from the roof of the building with the 
reference point. MP-2 had reduced satellite visibility due to buildings in the north and south 
according to the results of receivers, and the buildings in the north and south received signals 
only from satellites located at an elevation of 40° or higher. That is, a multipath error may have 
been caused by not only the NLOS signal being blocked in the building but also the LOS signal 
not being blocked in the building. For the analysis of satellite signals received at this point, the 
factors of CNo intensity, TD RSS, PR Std, and the multipath indicator were extracted for all 
satellite signals received at MP-2. As a result, it was shown that the C23, E03(E1a), E08(E1a), 
E08(E5a), E15(E1a), and E15(E5a) satellite signals were poor.
 Finally, location MP-3 [Fig. 6(c)] was surrounded by buildings in the east, west, north, and 
south directions. It was located 193 m from the reference point on the roof of the building. MP-3 
was relatively close to the building to the north, so the elevations of the receivable satellites in 
the north were high. Meanwhile, the building located to the south was approximately 40 m from 
MP-3, enabling the reception of signals from low-elevation satellites in the south. Since MP-3 
was surrounded by buildings, the satellite signals with low elevations probably included multiple 
multipath errors. A large number of signals from low-elevation satellites were received at MP-3. 
Not only multipaths by LOS signals but also those by NLOS signals often occurred. It was 
confirmed that the G03(L1), G04(L1), G12(L1), C22, C23, C25, C37, and E08(E5a) satellite 
signals were significantly far from the average.
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2.4 Application of clustering method to RCC technique

 In this study, satellite signals were classified using HC, KMC, and NNC. It was determined 
which of the three clustering methods had the best accuracy in terms of classifying satellite 
signals, and this method was applied to the RCC technique. It was found that HC and NNC 
showed the same clustering results, whereas KMC showed different clustering results in MP-2 
and MP-3 among the five experimental areas.
 By comparing the three clustering methods in OP-1, the same clustering results were 
obtained, and two of 29 signals, E31(E1a) and E33(E1a), were classified. In OP-2, two of 28 
satellite signals, R18 and E07(E1), were classified. The clustering results in MP-1 were classified 
into seven satellite signals, G19(L1), C07, C2, C22, C25, E08(E5a), and E26(E1a), among 27 
satellite signals. In MP-2, HC and NNC showed the same clustering results; HC and NNC 
classified six of 31 satellite signals, whereas KMC classified only two satellite signals, (E08a) 
and E15(E5a). In MP-3, HC and NNC classified 13 satellite signals, G03(L1), G04(L1), G12(L1), 
C21, C22, C23, C25, C37, E08(E5a), E13(E1a), E21(E1a), E21(E5a), and E31(E1a), but KMC 
classified only four satellite signals, G04(L1), C23, E21(E1a), and E21(E5a).
 Then, an accuracy comparison among the clustering methods was performed. By comparing 
the clustered satellites for the three clustering methods, HC and NNC showed the same results, 
whereas KMC showed different clustering results in MP-2 and MP-3 among the five 
experimental areas. To check the accuracy of clustering for the experimental areas, excluding 
the areas showing the same clustering results, the satellites classified by HC and KMC were 
used to determine the coordinates using the RCC technique. The results shown in Table 3 were 
obtained by calculating the positional accuracy for the coordinate values.
 As shown in Table 3, the location accuracy of the RCC technique using HC was higher than 
that of the RCC technique using KMC. Therefore, in this study, the satellite signals were 
classified using HC and the results were applied to the RCC technique.
 The results of clustering for each experimental area by HC were confirmed with a 
dendrogram. To classify the good satellite signals and the satellite signals including a multipath 
error, signals were divided into two clusters in the final combined tree of the dendrogram. For 
OP-1, because of the wide-open environment, almost no multipath factors affected the satellite 
signals, so the satellite signals classified by HC were E31(E1a) and E33(E1a), i.e., only two of 29 
satellite signals. OP-2 is also an open environment and was hardly affected by the multipath 
phenomenon. Two satellite signals, R18 and E07(E1a), of 28 satellite signals were classified by 
cluster analysis.

Table 3
Comparison of positioning accuracy among the clustering methods.

Distance error
ΔX ΔY 2D

MP-2
RCC accuracy using HC −1.917 −1.057 2.189

RCC accuracy using KMC −0.342 3.140 3.159

MP-3
RCC accuracy using HC 1.373 1.840 2.296

RCC accuracy using KMC −4.874 −3.749 6.149
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 Through HC, good satellite signals and satellite signals including multipath errors were 
classified. To understand the statistical characteristics of such a cluster classification, a statistical 
analysis of the satellite signals was performed before and after cluster analysis.
 We obtained the statistical characteristics of the satellite signals before and after HC in the 
five areas, as shown in Table 4. As a result of cluster classification in OP-1, two signals, E31(E1a) 
and E33(E1a), were classified as satellite signals including multipath errors among 29 satellite 
signals. To understand the statistical characteristics, they were analyzed using standardized 
characteristic factors of the received satellite signals. By comparing the statistical data before 
and after cluster classification, PR Std significantly decreased from 3.587 to 0.220. PR Std 
seemed to significantly influence the cluster classification. The overall variance values   showed a 
similar pattern before and after cluster analysis, but the variance of PR Std was significantly 
reduced.
 Two satellite signals, R18 and E07(E1a), of 28 satellite signals measured in OP-2 were 
classified as satellite signals containing multipath errors. For the multipath indicator, the 
maximum value was reduced from 4.676 before clustering to 0.649 after clustering. It is 
considered that the multipath indicator significantly influenced the cluster classification. The 
overall variance values were reduced by clustering; in particular, the variance of the multipath 
indicator was significantly reduced from 1.0 to 0.041.
 From Table 4, the maximum values of PR Std and the multipath indicator in MP-1, which may 
have significantly influenced the multipath error, were drastically reduced by classification. In 
addition, the variance was significantly decreased by HC; in particular, PR Std significantly 
decreased. Of the 31 satellite signals, six satellite signals, C23, E03(E1a), E08(E1a), E08(E5a), 
E15(E1a), and E15(E5a), were classified as satellite signals containing multipath errors. For MP-
2, the changes in PR Std and the multipath indicator, which were expected to affect the multipath 

Table 4
Satellite signal statistics before and after HC classification.

Satellite signal before HC Satellite signal after HC
CNo 

strength TD RSS PR Std Multipath CNo 
strength TD RSS PR Std Multipath

OP-1
Maximum 1.604 1.610 3.587 3.517 1.604 1.610 0.220 3.517
Minimum −2.342 −2.306 −0.298 −0.582 −2.342 −2.306 −0.298 −0.582
Variance 1.000 1.000 1.000 1.000 1.033 0.950 0.014 1.049

OP-2
Maximum 2.191 1.767 3.511 4.676 2.191 1.767 3.511 0.649
Minimum −2.989 −3.149 −0.308 −0.308 −1.168 −1.564 −0.308 −0.308
Variance 1.000 1.000 1.000 1.000 0.466 0.650 1.077 0.041

MP-1
Maximum 1.686 2.875 3.036 3.714 1.686 2.875 −0.407 0.443
Minimum −2.094 −2.830 −0.562 −0.988 −0.988 −0.913 −0.562 −0.691
Variance 1.000 1.000 1.000 1.000 0.519 0.641 0.002 0.102

MP-2
Maximum 1.986 1.829 4.796 2.589 1.986 1.829 −0.193 0.287
Minimum −2.337 −2.247 −0.321 −0.550 −0.937 −2.247 −0.321 −0.550
Variance 1.000 1.000 1.000 1.000 0.449 1.068 0.001 0.032

MP-3
Maximum 1.315 2.138 1.681 3.816 1.315 2.138 −0.466 0.661
Minimum −1.944 −2.500 −0.658 −0.494 −0.390 −1.446 −0.658 −0.494
Variance 1.000 1.000 1.000 1.000 0.235 0.920 0.002 0.101
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error, were significant. In particular, the dispersion of PR Std and the multipath indicator were 
drastically reduced.
 In MP-3, which was surrounded by buildings on all sides, several multipath errors were 
expected to occur due to low-elevation satellite signals. As shown in Table 4, CNo intensity, PR 
Std, and the multipath indicator, which were expected to significantly influence the multipath 
error, significantly increased. In addition, the overall variance decreased, and the variance of PR 
Std drastically decreased after cluster analysis.

2.5 Common satellite extraction

 Figure 7(a) shows the satellite signals observed at the reference point during the experimental 
observation time for OP-1. Satellites marked with  indicate satellites common to OP-1 and the 
reference point, whereas satellites marked with  are excluded in OP-1. For relative positioning, 
satellite signals common to OP-1 and the reference point, as classified by cluster analysis, were 
extracted. Among 31 satellite signals, 27 common satellite signals [excluding the four signals 
C08, C10, E31(E1a), and E33(E1a)] were applied to the RCC technique. Figure 7(b) shows the 
satellite signals observed at the reference point during the experimental observation time for OP-
2. Satellites marked with  and  have the same meanings as above but for OP-2. Satellite 
signals common to OP-2 and the reference point, as classified by cluster analysis, were extracted. 
Among 31 satellite signals, 23 common satellite signals were applied to the RCC technique.

Fig. 7. (Color online) Satellite maps showing satellites common with the reference point for (a) OP-1, (b) OP-2, (c) 
MP-1, (d) MP-2, and (e) MP-3.

(a) (b) (c)

(d) (e)
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 Figure 7(c) shows the satellite signals observed at the reference point during the experimental 
observation time for MP-1. For relative positioning, satellite signals common to MP-1 and the 
reference point, as classified by cluster analysis, were extracted. Among 40 satellite signals, 18 
satellite signals common to both MP-1 and the reference point were applied to the RCC 
technique. Figure 7(d) shows the satellite signals observed at the reference point during the 
observation time for MP-2. For relative positioning, the satellite signals common to the reference 
point of MP-2 , as classified by cluster analysis, were extracted. Among 40 satellite signals, 18 
common satellite signals were applied to the RCC technique. Figure 7(e) shows the satellite 
signals observed at the reference point during the experimental observation time for MP-3. For 
relative positioning, the satellite signals common to MP-3 and the reference point, as classified 
by cluster analysis, were extracted. Among 40 satellite signals, 17 common satellite signals were 
applied to the RCC technique.

3. Accuracy Evaluation

3.1 Accuracy evaluation criterion

 The evaluation criterion used in this study was the error ellipse. The error ellipse is 
advantageous in grasping the exact distribution characteristics of errors through the major and 
minor axes of errors, the degree of rotation of the coordinate system, and so forth. If the average 
of x = [x,y]T is μx and the variance matrix is Σxx for x = [x,y]T, which is a 2D coordinate system in 
Euclidean space containing uncertainty, the error ellipse can be expressed as follows:

 
2

2
{ , } , x xyx
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y xy y
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σ σµ

µ
µ σ σ

     ∑ =  
     

, (2)

where σxy is ρxyσxσy and ρxy is the correlation coefficient.
 Therefore, the standard ellipse equation is

 ( ) ( )1 1T
x xxxx xµ µ−− − =∑ . (3)

 The eigenvalues satisfying 2 2 2 2 2 2( ) ( ) 0x y x y xyλ σ σ λ σ σ σ− + + − =  for the covariance matrix 
Σxx from the equation AX = λX are given by
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 The eigenvalues of the standard ellipse were used as an indicator of the degree of uncertainty 
in the measurement results.
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3.2 Accuracy evaluation results

 Satellite signals that generate multipath errors were removed using the characteristic values 
of satellite signals, and location accuracy experiments were performed in open and multipath 
environments through the RCC technique using the reference point located on the building’s 
roof.
 Figure 8(a) is an error ellipse confirming the accuracy and precision in the open environment 
of OP-1. The center of the error ellipse of the single-position technique was 1.898 m from the 
center of the VRS, whereas the center of the error ellipse of the RCC technique was 0.913 m 
from the center of the VRS, which was closer to the center of the VRS than the center of the 
single-position technique error ellipse. For OP-2, it was confirmed that the center of the single-
position technique error ellipse was 2.370 m from the center of the VRS, and the center of the 
error ellipse of the RCC technique was only 1.847 m from the center of the VRS [Fig. 8(b)]. For 
OP-1 and OP-2, when the RCC technique was applied rather than the single-position technique, 
the center of the error ellipse moved closer to the true VRS position, but the size of the error 
ellipse increased slightly. From the error ellipses for OP-1 and OP-2, it was confirmed that the 
accuracy improved but the precision deteriorated.
 Table 5 shows the statistics of the error ellipses calculated using the eigenvalues of the 
standard ellipses for OP-1 and OP-2 in an open environment. In the table, σG represents the 
geometric mean of the standard deviation, representing the radius of the disk with the same area 
as the ellipse at the specified significance level, and σH represents the average variance of the 
uncertainty of the point. According to the measurement result in an open environment, σG and 
σH of the RCC technique were slightly large for both OP-1 and OP-2; thus, this technique might 
be disadvantageous compared with the use of a single-position technique in terms of precision, 
although the difference was negligible in this study.
 Figure 9(a) is an error ellipse confirming the accuracy and precision for MP-1 in a multipath 
environment. The center of the single-position technique error ellipse was 4.473 m from the 
center of the VRS, whereas the center of the error ellipse of the RCC technique was 2.287 m 

Fig. 8. (Color online) Error ellipses: (a) OP-1 and (b) OP-2.

(a) (b)
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from the center of the VRS, which was closer than the center of the single-position technique 
error ellipse. For MP-2 [Fig. 9(b)], the center of the single-position technique error ellipse was 
3.780 m from the center of the VRS, whereas the center of the error ellipse of the RCC technique 
was only 2.189 m from the center of the VRS. In the MP-3 error ellipse diagram [Fig. 9(c)], the 
center of the single-position technique error ellipse was 5.357 m from the center of the VRS, 
whereas that of the error ellipse of the RCC technique was only 2.296 m from the center of the 
VRS. When the RCC technique was applied to a multipath environment, the accuracy improved 
because the center of the error ellipse approached the VRS position. However, as the area and 
axis of the error ellipse increased, the accuracy decreased. This phenomenon was confirmed 
numerically by observing the statistics of the error ellipses (Table 6).
 Table 7 shows a comparison of the accuracy between the relative positioning and RCC 
technique. The accuracy in an open environment was approximately 0.5 m with respect to the 
accuracy for the relative potential, but the accuracy in a multipath environment was much higher 
for the RCC technique. According to these results, the RCC technique improved the accuracy in 
MP-1 to MP-3.

Table 5
Statistics of error ellipses for OP-1 and OP-2.

Eigenvalues σG σH 
λ1 λ2

OP-1 Point positioning 0.858 1.779 1.274 1.624
RCC 0.985 1.769 1.288 1.659

OP-2 Point positioning 0.335 1.255 1.123 1.261
RCC 0.837 1.245 1.201 1.443

Fig. 9. (Color online) Error ellipses: (a) MP-1, (b) MP-2, and (c) MP-3.

(a) (b)

(c)
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4. Conclusion

 In this study, to improve the location accuracy of Android smartphones, an RCC technique 
using HC based on the characteristics of Android GNSS signals and a relative positioning 
correction method using classified satellite signals were proposed. Characteristic values of CNo, 
TD RSS, PR Std, and a multipath indicator were extracted and classified from raw data of 
Android GNSS smartphones, and the final measurement point coordinates were calculated using 
calibration information generated at the reference point using the classified normal satellite 
signals. By comparing the calculated position coordinates with the ground reference coordinates 
observed by a VRS, the following results were obtained.
 In a zero-baseline experiment, which was performed to check the relative accuracy and 
precision between smartphones, correction information measured in two sessions of observations 
showed similar correction amounts of −0.838, −0.842, and 0.168 m for the X, Y, and Z directions, 
respectively. As a result of applying the relative potential in each session, an error of 0.572 m due 
to noise in the Android smartphone GNSS used in the experiment occurred in both sessions.
 By comparing the accuracy between the relative positioning and RCC technique for each 
experimental site, it was judged that the RCC technique can effectively increase the accuracy in 
an environment where multipath errors occur rather than in an open environment. By applying 
the RCC technique to improve the location accuracy of the Android GNSS, the location accuracy 
improved in a multipath environment. If the RCC technique is applied to the Android smartphone 

Table 6
Statistics of error ellipses for MP-1, MP-2, and MP-3.

Eigenvalues σG σH λ1 λ2

MP-1 Point positioning 0.608 8.08 1.717 2.948
RCC 1.823 10.873 1.888 3.563

MP-2 Point positioning 4.502 9.704 1.941 3.769
RCC 0.780 14.300 1.971 3.885

MP-3 Point positioning 1.687 5.113 1.615 2.608
RCC 2.667 68.304 2.903 8.424

Table 7
Accuracy improvement rate for RCC.

Range error (m) RMS error (m)
ΔX ΔY 2D ΔX ΔY 2D

OP-1 Relative positioning 1.053 −1.580 1.898 1.331 0.925 1.621
RCC 0.913 −0.011 0.913 1.323 0.998 1.657

OP-2 Relative positioning 1.668 −1.684 2.370 0.974 0.790 1.254
RCC −1.361 1.248 1.847 1.096 0.930 1.437

MP-1 Relative positioning 4.111 −1.763 4.473 2.617 1.339 2.940
RCC 2.287 0.025 2.287 3.164 1.617 3.553

MP-2 Relative positioning 3.399 1.654 3.780 2.936 2.322 3.744
RCC −1.917 −1.057 2.189 3.749 0.914 3.859

MP-3 Relative positioning 4.605 2.736 5.357 1.853 1.819 2.596
RCC 1.373 1.840 2.296 7.250 4.218 8.388



366 Sensors and Materials, Vol. 34, No. 1 (2022)

GNSS, which has an error of more than 50 m in a multipath environment, high location accuracy 
can be secured, even in a multipath environment.
 Through this study, the overall location accuracy using the RCC technique was improved, 
which is judged to be due to the influence of low-cost antennas, an increase in the position 
dilution of precise values by optimal classification of the available satellite signals, and so forth. 
Therefore, further research is needed to accurately model the impact of Android GNSS satellite 
signals on accuracy, precision, and errors in multipath areas in the future.
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